Show simple item record

dc.contributor.authorMatias, Ana C.
dc.contributor.authorPedroso, Nuno
dc.contributor.authorTeodoro, Nuno
dc.contributor.authorMarinho, H. Susana
dc.contributor.authorAntunes, Fernando
dc.contributor.authorNogueira, José Manuel
dc.contributor.authorHerrero Perpiñán, Enrique
dc.contributor.authorCyrne, Luísa
dc.date.accessioned2015-07-07T10:51:16Z
dc.date.issued2007
dc.identifier.issn0891-5849
dc.identifier.urihttp://hdl.handle.net/10459.1/48420
dc.description.abstractChanges in plasma membrane permeability caused by H2O2 were recently found to be involved in the adaptation to H2O2, but the mechanism responsible for this change remains largely unknown. Here this mechanism was addressed and two lines of evidence showed for the first time that fatty acid synthase (Fas) plays a key role during the cellular response of Saccharomyces cerevisiae to H2O2: (1) adaptation was associated with a decrease in both Fas expression and activity; (2) more importantly, decreasing Fas activity by 50% through deletion of one of the FAS alleles increased the resistance to lethal doses of H2O2. The mechanism by which a decrease of Fas expression causes a higher resistance to H2O2 was not fully elucidated. However, the fas1Δ strain plasma membrane had large increases in the levels of lignoceric acid (C24:0) (40%) and cerotic acid (C26:0) (50%), suggesting that alterations in the plasma membrane composition are involved. Very-long-chain fatty acids (VLCFA) through interdigitation or by modulating formation of lipid rafts may decrease the overall or localized plasma membrane permeability to H2O2, respectively, thus conferring a higher resistance to H2O2.ca_ES
dc.language.isoengca_ES
dc.publisherElsevierca_ES
dc.relation.isformatofReproducció del document publicat a https://doi.org/10.1016/j.freeradbiomed.2007.08.003ca_ES
dc.relation.ispartofFree Radical Biology & Medicine, 2007, vol. 43, núm. 10, p.1458-1465ca_ES
dc.rights(c) Elsevier, 2007ca_ES
dc.subjectH2O2 adaptationca_ES
dc.subjectFatty acid synthaseca_ES
dc.subjectVery-long-chain fatty acidsca_ES
dc.titleDown-regulation of fatty acid synthase increases the resistance of Saccharomyces cerevisiae cells to H2O2ca_ES
dc.typearticleca_ES
dc.identifier.idgrec011638
dc.type.versionpublishedVersionca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_ES
dc.identifier.doihttps://doi.org/10.1016/j.freeradbiomed.2007.08.003
dc.date.embargoEndDate2025-01-01


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record