Show simple item record

dc.contributor.authorMarín Sáez, Julia
dc.contributor.authorChemisana Villegas, Daniel
dc.contributor.authorMoreno Bellostes, Àlex
dc.contributor.authorRiverola Lacasta, Alberto
dc.contributor.authorAtencia Carrizo, Jesús
dc.contributor.authorCollados, María Victoria
dc.date.accessioned2016-09-13T10:57:38Z
dc.date.available2016-09-13T10:57:38Z
dc.date.issued2016
dc.identifier.issn1996-1073
dc.identifier.urihttp://hdl.handle.net/10459.1/57792
dc.description.abstractA building integrated holographic concentrating photovoltaic-thermal system has been optically and energetically simulated. The system has been designed to be superimposed into a solar shading louvre; in this way the concentrating unit takes profit of the solar altitude tracking, which the shading blinds already have, to increase system performance. A dynamic energy simulation has been conducted in two different locations—Sde Boker (Israel) and Avignon (France)—both with adequate annual irradiances for solar applications, but with different weather and energy demand characteristics. The simulation engine utilized has been TRNSYS, coupled with MATLAB (where the ray-tracing algorithm to simulate the holographic optical performance has been implemented). The concentrator achieves annual mean optical efficiencies of 30.3% for Sde Boker and 43.0% for the case of Avignon. Regarding the energy production, in both locations the thermal energy produced meets almost 100% of the domestic hot water demand as this has been considered a priority in the system control. On the other hand, the space heating demands are covered by a percentage ranging from 15% (Avignon) to 20% (Sde Boker). Finally, the electricity produced in both places covers 7.4% of the electrical demand profile for Sde Boker and 9.1% for Avignon.ca_ES
dc.description.sponsorshipThis research was supported by ‘Ministerio de Economía y Competitividad’ of Spain for the funding (grants ENE2013-48325-R and BES-2014-069596), the Generalitat de Catalunya (grant 2016 FI_B1 00019), the UdL-Santander Bank (UdL-Impuls grant) and the Diputación General de Aragón-Fondo Social Europeo (TOL research group, T76).ca_ES
dc.language.isoengca_ES
dc.publisherMDPIca_ES
dc.relationMINECO/PN2013-2016/ENE2013-48325-Rca_ES
dc.relation.isformatofReproducció del document publicat a https://doi.org/10.3390/en9080577ca_ES
dc.relation.ispartofEnergies, 2016, vol. 9, núm. 8, p. 577 (19 pp.)ca_ES
dc.rightscc-by, (c) Marín Sáez et al., 2016ca_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectSolar energyca_ES
dc.subjectSolar concentrationca_ES
dc.subjectPhotovoltaicsca_ES
dc.subjectPVTca_ES
dc.titleEnergy simulation of a holographic PVT concentrating system for building integration applicationsca_ES
dc.typearticleca_ES
dc.identifier.idgrec024687
dc.type.versionpublishedVersionca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.identifier.doihttps://doi.org/10.3390/en9080577


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

cc-by, (c) Marín Sáez et al., 2016
Except where otherwise noted, this item's license is described as cc-by, (c) Marín Sáez et al., 2016