Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Informàtica i Enginyeria Industrial
  • Articles publicats (Informàtica i Enginyeria Industrial)
  • View Item
  •   Home
  • Recerca
  • Informàtica i Enginyeria Industrial
  • Articles publicats (Informàtica i Enginyeria Industrial)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An image processing method for in-line nectarine variety verification based on the comparison of skin feature histogram vectors

Thumbnail
View/Open
020711.pdf (1.262Mb)
Sol·licita una còpia
Issue date
2014
Author
Font Calafell, Davinia
Tresánchez Ribes, Marcel
Pallejà Cabrè, Tomàs
Teixidó Cairol, Mercè
Martínez Lacasa, Daniel
Moreno Blanc, Javier
Palacín Roca, Jordi
Suggested citation
Font Calafell, Davinia; Tresánchez Ribes, Marcel; Pallejà Cabrè, Tomàs; Teixidó Cairol, Mercè; Martínez Lacasa, Daniel; Moreno Blanc, Javier; Palacín Roca, Jordi; . (2014) . An image processing method for in-line nectarine variety verification based on the comparison of skin feature histogram vectors. Computers and Electronics in Agriculture, 2014, vol. 102, p. 112-119. https://doi.org/10.1016/j.compag.2014.01.013.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Abstract
This paper presents an image processing method for in-line automatic and individual nectarine variety verification in a fruit-packing line based on the use of feature histogram vectors obtained by concatenating the histograms computed from different color layers of a circular central area of the skin of the nectarines processed. The verification procedure requires the definition of a small dataset with the feature histogram vectors corresponding to some reference nectarines (manually selected) whose skin clearly identifies the variety being processed. The in-line variety verification of each nectarine processed is then done by computing and comparing its current feature histogram vector with the reference dataset. This paper compares experimentally different alternatives for computing the feature histogram vectors and two methods for feature comparison and variety verification. The experimental validation consists of the automatic in-line processing of nectarine samples from different mixed varieties. The results show an 86% success rate in the case of an expert human operator and 100% when using feature histogram vectors computed in the Rg (red and gray) or YR (luminance and normalized red) intensity color layers and when using correlation to compare the feature vectors.
URI
http://hdl.handle.net/10459.1/57364
DOI
https://doi.org/10.1016/j.compag.2014.01.013
Is part of
Computers and Electronics in Agriculture, 2014, vol. 102, p. 112-119
European research projects
Collections
  • Articles publicats (Informàtica i Enginyeria Industrial) [989]
  • Grup de Recerca en Robòtica i Processament de Senyal (INSPIRES) [25]

Contact Us | Send Feedback | Legal Notice
© 2023 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2023 BiD. Universitat de Lleida
Metadata subjected to