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ABSTRACT 21 

Vector reconstruction of objects from an unstructured point cloud obtained with a 22 

LiDAR-based system (light detection and ranging) is one of the most promising 23 

methods to build three dimensional models of orchards. The cylinder fitting method for 24 



woody structure reconstruction of leafless trees from point clouds obtained with a 25 

mobile terrestrial laser scanner (MTLS) has been analysed. The advantage of this 26 

method is that it performs reconstruction in a single step. The most time consuming part 27 

of the algorithm is generation of the cylinder direction, which must be recalculated at 28 

the inclusion of each point in the cylinder. The tree skeleton is obtained at the same time 29 

as the cluster of cylinders is formed. The method does not guarantee a unique 30 

convergence and the reconstruction parameter values must be carefully chosen. A 31 

balanced processing of clusters has also been defined which has proven to be very 32 

efficient in terms of processing time by following the hierarchy of branches, 33 

predecessors and successors. The algorithm was applied to simulated MTLS of virtual 34 

orchard models and to MTLS data of real orchards. The constraints applied in the 35 

method have been reviewed to ensure better convergence and simpler use of parameters. 36 

The results obtained show a correct reconstruction of the woody structure of the trees 37 

and the algorithm runs in linear logarithmic time. 38 
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 42 

Variable Description 

A  Covariance matrix 

α
 Polar angle used in the iterative method to obtain d   

B  A branch object 

*B  Temporal branch built when a new point is included in the 

process 



BN  A new branch built by the branching process 

c
 

Centroid of a branch 

d
 

Cylinder direction of a branch 

*
d

 
Cylinder direction of a branch estimated by a numerical method 

α∆
 Polar angle resolution used in iterative method to obtain d   

ϕ∆
 

Azimuthal angle resolution used in iterative method to obtain 

d   

θ∆  Angular resolution of laser 

y∆
 

MTLS longitudinal resolution (distance between vertical scans) 

ϕ
 Azimuthal angle used in iterative method to obtain d   

HMT Hidden Markov tree 

rk  Factor of radius r  to determine whether P is aligned in current 

branch B or allows a new branch BN  

l  Distance from the laser sensor to a tree object 

M
 

Directions to the centroid matrix 

N
 

Number of points in the point cloud 

n  Number of points in a branch or cylinder 

bn  Number of branches 

minn  Minimum number of points used to determine the significant 

parent or predecessor branch 

pn  Number of points of the considered parent or predecessor 

branch 

sn
 

Number of points that freely seed a cylinder when the building 



of a new branch starts 

O
 

An upper limit of growth of the algorithm response time 

ord
 

Branching order according to the terminology proposed by De 

Reffye et al. (1988)  

Cord
 

Order of the checked parent or predecessor branch used to 

determine the significant parent or predecessor branch 

1minord
, 

2minord
 

Rank of order used to determine the significant parent or 

predecessor branch 

P  An individual point of the point cloud 

1P
 

Initial point of the cylinder axis that models a branch 

2P
 

Final point of the cylinder axis that models a branch 

dP  Projection of P over the cylinder axis in a branch 

rP
 

Initial point, placed at the base of the trunk, taken as origin of 

the tree model reconstruction. 

θ
 

Angular position of laser beam 

r
 

Radius of the cylinder that models a branch 

2t  
Value of parameter t  for 2P  in a vector straight equation 

defined by 1P  and d  

dt  
Value of parameter t  for dP  in a vector equation of a line 

defined by 1P  and d  

y
 

MTLS longitudinal position 

0z  Height of the laser sensor 

 43 



1.0 INTRODUCTION 44 

Geometric reconstruction can be used to obtain a detailed structural analysis of trees. 45 

The aim is to derive vegetative parameters such as leaf area, canopy volume or woody 46 

volume from massive data point clouds. Direct use of raster information, e.g. a 47 

photograph, can be used to obtain any of these parameters (Phattaralerphong & 48 

Sinoquet, 2007). Reconstruction of tree geometry supports the implementation of virtual 49 

tree models, such as use of the statistical framework of the hidden Markov tree (HMT) 50 

model introduced by Crouse et al. (1998) and used for constructing realistic apple trees 51 

by Durand et al. (2005) and Fee et al. (2008). 52 

 53 

In parallel with the use of massive data from photogrammetry or aerial scanning for the 54 

detection of trees and estimation of their general parameters, two main approaches are 55 

used to study their geometry at individual tree level. The first is based on digital 56 

photographs (Shlyakhter et al. 2001; Mizoue & Masutani, 2003; Phattaralerphong & 57 

Sinoquet, 2005 and 2007, Tan et al., 2008;): graphic data are processed to determine the 58 

existence of vegetation and sensor parameters (camera height and its horizontal distance 59 

to the tree) allow a projection to be obtained on a voxel space, with which the tree-top 60 

and leaf area can be estimated (Phattaralerphong & Sinoquet, 2007). The use of a 61 

reduced voxel size to improve accuracy dramatically increases the processing time. 62 

