
Deciduous tree reconstruction algorithm based on cylinder 1

fitting from mobile terrestrial laser scanned point clouds 2

3

Valeriano Méndez
a,c,d

, Joan R. Rosell-Polo
b
, Ricardo Sanz

b
, Alexandre Escolà

b
, 4

Heliodoro Catalán
a

5

6

a
Department of Applied Mathematics. Polytechnic University of Madrid. Ciudad 7

Universitaria, s/n, 28040 Madrid, Spain. 8

9

b
Department of Agricultural and Forest Engineering – Research Group on AgroICT & 10

Precision Agriculture. University of Lleida. Av. Rovira Roure, 191, 25198 Lleida, 11

Spain. 12

13

c
Corresponding author. Tel.: +34 917 308 355. E-mail: valeriano.mendez@upm.es 14

15

d
Proofs correspondence. Valeriano Méndez. Department of Applied Mathematics. 16

E.T.S. Ingenieros Agrónomos. Polytechnic University of Madrid. Ciudad Universitaria, 17

s/n, 28040 Madrid, Spain. 18

19

20

ABSTRACT 21

Vector reconstruction of objects from an unstructured point cloud obtained with a 22

LiDAR-based system (light detection and ranging) is one of the most promising 23

methods to build three dimensional models of orchards. The cylinder fitting method for 24

woody structure reconstruction of leafless trees from point clouds obtained with a 25

mobile terrestrial laser scanner (MTLS) has been analysed. The advantage of this 26

method is that it performs reconstruction in a single step. The most time consuming part 27

of the algorithm is generation of the cylinder direction, which must be recalculated at 28

the inclusion of each point in the cylinder. The tree skeleton is obtained at the same time 29

as the cluster of cylinders is formed. The method does not guarantee a unique 30

convergence and the reconstruction parameter values must be carefully chosen. A 31

balanced processing of clusters has also been defined which has proven to be very 32

efficient in terms of processing time by following the hierarchy of branches, 33

predecessors and successors. The algorithm was applied to simulated MTLS of virtual 34

orchard models and to MTLS data of real orchards. The constraints applied in the 35

method have been reviewed to ensure better convergence and simpler use of parameters. 36

The results obtained show a correct reconstruction of the woody structure of the trees 37

and the algorithm runs in linear logarithmic time. 38

KEYWORDS 39

Tree reconstruction; cylinder fitting; LiDAR; mobile terrestrial laser scanning; point 40

cloud. 41

 42

Variable Description

A Covariance matrix

α
 Polar angle used in the iterative method to obtain d

B A branch object

*B Temporal branch built when a new point is included in the

process

BN A new branch built by the branching process

c

Centroid of a branch

d

Cylinder direction of a branch

*
d

Cylinder direction of a branch estimated by a numerical method

α∆
 Polar angle resolution used in iterative method to obtain d

ϕ∆

Azimuthal angle resolution used in iterative method to obtain

d

θ∆ Angular resolution of laser

y∆

MTLS longitudinal resolution (distance between vertical scans)

ϕ
 Azimuthal angle used in iterative method to obtain d

HMT Hidden Markov tree

rk Factor of radius r to determine whether P is aligned in current

branch B or allows a new branch BN

l Distance from the laser sensor to a tree object

M

Directions to the centroid matrix

N

Number of points in the point cloud

n Number of points in a branch or cylinder

bn Number of branches

minn Minimum number of points used to determine the significant

parent or predecessor branch

pn Number of points of the considered parent or predecessor

branch

sn

Number of points that freely seed a cylinder when the building

of a new branch starts

O

An upper limit of growth of the algorithm response time

ord

Branching order according to the terminology proposed by De

Reffye et al. (1988)

Cord

Order of the checked parent or predecessor branch used to

determine the significant parent or predecessor branch

1minord
,

2minord

Rank of order used to determine the significant parent or

predecessor branch

P An individual point of the point cloud

1P

Initial point of the cylinder axis that models a branch

2P

Final point of the cylinder axis that models a branch

dP Projection of P over the cylinder axis in a branch

rP

Initial point, placed at the base of the trunk, taken as origin of

the tree model reconstruction.

