Articles publicats (Enginyeria Industrial i de l’Edificació)

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 706
  • Item
    Open Access
    The Metallotolerance and Biosorption of As(V) and Cr(VI) by Black Fungi
    (MDPI, 2024) Medina-Armijo, Cristy; Isola, Daniela; Illa i Alibés, Josep; Puerta, Anna; Viñas, Marc; Prenafeta-Boldú, Francesc Xavier
    A collection of 34 melanized fungi isolated previously from anthropogenic contaminated sites were assessed for their tolerance to toxic concentrations of As(V) and Cr(VI) anions. Three strains of the species Cyphellophora olivacea, Rhinocladiella similis, and Exophiala mesophila (Chaetothyriales) were identified as hyper-metallotolerant, with estimated IC50 values that ranged from 11.2 to 16.9 g L−1 for As(V) and from 2.0 to 3.4 g L−1 for Cr(VI). E. mesophila and R. similis were selected for subsequent assays on their biosorption capacity and kinetics under different pH values (4.0 and 6.5) and types of biomass (active and dead cells and melanin extracts). The fungal biosorption of As(V) was relatively ineffective, but significant removal of Cr(VI) was observed from liquid cultures. The Langmuir model with second-order kinetics showed maximum sorption capacities of 39.81 mg Cr6+ g−1 for R. similis and 95.26 mg Cr6+ g−1 for E. mesophila on a dry matter basis, respectively, while the kinetic constant for these two fungi was 1.32 × 10−6 and 1.39 × 10−7 g (mg Cr6+ min)−1. Similar experiments with melanin extracts of E. mesophila showed maximum sorption capacities of 544.84 mg Cr6+ g−1 and a kinetic constant of 1.67 × 10−6 g (mg Cr6+ min)−1. These results were compared to bibliographic data, suggesting that metallotolerance in black fungi might be the result of an outer cell-wall barrier to reduce the diffusion of toxic metals into the cytoplasm, as well as the inner cell wall biosorption of leaked metals by melanin.
  • Item
    Open Access
    Modelling the building-related photovoltaic power production potential in the light of the EU's Solar Rooftop Initiative
    (2024) Molnar, Gergely; Cabeza, Luisa F.; Chatterjee, Souran; Ürge-Vorzatz, Diana
    Decarbonizing the building sector is key to meet the EU climate goals by 2050. Although the recent policies recognized the importance of on-site solar energy production in the energy transition, there are only a few modelling studies analyzing how much the gap between the technically possible and policy-driven power generation of rooftop photovoltaic (PV) panels can be reduced. This study, therefore, uses geospatial techniques and the high-resolution Building Integrated Solar Energy (BISE) supply model to estimate the main spatial and temporal characteristics of the rooftop PV energy production potential. To support decision-making, important implications of the Solar Rooftop Initiative action plan of the European Commission on the future dimension of the PV electricity supply are also assessed in the context of the achievable potential. The modelling results indicate that the current rooftop PV technical potential could be about 2.7 PWh, being in similar extent with the EU power consumption. The largest country-level PV potentials can be found in Germany, France, Italy and Poland, with an increase of 30% by 2060. Our findings also underline that by following the latest policies, major improvement could be achieved in the EU's rooftop solar energy production by around 2040, depending greatly on the structure and energy efficiency niveau of the future building stock.
  • Item
    Open Access
    Modelling the building-related photovoltaic power production potential in the light of the EU's Solar Rooftop Initiative
    (Elsevier, 2024) Molnar, Gergely; Cabeza, Luisa F.; Chatterjee, Souran; Ürge-Vorzatz, Diana
    Decarbonizing the building sector is key to meet the EU climate goals by 2050. Although the recent policies recognized the importance of on-site solar energy production in the energy transition, there are only a few modelling studies analyzing how much the gap between the technically possible and policy-driven power generation of rooftop photovoltaic (PV) panels can be reduced. This study, therefore, uses geospatial techniques and the high-resolution Building Integrated Solar Energy (BISE) supply model to estimate the main spatial and temporal characteristics of the rooftop PV energy production potential. To support decision-making, important implications of the Solar Rooftop Initiative action plan of the European Commission on the future dimension of the PV electricity supply are also assessed in the context of the achievable potential. The modelling results indicate that the current rooftop PV technical potential could be about 2.7 PWh, being in similar extent with the EU power consumption. The largest country-level PV potentials can be found in Germany, France, Italy and Poland, with an increase of 30% by 2060. Our findings also underline that by following the latest policies, major improvement could be achieved in the EU's rooftop solar energy production by around 2040, depending greatly on the structure and energy efficiency niveau of the future building stock.
