Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Ciències Mèdiques Bàsiques
  • Articles publicats (Ciències Mèdiques Bàsiques)
  • View Item
  •   Home
  • Recerca
  • Ciències Mèdiques Bàsiques
  • Articles publicats (Ciències Mèdiques Bàsiques)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predictive Reconstruction of the Mitochondrial Iron-Sulfur Cluster Assembly Metabolism. II. Role of Glutaredoxin Grx5

Thumbnail
View/Open
002789.pdf (876Kb)
Sol·licita una còpia
Issue date
2004
Author
Alves, Rui
Herrero Perpiñán, Enrique
Sorribas Tello, Albert
Suggested citation
Alves, Rui; Herrero Perpiñán, Enrique; Sorribas Tello, Albert; . (2004) . Predictive Reconstruction of the Mitochondrial Iron-Sulfur Cluster Assembly Metabolism. II. Role of Glutaredoxin Grx5. Proteins: Structure, Function, and Bioinformatics, 2004, vol 57, p. 481-492. https://doi.org/10.1002/prot.20228.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Abstract
Grx5 is a Saccharomyces cerevi- siae glutaredoxin involved in iron-sulfur cluster (FeSC) biogenesis. Previous work suggests that Grx5 is involved in regulating protein cysteine glutathio- nylation, prompting several questions about the systemic role of Grx5. First, is the regulation of mixed protein-glutathione disulfide bridges in FeSC biosynthetic proteins by Grx5 sufficient to account for the observed phenotypes of the ⌬grx5 mutants? If so, does Grx5 regulate the oxidation state of mixed protein-glutathione disulfide bridges in FeSC bio- genesis in general? Alternatively, can the ⌬grx5 mutant phenotypes be explained if Grx5 acts on just one or a few of the FeSC biogenesis proteins? In the first part of this article, we address these questions by building and analyzing a mathematical model of FeSC biosynthesis. We show that, indepen- dent of the tested parameter values, the dynamic behavior observed in cells depleted of Grx5 can only be qualitatively reproduced if Grx5 acts by regulat- ing the initial assembly of FeSC in scaffold proteins. This can be achieved by acting on the cysteine desulfurase (Nfs1) activity and/or on scaffold func- tionality. In the second part of this article, we use structural bioinformatics methods to evaluate the possibility of interaction between Grx5 and proteins involved in FeSC biogenesis. Based on such methods, our results indicate that the proteins with which Grx5 is more likely to interact are consistent with the ki- netic modeling results. Thus, our theoretical studies, combined with known Grx5 biochemistry, suggest that Grx5 acts on FeSC biosynthesis by regulating the redox state of important cysteine residues in Nfs1 and/or in the scaffold proteins where FeSC initially assemble.
URI
http://hdl.handle.net/10459.1/48616
DOI
https://doi.org/10.1002/prot.20228
Is part of
Proteins: Structure, Function, and Bioinformatics, 2004, vol 57, p. 481-492
European research projects
Collections
  • Articles publicats (Ciències Mèdiques Bàsiques) [559]
  • Articles publicats (IRBLleida) [1083]

Contact Us | Send Feedback | Legal Notice
© 2022 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2022 BiD. Universitat de Lleida
Metadata subjected to