 63 

The second approach uses mobile terrestrial laser scanning (MTLS) to obtain a dense 64 

point cloud from which a detailed geometrical description can be extracted (Rosell et al. 65 

2009 and Sanz-Cortiella et al. 2011). Simonse et al. (2003) detected woody geometry 66 

from MTLS data using the Hough transform and Gorte and Winterhalder (2004) as well 67 

as Pfeifer et al. (2004) created a topology skeleton from a voxel space. The use of TIN 68 



(triangulated irregular network) to obtain geometric information about woody tree 69 

structure is limited by stem capillarity (Fig. 1) and usually supports extraction of 70 

neighbourhood graphs (adjacency relations between all the points). Pfeifer et al. (2004) 71 

obtained a model of major branches and stems with cylinder fitting. Other methods, 72 

which combine scanning data with texture information from high resolution 73 

photographs, have been proposed by Reulke and Haala (2005). Iterative closest point 74 

(ICP) algorithms have also been used to fit the guide lines obtained in different scans 75 

(Besl & McKay, 1992; Henning & Radtke, 2006). The algorithm iteratively revises the 76 

geometric transformation needed to minimise the distance between the points of the 77 

different raw scans. 78 

 79 

It is easy to determine whether a point of the MTLS point cloud belongs to the trunk 80 

and main branches. However in the lowest branches, particularly the stems, it becomes 81 

more difficult to determine whether a point of the cloud belongs to one stem or another. 82 

Neighbourhood graphs, geodesic graphs and several clustering algorithms can be used 83 

to obtain the skeleton of the tree and the radius of each branch. The search of points to 84 

build neighbourhood graphs is based on kd-tree, a k-dimensional binary tree generated 85 

by hyperplane splitting that divides the space in two half-spaces. Verroust and Lazarus 86 

(2000) generated the skeleton of a tree from a set of neighbour graphs, geodesic graphs 87 

(selecting an initial point at the base of the trunk, rP , and the shortest path from each 88 

point to rP ) and k-levels (defined by Lloyd (1982) which divide the graph into clusters 89 

of close points). From a kd-tree, Yan et al. (2009) applied the Lloyd iteration (1982) to 90 

obtain a segmentation of the cloud in clusters based on cylinders. Delagrange and 91 

Rochon (2011) used the model of Verroust and Lazarus (2000) to obtain the skeleton 92 

and select centroids within it. They then applied a clustering process to connect each 93 



point to their respective branch. The vector reconstruction method proposed by Verroust 94 

and Lazarus (2000) or Delagrange and Rochon (2011) requires executing the process in 95 

stages: neighbourhood graph, geodesic graph, skeleton extraction, skeleton population 96 

with adjacent points clusters and, finally, fitting each cluster with a surface. Preuksakarn 97 

et al. (2010) use a space colonisation algorithm (SCA) as a function of clustering. De 98 

Aguiar et al., 2008a and 2008b, use clustering processes to capture shapes from video 99 

data. 100 

 101 

In this work, the approach proposed by Pfeifer et al. (2004) is used as a direct algorithm 102 

for woody structure reconstruction. One of the objectives was to minimize the number 103 

of parameters that control the operation of the algorithm. The existence of a large 104 

number of empirical parameters controlling the process can distort the method and make 105 

it more difficult to attain the desired unique solution. The developed algorithm was 106 

applied to point clouds obtained from MTLS measurements of real orchards and point 107 

clouds obtained from simulated MTLS measurements of virtual orchards built with 108 

SIMLIDAR software (Mendez et al. 2012 and 2013), respectively. Models of woody 109 

trees with a high degree of branching, applicable to deciduous leaf species, were used. 110 

Simulations with varying degrees of scanning density were also tested. 111 

 112 

The information provided by this algorithm could be useful for the modelling of 113 

orchards and their evolution from both a scientific and commercial perspective. Using 114 

MTLS of trees and subsequently obtaining and quantifying the woody structure with the 115 

proposed algorithm at the beginning of the season can help growers and/or advisors to: 116 

• improve the determination of seasonal foliage evolution by subtracting the 117 

woody model from the MTLS point clouds obtained during the season. 118 



Knowing the leaf area is very useful in terms of plant protection products 119 

dosage and canopy management in general. 120 

• decide on pruning intensity by comparing the woody model obtained at the end 121 

of the season with the one obtained at the end of the previous season. 122 

Additionally, scanning the trees before and after pruning can help growers see 123 

the potential effect of pruning intensity on the next season’s production. 124 

• check whether tree growth is correct in terms of its evolution over the seasons 125 

and in terms of its training system. 126 

• estimate total volume of the ligneous fraction of the tree orchard and its 127 

evolution over the years, constituting a novel approach for other agricultural 128 

research purposes. 129 

 130 

2.0 MATERIALS AND METHODS 131 

2.1 Data 132 

The proposed algorithm was applied to real MTLS data from a pear orchard and to 133 

simulated MTLS data of an apple orchard and a vineyard virtually obtained with 134 

