Articles publicats (Tecnologia, Enginyeria i Ciència dels Aliments)

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 624
  • Item
    Open Access
    Assessment of human inter-individual variability of phloretin metabolites in urine after apple consumption. AppleCOR study
    (ROYAL SOC CHEMISTRY, 2023) Macià i Puig, Ma Alba; Romero Fabregat, Mª Paz; Pedret, Anna; Solà, Rosa; Clifford, Michael N.; Rubió Piqué, Laura
    Purpose: This study aimed to assess the inter-individual variation in phloretin absorption and metabolism and to seek possible phloretin metabotypes following apple snack consumption. Methods: The excreted phloretin metabolites in 24 h urine samples were determined by UPLC-MS/MS in 62 volunteers after acute and sustained (6 weeks) interventions in a randomized and parallel study with a daily supplementation of 80 g of a low-phloretin (39.5 mu mol) or a high-phloretin (103 mu mol) freeze-dried apple snacks. Results: absorption estimated as phloridzin equivalents for 62 volunteers varied almost 70-fold ranging from 0.1% to 6.94% of phloretin glycoside intake. Volunteers were stratified into low, medium and high producers and by the balance between glucuronidation and sulphation. For 74% of the volunteers phloretin-O-glucuronide was the dominant urinary metabolite, especially at the higher phloretin glycoside intake and for higher producers. Sulphate conjugation assumed greater significance for the remaining volunteers especially for low producers. Females dominated glucuronide profile (64.1%) and males dominated the low excretion group. Analysis of plasma glucose and insulin at the start and end of the sustained study showed a trend towards modest reductions for high producers. Furthermore, plausible factors contributing to the inter-individual variation in phloretin uptake are discussed. Conclusions: extensive inter-individual variability exists in the excretion of phloretin phase-II conjugates following consumption of apple snacks, which could be related to oral microbiota phloridzin-hydrolysing activity, lactase non-persistence trait or the metabotype to which the subject belongs. There were inconsistent effects on post-prandial serum glucose concentrations but there was a tendency for decreases to be associated with higher excretion of phloretin phase-II conjugates. Trial registration: The acute and sustained studies were registered at ClinicalTrials.gov Identifier: NCT03795324. This study aimed to assess the inter-individual variation in phloretin absorption and metabolism and to seek possible phloretin metabotypes following apple snack consumption.
  • Item
    Open Access
    Relationship between Physicochemical, Techno-Functional and Health-Promoting Properties of Fiber-Rich Fruit and Vegetable By-Products and Their Enhancement by Emerging Technologies
    (MDPI, 2023-10-10) Manthei, Alina; López-Gámez, Gloria; Martín Belloso, Olga; Elez Martínez, Pedro; Soliva-Fortuny, Robert
    The preparation and processing of fruits and vegetables produce high amounts of underutilized fractions, such as pomace and peel, which present a risk to the environment but constitute a valuable source of dietary fiber (DF) and bioactive compounds. The utilization of these fiber-rich products as functional food ingredients demands the application of treatments to improve their techno-functional properties, such as oil and water binding, and health-related properties, such as fermentability, adsorption, and retardation capacities of glucose, cholesterol, and bile acids. The enhancement of health-promoting properties is strongly connected with certain structural and techno-functional characteristics, such as the soluble DF content, presence of hydrophobic groups, and viscosity. Novel physical, environmentally friendly technologies, such as ultrasound (US), high-pressure processing (HPP), extrusion, and microwave, have been found to have higher potential than chemical and comminution techniques in causing desirable structural alterations of the DF network that lead to the improvement of techno-functionality and health promotion. The application of enzymes was related to higher soluble DF content, which might be associated with improved DF properties. Combined physical and enzymatic treatments can aid solubilization and modifications, but their benefit needs to be evaluated for each DF source and the desired outcome.
