Show simple item record

dc.contributor.authorMiret, Josep M. (Josep Maria)
dc.contributor.authorSadornil Renedo, Daniel
dc.contributor.authorTena Ayuso, Juan
dc.contributor.authorTomàs Cuñat, Rosa Ana
dc.contributor.authorValls Marsal, Magda
dc.date.accessioned2012-01-25T12:29:51Z
dc.date.available2012-01-25T12:29:51Z
dc.date.issued2007
dc.identifier.issn0214-1493
dc.identifier.urihttp://hdl.handle.net/10459.1/44520
dc.description.abstractThis paper is devoted to the study of the volcanoes of l-isogenies of elliptic curves over a finite field, focusing on their height as well as on the location of curves across its different levels. The core of the paper lies on the relationship between the l-Sylow subgroup of an elliptic curve and the level of the volcano where it is placed. The particular case l = 3 is studied in detail, giving an algorithm to determine the volcano of 3-isogenies of a given elliptic curve. Experimental results are also provided.ca_ES
dc.language.isoengca_ES
dc.publisherUniversitat Autònoma de Barcelona. Departament de Matemàtiques
dc.relation.isformatofReproducció del document publicat a https://doi.org/10.5565/PUBLMAT_PJTN05_08ca_ES
dc.relation.isformatofReproducció del document publicat a http://ddd.uab.cat/record/52?ln=caca_ES
dc.relation.ispartofPublicacions matemàtiques, 2007, vol. Extra, p. 165-180ca_ES
dc.rights(c) Universitat Autònoma de Barcelona. Departament de Matemàtiques, 2007ca_ES
dc.subjectElliptic curvesca_ES
dc.subjectFinite fieldsca_ES
dc.subjectIsogeniesca_ES
dc.subjectVolcanoesca_ES
dc.subject.otherCorbes el·líptiquesca_ES
dc.subject.otherGrups finitsca_ES
dc.subject.otherNombres, Teoria algebraica deca_ES
dc.titleVolcanoes of l-isogenies of elliptic curves over finite fields: the case l=3ca_ES
dc.typearticleca_ES
dc.identifier.idgrec010328
dc.type.versionpublishedVersionca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.identifier.doihttps://doi.org/10.5565/PUBLMAT_PJTN05_08


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record