θ

Angular position of laser beam

r

Radius of the cylinder that models a branch

2t
Value of parameter t for 2P in a vector straight equation

defined by 1P and d

dt
Value of parameter t for dP in a vector equation of a line

defined by 1P and d

y

MTLS longitudinal position

0z Height of the laser sensor

 43

1.0 INTRODUCTION 44

Geometric reconstruction can be used to obtain a detailed structural analysis of trees. 45

The aim is to derive vegetative parameters such as leaf area, canopy volume or woody 46

volume from massive data point clouds. Direct use of raster information, e.g. a 47

photograph, can be used to obtain any of these parameters (Phattaralerphong & 48

Sinoquet, 2007). Reconstruction of tree geometry supports the implementation of virtual 49

tree models, such as use of the statistical framework of the hidden Markov tree (HMT) 50

model introduced by Crouse et al. (1998) and used for constructing realistic apple trees 51

by Durand et al. (2005) and Fee et al. (2008). 52

 53

In parallel with the use of massive data from photogrammetry or aerial scanning for the 54

detection of trees and estimation of their general parameters, two main approaches are 55

used to study their geometry at individual tree level. The first is based on digital 56

photographs (Shlyakhter et al. 2001; Mizoue & Masutani, 2003; Phattaralerphong & 57

Sinoquet, 2005 and 2007, Tan et al., 2008;): graphic data are processed to determine the 58

existence of vegetation and sensor parameters (camera height and its horizontal distance 59

to the tree) allow a projection to be obtained on a voxel space, with which the tree-top 60

and leaf area can be estimated (Phattaralerphong & Sinoquet, 2007). The use of a 61

reduced voxel size to improve accuracy dramatically increases the processing time. 62

 63

The second approach uses mobile terrestrial laser scanning (MTLS) to obtain a dense 64

point cloud from which a detailed geometrical description can be extracted (Rosell et al. 65

2009 and Sanz-Cortiella et al. 2011). Simonse et al. (2003) detected woody geometry 66

from MTLS data using the Hough transform and Gorte and Winterhalder (2004) as well 67

as Pfeifer et al. (2004) created a topology skeleton from a voxel space. The use of TIN 68

(triangulated irregular network) to obtain geometric information about woody tree 69

structure is limited by stem capillarity (Fig. 1) and usually supports extraction of 70

neighbourhood graphs (adjacency relations between all the points). Pfeifer et al. (2004) 71

obtained a model of major branches and stems with cylinder fitting. Other methods, 72

which combine scanning data with texture information from high resolution 73

photographs, have been proposed by Reulke and Haala (2005). Iterative closest point 74

(ICP) algorithms have also been used to fit the guide lines obtained in different scans 75

(Besl & McKay, 1992; Henning & Radtke, 2006). The algorithm iteratively revises the 76

geometric transformation needed to minimise the distance between the points of the 77

different raw scans. 78

 79

It is easy to determine whether a point of the MTLS point cloud belongs to the trunk 80

and main branches. However in the lowest branches, particularly the stems, it becomes 81

more difficult to determine whether a point of the cloud belongs to one stem or another. 82

Neighbourhood graphs, geodesic graphs and several clustering algorithms can be used 83

to obtain the skeleton of the tree and the radius of each branch. The search of points to 84

build neighbourhood graphs is based on kd-tree, a k-dimensional binary tree generated 85

by hyperplane splitting that divides the space in two half-spaces. Verroust and Lazarus 86

(2000) generated the skeleton of a tree from a set of neighbour graphs, geodesic graphs 87

(selecting an initial point at the base of the trunk, rP , and the shortest path from each 88

point to rP) and k-levels (defined by Lloyd (1982) which divide the graph into clusters 89

of close points). From a kd-tree, Yan et al. (2009) applied the Lloyd iteration (1982) to 90

obtain a segmentation of the cloud in clusters based on cylinders. Delagrange and 91

