Show simple item record

dc.contributor.authorRocadenbosch Burillo, Francesc
dc.contributor.authorFrasier, Stephen
dc.contributor.authorKumar, Dhiraj
dc.contributor.authorLange, Diego
dc.contributor.authorGregorio López, Eduard
dc.contributor.authorSicard, Michaël
dc.date.accessioned2016-01-20T09:10:47Z
dc.date.available2016-01-20T09:10:47Z
dc.date.issued2012
dc.identifier.issn0196-2892
dc.identifier.urihttp://hdl.handle.net/10459.1/49348
dc.description.abstractTotal backscatter-coefficient inversion error bounds for the two-component lidar inversion algorithm (so-called Fernald's or Klett-Fernald-Sasano's method) are derived in analytical form in response to the following three error sources: 1) the measurement noise; 2) the user uncertainty in the backscatter-coefficient calibration; and 3) the aerosol extinction-to-backscatter ratio. The following two different types of error bounds are presented: 1) approximate error bounds using first-order error propagation and 2) exact error bounds using a total-increment method. Both error bounds are formulated in explicit analytical form, which is of advantage for practical physical sensitivity analysis and computational implementation. A Monte Carlo approach is used to validate the error bounds at 355-, 532-, and 1064-nm wavelengths.ca_ES
dc.description.sponsorshipThis work was supported in part by the European Union through the Aerosols, Clouds, and Trace Gases Research Infrastructure Network (ACTRIS) Project under Contract 262254, the European Space Agency under Contract 21487/08/NL/HE, and the Spanish Ministry of Science and Innovation (MICINN) and European Regional Development (FEDER) Funds under Grant TEC2009-09106 and through the Chemistry–Aerosol Mediterranean Experiment (ChArMEx) Project under Complementary Actions/Grants CGL2011-13580-E/CLI and CGL2008-01330-E/CLI. The work of D. Kumar and D. Lange was supported by the Generalitat de Catalunya/Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) and Spanish Ministry of Foreign Affairs and Cooperation (MAEC-AECID), respectively, through their pre-Ph.D. fellowships.ca_ES
dc.language.isoengca_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)ca_ES
dc.relationMICINN/PN2008-2011/TEC2009-09106ca_ES
dc.relationMICINN/PN2008-2011/CGL2011-13580-E/CLIca_ES
dc.relationMICINN/PN2008-2011/CGL2008-01330-E/CLIca_ES
dc.relation.isformatofVersió postprint del document publicat a https://doi.org/10.1109/TGRS.2012.2194501ca_ES
dc.relation.ispartofIEEE Transactions on Geoscience and Remote Sensing, 2012, vol. 50, núm. 11, p. 4791-4803ca_ES
dc.rights(c) Institute of Electrical and Electronics Engineers (IEEE), 2012ca_ES
dc.subjectAerosolsca_ES
dc.subjectBackscatterca_ES
dc.subjectCalibrationca_ES
dc.subjectLaser radarca_ES
dc.subject.otherTeledeteccióca_ES
dc.subject.otherRadar òpticca_ES
dc.titleBackscatter Error Bounds for the Elastic Lidar Two-Component Inversion Algorithmca_ES
dc.typearticleca_ES
dc.identifier.idgrec018292
dc.type.versionacceptedVersionca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.identifier.doihttps://doi.org/10.1109/TGRS.2012.2194501


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record