SIMLIDAR software (Fig. 2-a and Fig. 2-b). 135 

 136 

The real MTLS operation was performed on a cv. Blanquilla pear orchard (Pyrus 137 

communis L. ‘Blanquilla’) after leaf-fall (see Fig. 2-c). A Fiatagri 80-76 DT tractor 138 

model was used at a forward speed of 1 km h
-1

. The sensor was placed at a height of 139 

2.10 m, angular resolution ( θ∆ ) was set to 1º and longitudinal resolution was 15 mm 140 

(distance between vertical scans). 141 

 142 



The simulated MTLS operation was applied to a virtual apple orchard obtained with 143 

SIMLIDAR software (Méndez et al. 2013), based on a HMT modelling process 144 

(Durand et al. 2005) and to a virtual vineyard based on A SIMLIDAR generated growth 145 

pattern. A simulated monolateral MTLS using SIMLIDAR (Méndez et al. 2012, 2013) 146 

was applied to both virtualisations with an angular resolution of 0.5º and a longitudinal 147 

resolution of 10 mm. 148 

 149 

2.2 Algorithm 150 

The algorithm was developed in Microsoft ® Visual C++ and run on a PC (HP ® 151 

Compaq dc 7700p, Intel(R) Core(TM)2 CPU 6600, 2.40GHz, 3.49GB RAM with a 152 

Windows ® XP Professional operating system). 153 

 154 

MTLS provides distances ( l ) from the sensor to each tree object, at a given vehicle 155 

longitudinal advance position ( y ) and at an angular value of the sensor’s emitted beam 156 

direction (θ ). For each scan, the acquisition system stores the triplet ( )iii ly θ  with 157 

Ni L1=  (where N  is the total number of measurements). From a set of ( )iii ly θ  and 158 

knowing the longitudinal advance increment ( y∆ ), the angular resolution ( θ∆ ) and the 159 

height of the sensor ( 0z ), it is possible to obtain the 3D coordinates ( )iii zyx  of 160 

each intercepted point of the tree. By using a global navigation satellite system (GNSS) 161 

to determine the sensor position for each scan, it is possible to obtain the absolute 162 

coordinates for each point in the point cloud. 163 

 164 

Although a lateral MTLS intercepts all the geometrical data of an orchard, its operation 165 

is optimum in a sparsely populated structure, as is the case with agricultural deciduous 166 



species. When using a bilateral or multilateral scanner, the problem of measurement 167 

errors increases significantly, with a dead-reckoning system for the accumulated errors 168 

not being possible (Nebot and Durrant-Whyte, 1999; Guivant et al. 2002; Neira et al. 169 

2003). In this case it is essential to use reference points, or guidance systems based on a 170 

SLAM algorithm (simultaneous localisation and mapping, Iagnemma et al. 2004, Auat 171 

Cheein & Guivant 2014) to statistically estimate the dragged errors. 172 

 173 

The work starts with an unstructured point cloud, with all the inner points consistent 174 

after a debugging process. The "cylinder following" method proposed by Pfeifer et al. 175 

(2004) aims to build the skeleton, simultaneously populating the cylinders with adjacent 176 

points, without using a prior neighbourhood or geodesic graph. It is based on 177 

constructing a cylinder that fits the trunk of the tree and a cylinder vector structure, 178 

which extends upwards and outwards, that is fitted through all the points of the cloud to 179 

obtain a populated skeleton that is the woody structure. 180 

 181 

2.3 Setting cylinder direction 182 

Setting the direction of the cylinder requires determining the cylinder which best fits a 183 

set of points. Given a set of points ( ){ }iiii zyxPS ==  with ni ,,1 L= , with n  184 

being the number of points of the cylinder, the cylinder trunk that best fits S will have 185 

an axis that goes through the centroid c  of S, with ( ) ( )∑
=

==
n

i

iii zyx
n

zyxc
1

1
. If 186 

the cylinder axial direction ( )
zyx dddd =  is the direction that minimises the 187 

maximum of orthogonal distances ( )dPi , , it is possible to obtain d  with an iterative 188 

method (Rabbani & Heuvel, 2005), taking directions with angles ( )ϕα  with 189 



πα ≤≤0  , πϕ 20 ≤≤  and successively changing α∆  and ϕ∆  until finding where the 190 

orthogonal distances are minimum.  191 

 192 

It is also possible to obtain d  as a non-linear least-squares estimate (Lukács et al., 1998, 193 

Marshall et al., 2001) as an eigenvector of a covariance matrix MMA t= , where the i
th

 194 

row of M is cpi − , that is: 195 
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 199 