Rochon (2011) used the model of Verroust and Lazarus (2000) to obtain the skeleton 92

and select centroids within it. They then applied a clustering process to connect each 93

point to their respective branch. The vector reconstruction method proposed by Verroust 94

and Lazarus (2000) or Delagrange and Rochon (2011) requires executing the process in 95

stages: neighbourhood graph, geodesic graph, skeleton extraction, skeleton population 96

with adjacent points clusters and, finally, fitting each cluster with a surface. Preuksakarn 97

et al. (2010) use a space colonisation algorithm (SCA) as a function of clustering. De 98

Aguiar et al., 2008a and 2008b, use clustering processes to capture shapes from video 99

data. 100

 101

In this work, the approach proposed by Pfeifer et al. (2004) is used as a direct algorithm 102

for woody structure reconstruction. One of the objectives was to minimize the number 103

of parameters that control the operation of the algorithm. The existence of a large 104

number of empirical parameters controlling the process can distort the method and make 105

it more difficult to attain the desired unique solution. The developed algorithm was 106

applied to point clouds obtained from MTLS measurements of real orchards and point 107

clouds obtained from simulated MTLS measurements of virtual orchards built with 108

SIMLIDAR software (Mendez et al. 2012 and 2013), respectively. Models of woody 109

trees with a high degree of branching, applicable to deciduous leaf species, were used. 110

Simulations with varying degrees of scanning density were also tested. 111

 112

The information provided by this algorithm could be useful for the modelling of 113

orchards and their evolution from both a scientific and commercial perspective. Using 114

MTLS of trees and subsequently obtaining and quantifying the woody structure with the 115

proposed algorithm at the beginning of the season can help growers and/or advisors to: 116

• improve the determination of seasonal foliage evolution by subtracting the 117

woody model from the MTLS point clouds obtained during the season. 118

Knowing the leaf area is very useful in terms of plant protection products 119

dosage and canopy management in general. 120

• decide on pruning intensity by comparing the woody model obtained at the end 121

of the season with the one obtained at the end of the previous season. 122

Additionally, scanning the trees before and after pruning can help growers see 123

the potential effect of pruning intensity on the next season’s production. 124

• check whether tree growth is correct in terms of its evolution over the seasons 125

and in terms of its training system. 126

• estimate total volume of the ligneous fraction of the tree orchard and its 127

evolution over the years, constituting a novel approach for other agricultural 128

research purposes. 129

 130

2.0 MATERIALS AND METHODS 131

2.1 Data 132

The proposed algorithm was applied to real MTLS data from a pear orchard and to 133

simulated MTLS data of an apple orchard and a vineyard virtually obtained with 134

SIMLIDAR software (Fig. 2-a and Fig. 2-b). 135

 136

The real MTLS operation was performed on a cv. Blanquilla pear orchard (Pyrus 137

communis L. ‘Blanquilla’) after leaf-fall (see Fig. 2-c). A Fiatagri 80-76 DT tractor 138

model was used at a forward speed of 1 km h
-1

. The sensor was placed at a height of 139

2.10 m, angular resolution (θ∆) was set to 1º and longitudinal resolution was 15 mm 140

(distance between vertical scans). 141

 142

The simulated MTLS operation was applied to a virtual apple orchard obtained with 143

SIMLIDAR software (Méndez et al. 2013), based on a HMT modelling process 144

(Durand et al. 2005) and to a virtual vineyard based on A SIMLIDAR generated growth 145

pattern. A simulated monolateral MTLS using SIMLIDAR (Méndez et al. 2012, 2013) 146

was applied to both virtualisations with an angular resolution of 0.5º and a longitudinal 147

resolution of 10 mm. 148

 149

2.2 Algorithm 150

The algorithm was developed in Microsoft ® Visual C++ and run on a PC (HP ® 151

Compaq dc 7700p, Intel(R) Core(TM)2 CPU 6600, 2.40GHz, 3.49GB RAM with a 152

Windows ® XP Professional operating system). 153

 154

MTLS provides distances (l) from the sensor to each tree object, at a given vehicle 155

longitudinal advance position (y) and at an angular value of the sensor’s emitted beam 156

direction (θ). For each scan, the acquisition system stores the triplet ()iii ly θ with 157

