Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Informàtica i Enginyeria Industrial
  • Articles publicats (Informàtica i Enginyeria Industrial)
  • View Item
  •   Home
  • Recerca
  • Informàtica i Enginyeria Industrial
  • Articles publicats (Informàtica i Enginyeria Industrial)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

State-based predictions with self-correction on Enterprise Desktop Grid environments

Thumbnail
View/Open
019898.pdf (1.147Mb)
Sol·licita una còpia
Issue date
2013
Author
Lérida Monsó, Josep Lluís
Solsona Tehàs, Francesc
Hernandez, Porfidio
Giné, Francesc
Hanzich, Mauricio
Conde Colom, Josep
Suggested citation
Lérida Monsó, Josep Lluís; Solsona Tehàs, Francesc; Hernandez, Porfidio; Giné, Francesc; Hanzich, Mauricio; Conde Colom, Josep; . (2013) . State-based predictions with self-correction on Enterprise Desktop Grid environments. Journal of Parallel and Distributed Computing, 2013, vol. 73, núm. 6, p. 777-789. https://doi.org/10.1016/j.jpdc.2013.02.007.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Abstract
The abundant computing resources in current organizations provide new opportunities for executing parallel scientific applications and using resources. The Enterprise Desktop Grid Computing (EDGC) paradigm addresses the potential for harvesting the idle computing resources of an organization’s desktop PCs to support the execution of the company’s large-scale applications. In these environments, the accuracy of response-time predictions is essential for effective metascheduling that maximizes resource usage without harming the performance of the parallel and local applications. However, this accuracy is a major challenge due to the heterogeneity and non-dedicated nature of EDGC resources. In this paper, two new prediction techniques are presented based on the state of resources. A thorough analysis by linear regression demonstrated that the proposed techniques capture the real behavior of the parallel applications better than other common techniques in the literature. Moreover, it is possible to reduce deviations with a proper modeling of prediction errors, and thus, a Self-adjustable Correction method (SAC) for detecting and correcting the prediction deviations was proposed with the ability to adapt to the changes in load conditions. An extensive evaluation in a real environment was conducted to validate the SAC method. The results show that the use of SAC increases the accuracy of response-time predictions by 35%. The cost of predictions with self-correction and its accuracy in a real environment was analyzed using a combination of the proposed techniques. The results demonstrate that the cost of predictions is negligible and the combined use of the prediction techniques is preferable.
URI
http://hdl.handle.net/10459.1/57075
DOI
https://doi.org/10.1016/j.jpdc.2013.02.007
Is part of
Journal of Parallel and Distributed Computing, 2013, vol. 73, núm. 6, p. 777-789
European research projects
Collections
  • Publicacions de projectes de recerca del Plan Nacional [2684]
  • Articles publicats (Informàtica i Enginyeria Industrial) [935]

Contact Us | Send Feedback | Legal Notice
© 2022 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2022 BiD. Universitat de Lleida
Metadata subjected to