The matrix A has a maximum of three eigenvectors that fit three cylindrical adjustments 200 

to the point cloud, taking the best direction as the one related to the lowest eigenvalue. 201 

The eigenvalues and eigenvectors can be calculated using the Rayleigh-Ritz ratio.  202 

 203 

2.4 Branching criterion 204 

The algorithm, shown in Table 1, starts by selecting an initial point at the base of the 205 

trunk ( rP ), with the condition that rP  has a minimum value in z. The method continues 206 

in Table 2 to search for points close to rP  setting a cylinder that fits the trunk, usually 207 

with the direction ( )100≈d . Optionally, the points search can be supported in a kd-208 

tree to improve processing time. Those points, close to the initial cylinder and aligned 209 

with their current direction, can be considered as a continuation of the trunk, otherwise 210 



they will be considered the origin of a new branch. The setting of the direction d  in the 211 

starting stage of a new branch is the main weakness of the algorithm. The direction of 212 

the trunk, once rP  has been selected, does not emerge immediately from the first 213 

clustering of points close to rP . It is necessary to seed the cylinder with a number of 214 

close points ( sn ), without checking the alignment ratio of each one with respect to the 215 

parameters of the cylinder ( d , 1P , 2P , r ). The parameter sn  is applicable to the initial 216 

trunk and to all new branches to be reconstructed in the model. The parameter sn  must 217 

be selected considering the scanning density used to obtain the point cloud and the 218 

branching order following the biological terminology of De Reffye et al. (1988). The 219 

density of points in the cloud depends on the values of y∆  and θ∆  adopted in the 220 

MTLS operation; the greater the density, the greater sn . The value of sn  decreases as 221 

branch order increases in the model, which implies a decrease in the radius and the 222 

density of scanned points. 223 

 224 

In a ligneous structure, the radii of successor branches are smaller than that of their 225 

parent. This property is used as a constraint in the model. This restriction has the 226 

advantage of reducing the need to find a value of sn  only for the formation of the main 227 

trunk, but the behaviour is correct only in the major branches, where the order is low. 228 

For higher orders, reconstruction becomes an unrealistic capillary-like structure as all 229 

dependent cylinders are forced to have a smaller radius. As an intermediate alternative, 230 

in Table 2, a restriction has been used so that the branches have a radius smaller than a 231 

predecessor branch which can be considered significant. A branch is considered 232 

significant if it meets one of the following two conditions: 233 

 234 
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  236 

where Cord  is the order of the verified parent branch, 1minord  and 2minord  are 237 

parameters with values of the order of the parent branch, Pn  is the number of points of 238 

one of the predecessor branches of the branch under construction and minn  is the 239 

minimum number of points that the branch should have to consider it significant. The 240 

data model of the branch class used (CBranch) has the properties shown in Fig. 3. 241 

 242 

Each branch, except the trunk, has a pointer to the predecessor or parent branch and 243 

from zero to N successor branches. In the data structure, a pointer to the predecessor is 244 

provided, the value of which should be null for the main trunk which is the branch of 245 

order 1. The successor branches, if any, are stored in an array of pointers. A significant 246 

branch is selected by moving back recursively in the predecessor hierarchy of a given 247 

branch, through the pointers of parents of following branches, searching for the 248 

predecessor that fulfils the minimum order ( 2minordordC < ) and a minimum number of 249 

points ( minnnP > ). If this condition is not met in the hierarchy of predecessors, then the 250 

first branch that meets the condition 1minordordC < , with 2min1min ordord < , is considered 251 

significant. 252 

 253 

Determining if a point P  is aligned with the current branch and may be incorporated to 254 

a branch B  or whether it is necessary to start the building of a new branch ( BN ) is a 255 

process that depends on the characteristics of the cylinder B  ( d , 1P , 2P , r ) and on the 256 

characteristics of *B , with PBB ∪=* . The cylinder generated by *B  is characterised 257 



by *
d , *

1
P , *

2
P , *r . If rkr r ** >  with 1>rk , then it is considered that the point does not 258 

align and a new branch BN  is started. The value of rk  depends on the position of the 259 

point P  when it is projected on the branch. If dP  is the projection on the straight line 260 

defined by 1P  and d , then it will be true that dtPP dd

r
∗+= 1 . Furthermore, as 2P  is 261 

selected so that dtPP
r

∗+= 212 , where 02 >t , it results that 21 PP < . Therefore, depending 262 

on the position of dP  (or the value of dt ), different values of rk  may be taken. 263 

