Show simple item record

dc.contributor.authorGiné, Jaume
dc.contributor.authorLlibre, Jaume
dc.contributor.authorValls, Claudia
dc.date.accessioned2016-11-07T14:13:26Z
dc.date.available2017-06-01T22:28:26Z
dc.date.issued2015
dc.identifier.issn0377-0427
dc.identifier.urihttp://hdl.handle.net/10459.1/58410
dc.description.abstractIn this paper we classify the centers and the isochronous centers of certain polynomial differential systems in R2 of degree d≥5 odd that in complex notation are ż=(λ+i)z(zz̄)d−52(Az5+Bz4z̄+Cz3z̄2+Dz2z̄3+Ezz̄4+Fz̄5), where z=x+iy λ∈R and A,B,C,D,E,F∈C. Note that if d=5 we obtain the class of polynomial differential systems of the form a linear system with homogeneous polynomial nonlinearities of degree 5. Due to the huge computations required for computing the necessary and sufficient conditions for the characterization of the centers and isochronous centers, our study uses algorithms of computational algebra based on the Gröbner basis theory and on modular arithmetics.
dc.description.sponsorshipThe first author is partially supported by a MINECO/ FEDER grant number MTM2011-22877 and an AGAUR (Generalitat de Catalunya) grant number 2014SGR 1204. The second author is partially supported by a MINECO/ FEDER grant number MTM2008-03437, an AGAUR grant number 2014SGR 568, ICREA Academia, two FP7-PEOPLE-2012-IRSES numbers 316338 and 318999, and a FEDER/UNAB10-4E-378. The third author has been supported by FCT (grant PTDC/MAT/117106/2010 and through CAMGSD).
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relationMICINN/PN2008-2011/MTM2011-22877
dc.relationMICINN/PN2008-2011/MTM2008-03437
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.cam.2014.11.007
dc.relation.ispartofJournal of Computational and Applied Mathematics, 2015, vol. 279, p. 173-186
dc.rightscc-by-nc-nd (c) Elsevier, 2015
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.ca
dc.subjectNon–degenerate center
dc.subjectPoincaré-Liapunov-Abel constants
dc.subjectGröbner basis theory
dc.subjectComputation on modular arithmetics
dc.subject.classificationMatemàtica
dc.subject.otherMathematics
dc.titleCenters and isochronous centers for generalized quintic systems
dc.typeinfo:eu-repo/semantics/article
dc.date.updated2016-11-07T14:13:26Z
dc.identifier.idgrec023248
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.identifier.doihttps://doi.org/10.1016/j.cam.2014.11.007
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/316338
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/318999


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

cc-by-nc-nd (c) Elsevier, 2015
Except where otherwise noted, this item's license is described as cc-by-nc-nd (c) Elsevier, 2015