  • Item
    Open Access
    Sustainability Factor for the Cost–Benefit Analysis of Building-Integrated Greenery Systems
    (MDPI, 2024) Reyes, Marcelo; Pérez Luque, Gabriel; Coma Arpón, Julià
    Building-integrated greenery (BIG) systems, which include green roofs and green facades, are well-established nature-based solutions (NBS) with proven scientific benefits. However, initial costs and economic apprehensions stemming from potential negative outcomes act as adoption barriers. Furthermore, the lack of standardized indicators and assessment methodologies for evaluating the city-level impacts of BIG systems presents challenges for investors and policy makers. This paper addresses these issues by presenting a comprehensive set of indicators derived from widely accepted frameworks, such as the Common International Classification of Ecosystem Services (CICES) and the NBS impact evaluation handbook. These indicators contribute to the creation of a ‘sustainability factor’, which facilitates cost–benefit analyses for BIG projects using locally sourced data. The practical application of this factor to a 3500 m2 green roof in Lleida, Catalonia (Spain) demonstrates that allocating space for urban horticultural production (i.e., food production), CO2 capture, and creating new recreational areas produces benefits that outweigh the costs by a factor value of nine during the operational phase of the green roof. This cost–benefit analysis provides critical insights for investment decisions and public policies, especially considering the significant benefits at the city level associated with the implementation of BIG systems.
  • Item
    Open Access
    Extraction of Bioactive Compounds from Spent Coffee Grounds Using Ethanol and Acetone Aqueous Solutions
    (MDPI, 2023-12-07) Bouhzam, Ibtissam; Cantero Gómez, M. Rosa; Margallo, María; Aldaco, Rubén; Bala, Alba; Fullana i Palmer, Pere; Puig, Rita
    Given global coffee consumption, substantial quantities of spent coffee grounds (SCGs) are generated annually as a by-product of brewing coffee. SCG, although rich in bioactive compounds, is nowadays disposed of. The objective of this study is to compare, for the first time and from the same SCG, the efficiency of ethanol–water mixtures and acetone–water mixtures for the recovery of total polyphenols, chlorogenic acid, and caffeine. Acetone at 20% (m/m) was the most convenient solvent to extract all three bioactive compounds simultaneously, yielding 4.37 mg of GAE/g SCG for total polyphenols, chlorogenic acid (0.832 mg 5-CQA/g SCG), and caffeine (1.47 mg/g SCG). Additionally, this study aims to address some challenges associated with the industrial-scale utilization of SCG as a raw material, encompassing factors such as pre-treatment conditions (natural drying and oven drying), storage duration, and the kinetics of the extraction process. No significant difference was observed between the natural drying and oven drying of SCG. In terms of storage duration, it is advisable to process the SCG within less than 3–4 months of storage time. A significant decline of 82% and 70% in chlorogenic acid (5-CQA) and caffeine contents, respectively, was observed after eight months of storage. Furthermore, the kinetic study for the recovery of total polyphenols revealed that the optimal extraction times were 10 min for acetone at 20% and 40 min for water, with a yield increase of 28% and 34%, respectively. What is remarkable from the present study is the approach considered, using the simplest operating conditions (minimal time and solvent-to-solid ratio, and ambient temperature); hence, at an industrial scale, energy and resource consumption and equipment dimensions can be together reduced, leading to a more industrially sustainable extraction process.