 264 

 265 

2.5 Clustering 266 

The algorithm can make the mistake of considering that P  generates a new branch BN  267 

when it is actually a mere bulge of B . In addition, from this mistaken new branch BN , a 268 

thread is reconstructed that actually belongs to the predecessor branch. The 269 

multithreading problem is solved with two alternative clustering processes. The first 270 

process, shown in Table 3, detects successor branches of one predecessor with a similar 271 

direction d  between them and merges them all. The second process, shown in Table 4, 272 

detects a predecessor branch and one successor branch that must also be a continuation 273 

of each other and forms a single cylinder. 274 

 275 

Finally a balanced clustering process, also following the hierarchy between each branch 276 

and its successors, is adopted as shown in Table 5. It is considered that the tree structure 277 

must be optimal, in other words that its main geometric parameters must be minimum. 278 

Then the points between a predecessor ( B ) and successor ( BN ) branch must be 279 

distributed minimising their volume. Calculating the volume of a current branch, 280 



knowing d , 1P , 2P , r , is a direct operation without additional processing time cost. The 281 

clustering process is done by comparing each branch with its successor, which requires 282 

less time than comparing each branch with all the rest. 283 

 284 

3 RESULTS AND DISCUSSION 285 

Both methods, iterative and least-squared estimate, were compared in a test by 286 

generating 100 random directions d  and, from each direction, an unstructured point 287 

cloud. The results, showing both processing time and accuracy, are shown in Table 6. 288 

 289 

The reconstruction of the pear tree model required the lowest values of rk  and sn  since 290 

the generated point cloud was less dense. In the case of the vine, values of rk  and sn  291 

were smaller than those required for the apple tree since the virtual model had higher 292 

ligneous shoot density (Table 7). The number of reconstructed branches and the 293 

processing time are shown in Table 8. The reconstruction process, by steps, is shown in 294 

Fig. 2. 295 

 296 

In the virtual apple tree, the process starts with a sapling which gives rise to the trunk of 297 

order 1 and, in the subsequent growth iterations when a branch occurs an order is added 298 

to it. The reconstruction process (superposition of branches in the virtual model together 299 

with the operation of the MTLS) resulted in over branching of the tree pattern when 300 

compared with the original virtual model. Total branch volume was over-estimated, 301 

especially in the apple tree reconstruction. As the volume is 2rhπ , the error in the 302 

radius must be the square root of the error in the volume. In other words, in the initial 303 

point cloud, the belonging of a point to a cluster and the cluster hierarchy may have a 304 



higher probability than indicated by the initial model. There are also model limitations 305 

with respect to the adopted parameters (Table 7). Parameter dt has a stable value, the 306 

value of sn  is more dependent on the density of scan process. It is required an easy try 307 

to verify that the trunk is generated in one cylinder. The algorithm has the advantage 308 

that the control of radius with the parent branches is a self-tuning approach.  309 

 310 

The lack of accuracy, the reconstructed model is not equal to the SIMLIDAR virtual 311 

model, is due to the lack of convergence of the method, defects in the virtual model and 312 

the effects derived from the scanning operation. The simulated MTLS operation can 313 

generate shadow effects which are aggravated if two branches in the virtual model are 314 

superimposed. These shadow effects may cause the reconstruction of a branch to 315 

bifurcate to a branch that is, in reality, a continuation of a different branch of the model. 316 

 317 

A wrong choice of input parameters can result in an unrealistic reconstruction. Figure 4 318 

shows three examples where incorrect parameter selection led to a poor reconstruction. 319 

If rk  is given a large value (Fig. 4-a, with 22.1=rk  and 9.0<dt ) branches thinner than 320 

normal are obtained, despite the limitations imposed by the constraint that the radius of 321 

a branch cannot be greater than its predecessor branch. By taking a value that prevents 322 

trunk branching (Fig. 4-b, with 23.1≥rk  and 9.0<dt ), a single unrealistic cylinder is 323 

obtained which contains all the points in the point cloud. Choosing a low value of sn  324 

(Fig 4-c, with 4=sn ) also results in a poor reconstruction with excessive branching. 325 

Based on the De Reffye et al. (1988) branching order, chains of small branches are 326 

created resulting in a maximum order in the model much higher than actually exists (in 327 

Fig 4-c the maximum order is about 35). 328 



 329 

It has been estimated that the cost of the algorithm is ( ))log()log( bnNNO ⋅⋅ , being O  330 

an upper limit of growth of the algorithm response time with the increase of N , the 331 

total number of points in the point cloud, and bn  the total number of branches. The main 332 

cost of the algorithm is located in the main process (Table 1, lines 4-16), where the 333 

iteration is executed N times. Moreover, the FindTheClosestPoint function (Table 2, 334 

lines 3-13) function has a cost of ( ))log()log( bnNO ⋅ . For nearby points in kd-tree it has 335 

a cost of ( ))log(NO  (Cormen et al. 2009). Together with the estimation of ( ))log( bnO  336 

to check that the point is not closer to the other branches of the model (Table 2, line 7; 337 

costing ( )bnO , but underestimated as a result of line 6). Additionally, the cost to build a 338 

kd-tree (Table 1, line 1) is also ( ))log(NNO ⋅  (Cormen et al. 2009). The 339 

AlignedChildrenBranches procedure, which is called in line 17 (Table 1), has a cost of 340 