  • Item
    Open Access
    Design optimization of a tray bioreactor for solid-state fermentation: study of process parameters through protein modification of by-products
    (MDPI, 2023) Sentís-Moré, Pau; Romero Fabregat, Mª Paz; Rodríguez-Marca, Cristina; Guerra-Sánchez, Antonio-Jesús; Ortega-Olivé, Nàdia
    This study investigated the design of a tray bioreactor for solid-state fermentation, applying Rhizopus oryzae to oilseed meals as the substrate. Two process variables were continuously monitored in the bioreactor to ensure precise control of the environmental conditions: temperature and relative humidity (RH). The comprehensive analysis covered the effects of different fermentation conditions on the protein content, technological properties, and molecular distribution of the samples. The study revealed that the configuration factors suffered a stratification within the three trays of the bioreactor. Notably, the upper tray registered the largest dispersion, with a range of 1.5 °C. When analyzing the differences between sensors within each tray, the largest difference was found in the lower tray (10.9%). Furthermore, higher EAI (Emulsifying Activity Index) values were observed in the upper tray (T3) for rapeseed. As for ESI (Emulsion Stability Index) values, no differences were observed between the trays or fermentation periods. Using the changes induced by Rhizopus oryzae fungal enzymes, the study quantitatively examined the changes in the by-product valorization. While the bioreactor factors did not affect the protein quantity itself, they had significant impacts on specific changes within the molecular weight protein fraction. The findings of this study offer significant insights into the complex dynamics of solid-state fermentation processes. The outcomes of this study not only advance understanding of solid-state fermentation but also offer practical guidance for the design and operation of fermenters in industrial applications.
  • Item
    Open Access
    Enhanced in vivo absorption and biodistribution of curcumin loaded into emulsions with high medium-chain triglyceride content
    (Elsevier, 2023) Teixé-Roig, Júlia; Oms Oliu, Gemma; Artiga Artigas, María; Odriozola Serrano, Isabel; Martín Belloso, Olga
    The health benefits of curcumin have been demonstrated by several clinical studies, but its low bioavailability compromises its functionality. In this regard, emulsions have proven to be effective encapsulation systems for curcumin. Nevertheless, emulsions with a high oil content (50%) may offer some advantages due to the large amount of compound they can incorporate. Therefore, the aim of this work was to study the pharmacokinetics and biodistribution of curcumin when carried in optimized emulsions containing 50% MCT oil and a plant-based emulsifier (soybean lecithin) at 2 h or 4 h post-oral administration to rats. The most stable emulsion was obtained using 50% of oil and a surfactant-oil-ratio 0.1, through a microfluidization process. After the oral administration of the systems (150 mg curcumin/kg body weight), curcumin glucuronide was the main compound present in plasma (AUC0-t = 1556.3 ng·h·ml−1), especially at 2–4 h post-administration. The total curcuminoid bioavailability was increased by 10.6-fold when rats were fed with the curcumin emulsion rather than with a control suspension. Moreover, rats fed with the emulsion showed the highest accumulation of free curcuminoids, which present the highest biological activity, in the liver (129 ng curcumin/g tissue) and brown adipose tissue (193 ng curcumin/g tissue). The obtained results are of great interest since the presence of curcumin in the brown adipose tissue has been shown to play a relevant role in the prevention of obesity and its related metabolic disorders
  • Item
    Open Access
    Prebiotic potential of pectin and cello-oligosaccharides from apple bagasse and orange peel produced by high-pressure homogenization and enzymatic hydrolysis
    (Elsevier, 2024) Manthei, Alina; Elez Martínez, Pedro; Soliva-Fortuny, Robert
    Apple bagasse and orange peel were subjected to high-pressure homogenization (HPH), enzymatic hydrolysis (EH) and their combination (HPHE) to study their effect on oligosaccharide production and in vitro fermentability. The application of a cellulase-pectinase mixture on the by-products generated significant quantities of cellobiose (COS-2) and pectin derived oligosaccharides (POS) which were identified as mainly methylated and acetylated oligogalacturonides with DP 2–5 (POS 2–5). When pre-treating the substrates with HPH, the release in orange peel was enhanced significantly leading to a POS content of 44.51 g/100 g peel, whereas oligosaccharide solubilization in apple bagasse was not affected. In vitro fermentation of the hydrolysates containing COS-2 and POS showed faster fermentation rates, between 6 and 10 h, and enhanced gas production, compared to those samples not subjected to enzymatic hydrolysis. Short chain fatty acid (SCFA) production was not impacted by the presence of POS and COS-2 in the induced quantities.