Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Grup de Recerca en AgròTICa i Agricultura de Precisió
  • Articles publicats (Grup de Recerca en AgròTICa i Agricultura de Precisió)
  • View Item
  •   Home
  • Recerca
  • Grup de Recerca en AgròTICa i Agricultura de Precisió
  • Articles publicats (Grup de Recerca en AgròTICa i Agricultura de Precisió)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Digital Soil Mapping Using Artificial Neural Networks and Terrain-Related Attributes

Thumbnail
View/Open
Postprint (1.085Mb)
Issue date
2015
Author
Bagheri Bodaghabadi, Mohsen
Martínez Casasnovas, José Antonio
Salehi, Mohammad Hasan
Mohammadi, Jahangard
Esfandiarpoor Borujeni, Isa
Toomanian, Norair
Gandomkar, Amir
Suggested citation
Bagheri Bodaghabadi, Mohsen; Martínez Casasnovas, José Antonio; Salehi, Mohammad Hasan; Mohammadi, Jahangard; Esfandiarpoor Borujeni, Isa; Toomanian, Norair; Gandomkar, Amir; . (2015) . Digital Soil Mapping Using Artificial Neural Networks and Terrain-Related Attributes. Pedosphere, 2015, vol. 25, núm. 4, p. 580-591. https://doi.org/10.1016/S1002-0160(15)30038-2.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Abstract
Detailed soil surveys involve costly and time-consuming work and require expert knowledge. Since soil surveys provide information to meet a wide range of needs, new methods are necessary to map soils quickly and accurately. In this study, multilayer perceptron artificial neural networks (ANNs) were developed to map soil units using digital elevation model (DEM) attributes. Several optimal ANNs were produced based on a number of input data and hidden units. The approach used test and validation areas to calculate the accuracy of interpolated and extrapolated data. The results showed that the system and level of soil classification employed had a direct effect on the accuracy of the results. At the lowest level, smaller errors were observed with the World Reference Base (WRB) classification criteria than the Soil Taxonomy (ST) system, but more soil classes could be predicted when using ST (7 soils in the case of ST vs. 5 with WRB). Training errors were below 11% for all the ANN models applied, while the test error (interpolation error) and validation error (extrapolation error) were as high as 50% and 70%, respectively. As expected, soil prediction using a higher level of classification presented a better overall level of accuracy. To obtain better predictions, in addition to DEM attributes, data related to landforms and/or lithology as soil-forming factors, should be used as ANN input data.
URI
http://hdl.handle.net/10459.1/49354
DOI
https://doi.org/10.1016/S1002-0160(15)30038-2
Is part of
Pedosphere, 2015, vol. 25, núm. 4, p. 580-591
European research projects
Collections
  • Articles publicats (Grup de Recerca en AgròTICa i Agricultura de Precisió) [101]
  • Articles publicats (Medi Ambient i Ciències del Sòl) [381]
  • Articles publicats (Agrotecnio Center) [950]

Related items

Showing items related by title, author, creator and subject.

  • Database extension for digital soil mapping using artificial neural networks 

    Bagheri Bodaghabadi, Mohsen; Martínez Casasnovas, José Antonio; Esfandiarpour Borujeni, I.; Salehi, Mohammad Hasan; Mohammadi, Jahangard; Toomanian, Norair (Springer Verlag, 2016-11-08)
    Cost and time are the two most important factors conditioning soil surveys. Since these surveys provide basic information for modelling and management activities, new methods are needed to speed the soil mapping process ...
  • Expedited generation of terrain digital classes in flat areas from UAV images for precision agriculture purposes 

    Pineda, María Corina; Perdomo, C.; Caballero, R.; Valera, A.; Martínez Casasnovas, José Antonio; Viloria, J. (The Animal Consortium, 2017-07-16)
    Precision agriculture (PA) requires reasonably homogeneous areas for site-specific management. This work explores the applicability of digital terrain classes obtained from a digital elevation model derived from UAV-acquired ...
  • Landslides susceptibility change over time according to terrain conditions in a mountain area of the tropic region 

    Pineda, M. C.; Viloria, J.; Martínez Casasnovas, José Antonio (Springer, 2016-04)
    Susceptibility to landslides in mountain areas results from the interaction of various factors related to relief formation and soil development. The assessment of landslide susceptibility has generally taken into account ...

Contact Us | Send Feedback | Legal Notice
© 2021 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2021 BiD. Universitat de Lleida
Metadata subjected to