( )bnO , with bn  being the total number of branches; the main cost is in iteration I (Table 341 

3, line 1) because the cost of the rest of iterations (depending on the number of children 342 

of the branch) is small and does not increase with  bn . In line 18 (Table 1) 343 

ConnectAlignedBranches is called, with a cost of ( )bnO  located in iteration I (Table 4, 344 

line 1); the times this function is called is reduced, having an estimated cost of 345 

( ))log( bb nnO ⋅ . Finally, in the Clustering function (Table 5) iteration I (line 1) is 346 

performed bn  times, while for iteration K (line 10) the average number of points in a 347 

branch can be estimated as 
bn

N
, resulting in a cost of ( )NO

n

N
nO

b

b =







⋅⋅2  which 348 

includes, as before, the cost to call it in the main function, ( ))log( bnNO ⋅ . To 349 

summarize, by adding all the above results (Table 9, lines 1-6) and considering that the 350 

order of magnitude of  bn  is lower than N , the proposed algorithm is 351 



( ))log()log( bnNNO ⋅⋅ . That is, in the worst case, the computational cost increases in a 352 

linear logarithmic order according to the number of points in the cloud.  353 

 354 

CONCLUSIONS 355 

Individual tree reconstruction is feasible with a short processing time cost using the 356 

proposed algorithm. The disadvantage of the algorithm is the absence of a unique 357 

convergence. It is important to correctly adjust the values of the input parameters, in 358 

general depending on the MTLS point cloud density. The main parameters are the 359 

number of free seed points ( sn ) and the radius factor ( rk ), which are used to determine 360 

whether or not a point is aligned with a branch. The reconstructions obtained correctly 361 

matched with the real woody structure of the trees although they are not completely 362 

accurate.  363 

 364 

The combination of constraints used ( sn , rk  and significant branch radius criterion) 365 

avoids divergence of the algorithm and makes the values of the parameters easier to find 366 

and less dependent on the type of tree to be reconstructed. 367 

 368 

One major advantage of the model is that it only requires a short processing time, and it 369 

could therefore be suitable for use in whole orchard reconstruction with several trees 370 

trained with common agricultural systems. Orchard reconstruction could be approached 371 

by selecting N tree feet or root points and applying the algorithm to all of them 372 

simultaneously. In this case, a kd-tree structure will be required to improve the point-373 

searching operations. Finally, a clustering process to separate branches that intermingle 374 

with each other in different trees would need to be introduced. 375 



 376 

Table Captions 377 

• Table 1. Function of the main process of reconstruction. 378 

• Table 2. Function that searches for the nearest point to a branch (top) and the 379 

auxiliary function that gets the significant parent of a current branch (bottom). 380 

• Table 3. Function that joints a set of children branches that get a single aligned 381 

branch. 382 

• Table 4. Function that joints a branch with its parent branch when both are aligned. 383 

• Table 5. Function that balances every branch with its parents to minimise both 384 

volumes. 385 

• Table 6. Performance of the iterative and least-squares methods to estimate cylinder 386 

direction. 387 

• Table 7. Main parameters used in the analysed reconstructions. rk  is the radius 388 

factor used to consider if a new point is aligned in a current branch or allows a new 389 

branch; y∆  is the distance between vertical scans; θ∆  is the angular resolution of 390 

the LiDAR sensor; dt  is the parameter of the projection of a point over cylinder axis 391 

21PP  ( 0=dt  when it is projected over 1P  and 1 if it is projected over 2P ); sn  is the 392 

number of points that freely seed a cylinder when the building of a new branch starts 393 

(this parameter changes depending on the branch order ( ord )). 394 

• Table 8. Number of points in the point cloud, number of branches, processing 395 

time and volume simulated and reconstructed by the process. 396 



• Table 9. Cost of the developed functions, being N the total number of points of the 397 

cloud, bn  the total number of branches and O the worst case of computing time by 398 

dimension of input data.. 399 

400 

Figure Captions 401 

• Fig. 1. MTLS unstructured point cloud simulated with SIMLIDAR (a), where a402 

triangulated irregular network (TIN) has been calculated. The broad capillarity 403 

prevents reconstruction through filtering of initial tetrahedrons (b) by size (c). 404 

• Fig. 2. Reconstructions of a virtual apple-tree (a) and vineyard (b) from their405 

simulated MTLS. Reconstruction of a real pear-tree (c) from their MTLS. The order 406 

number is represented as cycles of red, green and blue colours. 407 

• Fig. 3. Data model of CBranch class.408 

• Fig. 4. Effect of input parameters on tree model reconstruction: branches of the409 

model wider than those of the measured tree (a); one unrealistic large trunk 410 

containing all the points (b); excessive branching (c). 411 

412 
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Function MainProcess 

Input Void 

Output Void 

1: CreateKTree() 

