Universitat de Lleida
    • English
    • català
    • español
  • català 
    • English
    • català
    • español
  • Inicia la sessió
Repositori Obert UdL
Visualitza l'element 
  •   Inici
  • Recerca
  • Grup de Recerca en AgròTICa i Agricultura de Precisió
  • Articles publicats (Grup de Recerca en AgròTICa i Agricultura de Precisió)
  • Visualitza l'element
  •   Inici
  • Recerca
  • Grup de Recerca en AgròTICa i Agricultura de Precisió
  • Articles publicats (Grup de Recerca en AgròTICa i Agricultura de Precisió)
  • Visualitza l'element
JavaScript is disabled for your browser. Some features of this site may not work without it.

Digital Soil Mapping Using Artificial Neural Networks and Terrain-Related Attributes

Thumbnail
Visualitza/Obre
Postprint (1.085Mb)
Data de publicació
2015
Autor/a
Bagheri Bodaghabadi, Mohsen
Martínez Casasnovas, José Antonio
Salehi, Mohammad Hasan
Mohammadi, Jahangard
Esfandiarpoor Borujeni, Isa
Toomanian, Norair
Gandomkar, Amir
Citació recomanada
Bagheri Bodaghabadi, Mohsen; Martínez Casasnovas, José Antonio; Salehi, Mohammad Hasan; Mohammadi, Jahangard; Esfandiarpoor Borujeni, Isa; Toomanian, Norair; Gandomkar, Amir; . (2015) . Digital Soil Mapping Using Artificial Neural Networks and Terrain-Related Attributes. Pedosphere, 2015, vol. 25, núm. 4, p. 580-591. https://doi.org/10.1016/S1002-0160(15)30038-2.
Impacte


Logo de Web of Science    citacions a Web of Science

Logo d'Scopus    citacions a Scopus

Logo de Google Acadèmic  Google Acadèmic
Compartir
Exportar a Mendeley
Metadades
Mostra el registre d'unitat complet
Resum
Detailed soil surveys involve costly and time-consuming work and require expert knowledge. Since soil surveys provide information to meet a wide range of needs, new methods are necessary to map soils quickly and accurately. In this study, multilayer perceptron artificial neural networks (ANNs) were developed to map soil units using digital elevation model (DEM) attributes. Several optimal ANNs were produced based on a number of input data and hidden units. The approach used test and validation areas to calculate the accuracy of interpolated and extrapolated data. The results showed that the system and level of soil classification employed had a direct effect on the accuracy of the results. At the lowest level, smaller errors were observed with the World Reference Base (WRB) classification criteria than the Soil Taxonomy (ST) system, but more soil classes could be predicted when using ST (7 soils in the case of ST vs. 5 with WRB). Training errors were below 11% for all the ANN models applied, while the test error (interpolation error) and validation error (extrapolation error) were as high as 50% and 70%, respectively. As expected, soil prediction using a higher level of classification presented a better overall level of accuracy. To obtain better predictions, in addition to DEM attributes, data related to landforms and/or lithology as soil-forming factors, should be used as ANN input data.
URI
http://hdl.handle.net/10459.1/49354
DOI
https://doi.org/10.1016/S1002-0160(15)30038-2
És part de
Pedosphere, 2015, vol. 25, núm. 4, p. 580-591
Projectes de recerca europeus
Col·leccions
  • Articles publicats (Grup de Recerca en AgròTICa i Agricultura de Precisió) [101]
  • Articles publicats (Medi Ambient i Ciències del Sòl) [381]
  • Articles publicats (Agrotecnio Center) [950]

Publicacions relacionades

Mostrant elements relacionats per títol, autor i matèria.

  • Database extension for digital soil mapping using artificial neural networks 

    Bagheri Bodaghabadi, Mohsen; Martínez Casasnovas, José Antonio; Esfandiarpour Borujeni, I.; Salehi, Mohammad Hasan; Mohammadi, Jahangard; Toomanian, Norair (Springer Verlag, 2016-11-08)
    Cost and time are the two most important factors conditioning soil surveys. Since these surveys provide basic information for modelling and management activities, new methods are needed to speed the soil mapping process ...
  • Expedited generation of terrain digital classes in flat areas from UAV images for precision agriculture purposes 

    Pineda, María Corina; Perdomo, C.; Caballero, R.; Valera, A.; Martínez Casasnovas, José Antonio; Viloria, J. (The Animal Consortium, 2017-07-16)
    Precision agriculture (PA) requires reasonably homogeneous areas for site-specific management. This work explores the applicability of digital terrain classes obtained from a digital elevation model derived from UAV-acquired ...
  • Landslides susceptibility change over time according to terrain conditions in a mountain area of the tropic region 

    Pineda, M. C.; Viloria, J.; Martínez Casasnovas, José Antonio (Springer, 2016-04)
    Susceptibility to landslides in mountain areas results from the interaction of various factors related to relief formation and soil development. The assessment of landslide susceptibility has generally taken into account ...

Contacteu amb nosaltres | Envia comentaris | Avís legal
© 2021 BiD. Universitat de Lleida
Metadades subjectes a 
 

 

Explora

Tot el repositoriComunitats i col·leccionsPer data d'edicióAutorsTítolsMatèriesAquesta col·leccióPer data d'edicióAutorsTítolsMatèries

Estadístiques

Veure estadístiques d'ús

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contacteu amb nosaltres | Envia comentaris | Avís legal
© 2021 BiD. Universitat de Lleida
Metadades subjectes a