Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Ciències Mèdiques Bàsiques
  • Articles publicats (Ciències Mèdiques Bàsiques)
  • View Item
  •   Home
  • Recerca
  • Ciències Mèdiques Bàsiques
  • Articles publicats (Ciències Mèdiques Bàsiques)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of the Major Oxidatively Damaged Proteins in Escherichia coli Cells Exposed to Oxidative Stress

Thumbnail
View/Open
000363.pdf (216.2Kb)
Issue date
1998
Author
Tamarit Sumalla, Jordi
Cabiscol Català, Elisa
Ros Salvador, Joaquim
Suggested citation
Tamarit Sumalla, Jordi; Cabiscol Català, Elisa; Ros Salvador, Joaquim; . (1998) . Identification of the Major Oxidatively Damaged Proteins in Escherichia coli Cells Exposed to Oxidative Stress. Journal of Biological Chemistry, 1998, Vol. 273, núm. 5, p. 3027-3032. https://doi.org/10.1074/jbc.273.5.3027.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Abstract
In the present study we have analyzed protein oxidation on Escherichia coli when these cells were submitted to different stress conditions such as hydrogen peroxide, superoxide-generating compounds, and iron overloading. Carbonyl groups on oxidized cell proteins were examined by Western blot immunoassay. When anaerobically grown E. coli cells were exposed to hydrogen peroxide stress, alcohol dehydrogenase E, elongation factor G, the heat shock protein DNA K, oligopeptidebinding protein A, enolase, and the outer membrane protein A were identified as the major protein targets. A similar immunostained band pattern was found when cells were shifted from anaerobic to aerobic conditions in the presence of different concentrations of iron; it is relevant to note that oxidation of outer membrane protein C, not observed in peroxide stress conditions, was clearly detected as the concentration of iron was increased in the culture media. The hydrogen peroxide stress performed under aerobic conditions affected the b-subunit of F0F1-ATPase; the rest of the oxidized protein pattern was very similar to that found for anaerobic conditions, with the exception of alcohol dehydrogenase E, a protein not synthesized aerobically. Cells submitted to superoxide stress using menadione showed a more specific pattern in which elongation factor G and the b-subunit of F0F1-ATPase were affected significantly. When paraquat was used, although the degree of oxidative damage was lower, the same two modified proteins were detected, and DNA K was also clearly damaged. Cell viability was affected to different extents depending on the type of stress exerted. The results described in this paper provide data about the in vivo effects of oxidative stress on protein oxidation and give insights into understanding how such modifications can affect cellular functions.
URI
http://hdl.handle.net/10459.1/56765
DOI
https://doi.org/10.1074/jbc.273.5.3027
Is part of
Journal of Biological Chemistry, 1998, Vol. 273, núm. 5, p. 3027-3032
European research projects
Collections
  • Articles publicats (Ciències Mèdiques Bàsiques) [581]

Contact Us | Send Feedback | Legal Notice
© 2023 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2023 BiD. Universitat de Lleida
Metadata subjected to