2: Branch ← GetFootTree() 

3:  List_Branches.Insert(Branch) 

4:  Iter From I = 1 To length(List_Branches) 

5: Branch ← List_Branches[I] 

6: If Branch.Status = 0 Then 

7: Status ← FindTheClosestPoint(Branch, ClosestPoint) 

8: If Status = 0 Then 

9: Branch.Status ← 1 

10: Else If Status = 1 Then // No Aligned, new branch 

11: List_Branches.Insert(new CBranch(ClosestPoint)) 

12: Else // Aligned, insert point in current branch 

13: Branch.AddPoint(ClosestPoint) 

14: End(If) 

15: End(If) 
16: End(I) 
17: AlignedChildrenBranches() 

18: While(ConnectAlignedBranches) 

19: While(Clustering) 

20: Return 

Table 1.- Function with the main process of reconstruction. 



 

Function FindTheClosestPoint 

Input Branch Object 

Output Status, ClosestPoint 

1: storedDist = -1 

2:  mTree ← Find_Closed_KDTtree(objBranch) 

3:  Iter From I = 1 To lenth(mTree.ListPoint) 

4: Point = mTree.ListPoint[I] 

5: Dist = Distance(objBranch, Point) 

6: If Dist < storedDist  and Dist < Precision Then 

7: If NoCloserOtherBranch(Point, Branch) Then 

8: storedDist ← Dist 

9: ClosestPoint ← Point 

10: IndexPoint  ← I 

11: End(If) 

12: End(If) 

13: End(I) 

14: If storedDist = -1 Then 

15: Status ← 0 

16: Return 

17: End(If) 

18: mTree.ListPoint[IndexPoint].RemovePoint() 

19: If Branch.NumPoints < FreeSeed Then 

20: Status ← 2 

21: Return 

22: End(If) 
23: Iter From I = 1 To Branch.NumPoints 

24: Temp.AddPoint(Branch.Point[I]) 

25: Temp.AddPoint(ClosestPoint) 

26: ParentSignif ← ParentSignificant(Branch.Parent) 

27: If Temp.Radius > ParentSignif.Radius Then 

28: Status ← 1 

29: Else 

30: Status ← 2 

31: End(If) 

32: Return 

 

 

Function ParentSignificant 

Input currentBranch 

Output signifBranch 

1:  If currentBranch.order < OrderMin_1  Then 

2:  signifBranch ← currentBranch 

3: Else If currentBranch.order < OrderMin_2  Then 

4: If currentBranch.NumPoints > MinNumPoints  Then 

5: signifBranch ← currentBranch 

6: Else 

7: signifBranch ← ParentSignificant (currentBranch.Parent) 

8: End(If) 

9: Else 



10: signifBranch ← ParentSignificant (currentBranch.Parent) 

11: End(If) 

12: Return 

 

Table 2.- Function that searchs the nereast point to a branch (top) and the auxiliary 

function that gets the significant parent of a current branch (bottom). 

 



Functio

n 

AlignedChildrenBranches 

Input void 

Output void 

1:  Iter From I = 1 To length(List_Branches) 

2: Branch ← List_Branches[I] 

3: If Branch.NumChildren > 1 Then 

4: Iter From K = 1 To Branch.NumChildren 

5: Child ← Branch.ListChildren[K] 

6: Angle[K] ← ArcCos(Branch.direction, 

Child.direction) 

7: End(K) 
8: Iter From K = 1 To Branch.NumChildren 

9: Iter From J = 1 To Branch.NumChildren 

10: If K≠J and abs(Angle[K]-Angle[J])<4º  Then 

11: Child1 ← Branch.ListChildren[K] 

12: Child2 ← Branch.ListChildren[J] 

13: Iter From T = 1 To Child2.NumPoints 

14: Child1.AddPoint(Child2.Point[

T]) 

15: Remove(Child2) 

16: ChangeParent(Child2, Child2) 

17: End(If) 

18: End(J) 

19: End(K) 

20: End(If) 

21: End(I) 

Table 3.- Function that joints a set of children branches that get a one aligned branch. 



Function ConnectAlignedBranches 

Input Void 

Output Connected 

1:  Iter From I = 1 To length(List_Branches) 

2: Branch ← List_Branches[I] 

3: Parent ← Branch.Parent 

4: Angle ← ArcCos(Branch.direction, Parent.direction) 

5: If abs(Angle)<11.5º  Then 

6: Iter From K = 1 To Branch.NumPoints 

7: Parent.AddPoint(Branch.Point[K]) 

8: Remove(Branch) 

9: ChangeParent(Branch, Parent) 

10: Connected ← True 

11: End(If) 

12: End(I) 

Table 4.- Function that joints a branch with its parent branch when both are aligned. 



