Articles publicats (Enginyeria Industrial i de l’Edificació)

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 708
  • Item
    Open Access
    A Study of the Composting Capacity of Different Kinds of Leathers, Leatherette and Alternative Materials
    (MDPI, 2024-03-11) Pourrasoul Sardroudi, Nima; Sorolla, Sílvia; Casas, Concepció; Bacardit i Dalmases, Anna
    The leather industry is in the midst of a shift towards sustainability and circular economy principles, placing a strong emphasis on the biodegradability of its products. There has been a notable upswing in the traction gained by eco-friendly leather alternatives. Concurrently, a diverse spectrum of commercial substitutes for conventional leather has surfaced, encompassing a range from synthetic constructs like leatherette to plant-based options. The objective of this study was to evaluate the composting capabilities of genuine leather and three alternatives, namely leatherette, Piñatex®, and Desserto®, in conjunction with leather subjected to treatment with alginate derivatives. The composting evaluation was conducted in accordance with ISO standards, simulating an intensive aerobic composting process. Results revealed that bovine leather samples treated with alginate derivatives underwent complete degradation within 21 to 25 days, and conventional wet-blue production resulted in total degradation after 31 to 35 days. In contrast, vegetable-tanned bovine leather manifested initial signs of degradation after 60 days, but fell short of achieving complete disintegration even after a protracted 90-day incubation period. Alternative materials showed no degradation after the 90-day composting test, indicating a potentially lower degradation capacity compared to leather, likely attributed to the presence of non-biodegradable materials like PU and PVC, among others. The negligible degradation observed in alternative materials after 90 days of composting highlights their inferior composting performance compared to leather.
  • Item
    Open Access
    Use of molten salts tanks for seasonal thermal energy storage for high penetration of renewable energies in the grid
    (Elsevier, 2024) Prieto, Cristina; Tagle-Salazar, Pablo D.; Patiño-Rodríguez, David; Schallenberg-Rodriguez, Julieta; Lyons, Padraig; Cabeza, Luisa F.
    Energy storage is acknowledged a key technology to meet the challenges posed by the energy transition. Shortterm grid-connected storage, based on Li-Ion batteries, is becoming commonplace but seasonal energy storage at grid-scale will be needed for deep decarbonisation of the electrical power system. Pumped hydropower is considered to be the only mature technology for such applications, but this paper demonstrates that two-tanks molten salts systems, that are used today in commercial concentrating solar power (CSP) plants, can also be considered a mature technology that can be used at large scale for seasonal energy storage. This was established by evaluating the annual heat losses of molten salts tanks using validated models of these systems. The results show that the heat losses in a very well insulated molten salts tanks are around 1 K/day, which would result in good economic performance of the power block even if storage was required for up to months.
  • Item
    Open Access
    Physical-chemical, mechanical and durability characterization of historical adobe buildings from the State of Michoacan, Mexico
    (Elsevier, 2024) Sánchez Calvillo, Adrià; Alonso Guzmán, Elia Mercedes; Navarro Ezquerra, Antonia; Ruiz Mendoza, Melissa; Martínez Molina, Wilfrido; Álvarez Galindo, José Ignacio; Rincón, Lídia
    Most earthen historical buildings have been abandoned for decades, exposed to the weathering and the passage of time. In Mexico, the low status of earthen constructions has increased these deterioration processes, resulting into the risk of disappearance of this significant architectural heritage. Historical adobes from monumental buildings in the State of Michoacan were sampled and collected in the localities of La Huacana (H) and Santa Cruz de Morelos (SC). The specimens were characterized in the materials laboratory, assessing their physical-chemical, mechanical and durability properties. An interdisciplinary methodology was designed through institutional cooperation and the application of different test methods. The adobes showed totally different compositions and proportions, and stabilizers like vegetal fibers, nevertheless, the mechanical performance of both samples was very similar, achieving respectable values in the context of historical adobe structures. Several correlations were found through the analyses: the physical properties like the density, the color or the electrical resistivity were related with the mechanical and durability ones; the non-destructive testing (NDT) allowed to calculate the dynamic elasticity modulus and infer the mechanical behavior; the chemical characterization enabled to obtain the elemental and mineralogical composition; and the Atterberg limits gave the soil classification. The research showed the broad diversity of earthen solutions and demonstrated how the granulometry is not a limitation to the adobe production, since the local soils can achieve similar mechanical and durability behaviors. Furthermore, H presented very different composition than the guidelines for earthen construction; nevertheless, the samples showed better durability performance and lower capillarity absorption rates. It is hoped that the results obtained with this research can help the further development of the earthen materials characterization and the decision-making process for the restoration and conservation of historical and vernacular constructions.
