Universitat de Lleida
    • English
    • català
    • español
  • English 
    • English
    • català
    • español
  • Login
Repositori Obert UdL
View Item 
  •   Home
  • Recerca
  • Matemàtica
  • Articles publicats (Matemàtica)
  • View Item
  •   Home
  • Recerca
  • Matemàtica
  • Articles publicats (Matemàtica)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generalization of Vélu’s formulae for isogenies between elliptic curves

Thumbnail
View/Open
PJTN05_07.pdf (181.4Kb)
Issue date
2007
Author
Miret, Josep M. (Josep Maria)
Moreno Chiral, Ramiro
Rio, Anna
Suggested citation
Miret, Josep M. (Josep Maria); Moreno Chiral, Ramiro; Rio, Anna; . (2007) . Generalization of Vélu’s formulae for isogenies between elliptic curves. Publicacions matemàtiques, 2007, vol. Extra, p. 147–163. https://doi.org/10.5565/PUBLMAT_PJTN05_07.
Impact


Web of Science logo    citations in Web of Science

Scopus logo    citations in Scopus

Google Scholar logo  Google Scholar
Share
Export to Mendeley
Metadata
Show full item record
Abstract
Given an elliptic curve E and a finite subgroup G, V ́lu’s formulae concern to a separable isogeny IG : E → E ′ with kernel G. In particular, for a point P ∈ E these formulae express the first elementary symmetric polynomial on the abscissas of the points in the set P + G as the difference between the abscissa of IG (P ) and the first elementary symmetric polynomial on the abscissas of the nontrivial points of the kernel G. On the other hand, they express Weierstraß coefficients of E ′ as polynomials in the coefficients of E and two additional parameters: w0 = t and w1 = w. We generalize this by defining parameters wn for all n ≥ 0 and giving analogous formulae for all the elementary symmetric polynomials and the power sums on the abscissas of the points in P +G. Simultaneously, we obtain an efficient way of performing computations concerning the isogeny when G is a rational group.
URI
http://hdl.handle.net/10459.1/44519
DOI
https://doi.org/10.5565/PUBLMAT_PJTN05_07
Is part of
Publicacions matemàtiques, 2007, vol. Extra, p. 147–163
European research projects
Collections
  • Articles publicats (Matemàtica) [263]

Related items

Showing items related by title, author, creator and subject.

  • Exploiting isogeny cordillera structure to obtain cryptographically good elliptic curves 

    Miret, Josep M. (Josep Maria); Tomàs, Rosana; Valls Marsal, Magda; Sadornil Renedo, Daniel; Tena Ayuso, Juan (Australian Computer Society Inc, 2008)
    The security of most elliptic curve cryptosystems is based on the intractability of the Elliptic Curve Discrete Logarithm Problem (ECDLP). Such a problem turns out to be computationally unfeasible when elliptic curves ...
  • Isogeny volcanoes of elliptic curves and sylow subgroups 

    Fouquet, Mireille; Miret, Josep M. (Josep Maria); Valera Martín, Javier (Springer International Publishing Switzerland, 2015)
    Given an ordinary elliptic curve over a finite field located in the floor of its volcano of ℓ-isogenies, we present an efficient procedure to take an ascending path from the floor to the level of stability and back to ...
  • Volcanoes of l-isogenies of elliptic curves over finite fields: the case l=3 

    Miret, Josep M. (Josep Maria); Sadornil Renedo, Daniel; Tena Ayuso, Juan; Tomàs Cuñat, Rosa Ana; Valls Marsal, Magda (Universitat Autònoma de Barcelona. Departament de Matemàtiques, 2007)
    This paper is devoted to the study of the volcanoes of l-isogenies of elliptic curves over a finite field, focusing on their height as well as on the location of curves across its different levels. The core of the paper ...

Contact Us | Send Feedback | Legal Notice
© 2021 BiD. Universitat de Lleida
Metadata subjected to 
 

 

Browse

All of the repositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

Statistics

View Usage Statistics

D'interès

Política institucional d'accés obertDiposita les teves publicacionsDiposita dades de recercaSuport a la recerca

Contact Us | Send Feedback | Legal Notice
© 2021 BiD. Universitat de Lleida
Metadata subjected to