Function Clustering 

Input Void 

Output ChangedPoint 

1:  Iter From I = 1 To length(List_Branches) 

2: Iter From Side = 1 To 2 

3: If Side = 1 Then 

4: Branch ← List_Branches[I] 

5: Parent ← Branch.Parent 

6: Else 
7: Branch ← Branch.Parent 

8: Parent ← List_Branches[I] 

9: End(If) 

10: Iter From K = 1 To Branch.NumPoints 

11: Iter From J = 1 To Branch.NumPoints 

12: If J ≠ K Then 

13: Tmp1.AddPoint(Branch.Point[J]) 

14: End(J) 

15: Iter From J = 1 To Parent.NumPoints 

16: Tmp2.AddPoint(Parent.Point[J]) 

17: Tmp2.AddPoint(Parent.Branch[K]) 

18: DiffBranch ← Tmp1.Volume() – Branch.Volume() 

19: DiffParent ← Tmp2.Volume() – Parent.Volume() 

20: If DiffBranch + DiffParent < 0 and Tmp1.radio < 

Tmp2.radio Then 

21: Parent.AddPoint(Branch.Point[K]) 

22: Branch.DeletePoint[K] 

23: ChangedPoint ← True 

24: End(If) 

25: End(K) 

26: End(Side) 

27: End(I) 

Table 5.- Function that balance every branch with its parents to minimize the volume of 

both. 



Method Runinng time (ms) Average 

Angle( d , *
d ) 

Standard Deviation 

Angle( d , *
d ) 

Iterative 9.37 0.45 º 0.23 º 

Least-squared 0.31 0.13 º 0.06 º 

d  real direction, *
d  estimated direction 

Table 6.- Performance of the Iterative and Lest-squared methods to estimate the 

cylinders direction. 



rk

y∆ (cm) θ∆ (º) 9.0<dt 9.0≥dt )( snord  sn

Apple tree 1 0.5 1.05 1.10 1;3;7;10;9999 80;60;40;30;20 

Vine 1 0.5 1.05 1.10 1;3;9999 80;50;20 

Pear tree 1.5 1 1.05 1.05 1;7;9999 20;15;10 

Table 7.- Main parameters used in the analysed rebuildings. Being rk  the factor of 

radium to consider if a new point is aligned in a current branch or allow a new branch; 

y∆ the distance between vertical scans; θ∆  the angular resolution of laser; dt parameter 

of projection of a point over cylinder axis 21PP  ( 0=dt  when is projected over 1P  and 1 

if is projected over 2P ); sn the number of points that seed freely a cylinder when starts 

the building of a new branch, parameter that changes depending of order of branch 

( ord ). 



#Points # Branches Processing 

time (min) 

Model 

order 

Rebuilding 

order 

Vol. 

model 

(dm
3
)

Vol. 

rebuilt 

(dm
3
)

% 

Vol. 

Error 

Apple tree 2,350 164 1 7 11 2.80 3.63 29% 

Vine 4,941 271 2 10 12 6.83 7.41 8% 

Pear tree 2,741 278 0.5 20 

Table 8.- Number of points in the point cloud, number of branches, processing time and 

volume simulated and rebuilt by the process. 



Function Cost

CreateKTree ( ))log(NNO ⋅  

FindTheClosestPoint ( ))log()log( bnNO ⋅  

AlignedChildrenBranches ( )bnO  

ConnectAlignedBranches ( ))log( bb nnO ⋅  

Clustering ( ))log( bnNO ⋅  

MainFunction ( ))log()log( bnNNO ⋅⋅  

Table 9. Cost of the functions. Being N the total number of points of the cloud, bn  the 

total number of branches and O the worst case scenario in terms of computing time 

according to the dimension of input data. 



 
Fig. 1. MTLS unstructured point cloud simulated with SimLidar (a), where a 

triangulated irregular network (TIN) has been calculated. The broad capillarity prevents 

that a filters of initial tetrahedrons (b) by size (c) could be used to characterize the stems 

structure.  



 
(a) 

 
(b) 

 
(c) 

 

Fig 2. Rebuildings of a virtual apple-tree (a) and vineyard (b), from its simulated T-

LiDAR. Rebuilding of a real pear-tree (c) from their T-Lidar. The order number is 

represented as cycles of red, green and blue colors.  

 



class CBranch 

{ 

CPoint3D * m_points; 

long             NPoints; 

CPoint3D * m_P1; 

CPoint3D * m_P2; 

CPoint3D * m_G; 

CPoint3D * m_direct; 

float             m_radius; 

CRama      * m_predecessor; 

CRama    ** m_successor; 

int                 NSuccessor; 

int                 m_order; 

} 

 
Fig.  3. Data model of  CBranch class. 

 

 



(a) 

(b)  (c) 

Fig 4. Effect of the input parameters in the rebuilding of tree models: branches of the 

model wider than the actual tree (a); one unreal big trunk containing all the points (b); 

too much branching (c). 