  • Item
    Open Access
    The Metallotolerance and Biosorption of As(V) and Cr(VI) by Black Fungi
    (MDPI, 2024) Medina-Armijo, Cristy; Isola, Daniela; Illa i Alibés, Josep; Puerta, Anna; Viñas, Marc; Prenafeta-Boldú, Francesc Xavier
    A collection of 34 melanized fungi isolated previously from anthropogenic contaminated sites were assessed for their tolerance to toxic concentrations of As(V) and Cr(VI) anions. Three strains of the species Cyphellophora olivacea, Rhinocladiella similis, and Exophiala mesophila (Chaetothyriales) were identified as hyper-metallotolerant, with estimated IC50 values that ranged from 11.2 to 16.9 g L−1 for As(V) and from 2.0 to 3.4 g L−1 for Cr(VI). E. mesophila and R. similis were selected for subsequent assays on their biosorption capacity and kinetics under different pH values (4.0 and 6.5) and types of biomass (active and dead cells and melanin extracts). The fungal biosorption of As(V) was relatively ineffective, but significant removal of Cr(VI) was observed from liquid cultures. The Langmuir model with second-order kinetics showed maximum sorption capacities of 39.81 mg Cr6+ g−1 for R. similis and 95.26 mg Cr6+ g−1 for E. mesophila on a dry matter basis, respectively, while the kinetic constant for these two fungi was 1.32 × 10−6 and 1.39 × 10−7 g (mg Cr6+ min)−1. Similar experiments with melanin extracts of E. mesophila showed maximum sorption capacities of 544.84 mg Cr6+ g−1 and a kinetic constant of 1.67 × 10−6 g (mg Cr6+ min)−1. These results were compared to bibliographic data, suggesting that metallotolerance in black fungi might be the result of an outer cell-wall barrier to reduce the diffusion of toxic metals into the cytoplasm, as well as the inner cell wall biosorption of leaked metals by melanin.
  • Item
    Open Access
    Modelling the building-related photovoltaic power production potential in the light of the EU's Solar Rooftop Initiative
    (Elsevier, 2024) Molnar, Gergely; Cabeza, Luisa F.; Chatterjee, Souran; Ürge-Vorzatz, Diana
    Decarbonizing the building sector is key to meet the EU climate goals by 2050. Although the recent policies recognized the importance of on-site solar energy production in the energy transition, there are only a few modelling studies analyzing how much the gap between the technically possible and policy-driven power generation of rooftop photovoltaic (PV) panels can be reduced. This study, therefore, uses geospatial techniques and the high-resolution Building Integrated Solar Energy (BISE) supply model to estimate the main spatial and temporal characteristics of the rooftop PV energy production potential. To support decision-making, important implications of the Solar Rooftop Initiative action plan of the European Commission on the future dimension of the PV electricity supply are also assessed in the context of the achievable potential. The modelling results indicate that the current rooftop PV technical potential could be about 2.7 PWh, being in similar extent with the EU power consumption. The largest country-level PV potentials can be found in Germany, France, Italy and Poland, with an increase of 30% by 2060. Our findings also underline that by following the latest policies, major improvement could be achieved in the EU's rooftop solar energy production by around 2040, depending greatly on the structure and energy efficiency niveau of the future building stock.