Show simple item record

dc.contributor.authorHolub, Přemys
dc.contributor.authorMiller, Mirka
dc.contributor.authorPérez Rosés, Hebert
dc.contributor.authorRyan, Joe
dc.date.accessioned2015-02-19T13:30:42Z
dc.date.available2016-08-31T22:43:52Z
dc.date.issued2014-08-23
dc.identifier.issn0166-218X
dc.identifier.urihttp://hdl.handle.net/10459.1/47998
dc.description.abstractThe degree diameter problem involves finding the largest graph (in terms of the number of vertices) subject to constraints on the degree and the diameter of the graph. Beyond the degree constraint there is no restriction on the number of edges (apart from keeping the graph simple) so the resulting graph may be thought of as being embedded in the complete graph. In a generalization of this problem, the graph is considered to be embedded in some connected host graph, in this paper the honeycomb network. We consider embedding the graph in the k-dimensional honeycomb grid and provide upper and lower bounds for the optimal graph. The particular cases of dimensions 2 and 3 are examined in detail.
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.dam.2014.07.012
dc.relation.ispartofDiscrete Applied Mathematics, 2014, vol. 179, p. 139-151
dc.rights(c) Elsevier, 2014
dc.subjectNetwork design
dc.subjectDegree-diameter problem
dc.subjectHoneycomb grid
dc.subject.classificationXarxes d'ordinadors
dc.subject.classificationTeoria de grafs
dc.subject.otherComputer networks
dc.subject.otherGraph theory
dc.titleDegree diameter problem on honeycomb networks
dc.typeinfo:eu-repo/semantics/article
dc.date.updated2015-02-19T13:30:42Z
dc.identifier.idgrec022219
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doihttps://doi.org/10.1016/j.dam.2014.07.012
dc.date.embargoEndDate2025-01-01


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record