Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems

Visualitza/ Obre
Data de publicació
2013-10Citació recomanada
Giné, Jaume;
Grau Montaña, Maite;
Llibre, Jaume;
.
(2013)
.
Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems.
Discrete and Continuous Dynamical Systems, 2013, vol. 33, num. 10, p. 4531-4547.
https://doi.org/10.3934/dcds.2013.33.4531.
Metadades
Mostra el registre d'unitat completResum
In this paper we find necessary and sufficient conditions in order that a planar quasi-homogeneous polynomial differential system has a polynomial or a rational first integral. We also prove that any planar quasi-homogeneous polynomial differential system can be transformed into a differential system of the form u˙=uf(v), v˙=g(v) with f(v) and g(v) polynomials, and vice versa.
És part de
Discrete and Continuous Dynamical Systems, 2013, vol. 33, num. 10, p. 4531-4547Projectes de recerca europeus
Publicacions relacionades
Mostrant elements relacionats per títol, autor i matèria.
-
Polynomial and rational first integrals for planar homogeneous polynomial differential systems
Giné, Jaume; Grau Montaña, Maite; Llibre, Jaume (Universitat Autònoma de Barcelona, 2014)In this paper we find necessary and suficient conditions in order that a planar homogeneous polynomial differential system has a polynomial or rational first integral. We apply these conditions to linear and quadratic ... -
Integrability of planar polynomial differential systems through linear differential equations
Giacomini, Héctor; Giné, Jaume; Grau Montaña, Maite (Rocky Mountain Mathematics Consortium, 2006)In this work we consider rational ordinary differential equations dy/dx = Q(x, y)/P(x, y), with Q(x, y) and P(x, y) coprime polynomials with real coefficients. We give a method to construct equations of this type for ... -
Centers for the Kukles homogeneous systems with even degree
Giné, Jaume; Llibre, Jaume; Valls, Claudia (Shanghai Normal University & Wilmington Scientific Publisher, 2017)For the polynomial differential system x˙=−y, y˙=x+Qn(x,y), where Qn(x,y) is a homogeneous polynomial of degree n there are the following two conjectures done in 1999. (1) Is it true that the previous system for n≥2 has a ...