Ni L1= (where N is the total number of measurements). From a set of ()iii ly θ and 158

knowing the longitudinal advance increment (y∆), the angular resolution (θ∆) and the 159

height of the sensor (0z), it is possible to obtain the 3D coordinates ()iii zyx of 160

each intercepted point of the tree. By using a global navigation satellite system (GNSS) 161

to determine the sensor position for each scan, it is possible to obtain the absolute 162

coordinates for each point in the point cloud. 163

 164

Although a lateral MTLS intercepts all the geometrical data of an orchard, its operation 165

is optimum in a sparsely populated structure, as is the case with agricultural deciduous 166

species. When using a bilateral or multilateral scanner, the problem of measurement 167

errors increases significantly, with a dead-reckoning system for the accumulated errors 168

not being possible (Nebot and Durrant-Whyte, 1999; Guivant et al. 2002; Neira et al. 169

2003). In this case it is essential to use reference points, or guidance systems based on a 170

SLAM algorithm (simultaneous localisation and mapping, Iagnemma et al. 2004, Auat 171

Cheein & Guivant 2014) to statistically estimate the dragged errors. 172

 173

The work starts with an unstructured point cloud, with all the inner points consistent 174

after a debugging process. The "cylinder following" method proposed by Pfeifer et al. 175

(2004) aims to build the skeleton, simultaneously populating the cylinders with adjacent 176

points, without using a prior neighbourhood or geodesic graph. It is based on 177

constructing a cylinder that fits the trunk of the tree and a cylinder vector structure, 178

which extends upwards and outwards, that is fitted through all the points of the cloud to 179

obtain a populated skeleton that is the woody structure. 180

 181

2.3 Setting cylinder direction 182

Setting the direction of the cylinder requires determining the cylinder which best fits a 183

set of points. Given a set of points (){ }iiii zyxPS == with ni ,,1 L= , with n 184

being the number of points of the cylinder, the cylinder trunk that best fits S will have 185

an axis that goes through the centroid c of S, with () ()∑
=

==
n

i

iii zyx
n

zyxc
1

1
. If 186

the cylinder axial direction ()
zyx dddd = is the direction that minimises the 187

maximum of orthogonal distances ()dPi , , it is possible to obtain d with an iterative 188

method (Rabbani & Heuvel, 2005), taking directions with angles ()ϕα with 189

πα ≤≤0 , πϕ 20 ≤≤ and successively changing α∆ and ϕ∆ until finding where the 190

orthogonal distances are minimum. 191

 192

It is also possible to obtain d as a non-linear least-squares estimate (Lukács et al., 1998, 193

Marshall et al., 2001) as an eigenvector of a covariance matrix MMA t= , where the i
th

 194

row of M is cpi − , that is: 195

 196





















−

−

−

−

−

−

−

−

−

=

zz

zz

zz

yy

yy

yy

xx

xx

xx

M

NNN

MMM

2

1

2

1

2

1

 197

 198

 199

The matrix A has a maximum of three eigenvectors that fit three cylindrical adjustments 200

to the point cloud, taking the best direction as the one related to the lowest eigenvalue. 201

The eigenvalues and eigenvectors can be calculated using the Rayleigh-Ritz ratio. 202

 203

2.4 Branching criterion 204

The algorithm, shown in Table 1, starts by selecting an initial point at the base of the 205

trunk (rP), with the condition that rP has a minimum value in z. The method continues 206

in Table 2 to search for points close to rP setting a cylinder that fits the trunk, usually 207

with the direction ()100≈d . Optionally, the points search can be supported in a kd-208

tree to improve processing time. Those points, close to the initial cylinder and aligned 209

with their current direction, can be considered as a continuation of the trunk, otherwise 210

they will be considered the origin of a new branch. The setting of the direction d in the 211

starting stage of a new branch is the main weakness of the algorithm. The direction of 212

the trunk, once rP has been selected, does not emerge immediately from the first 213

clustering of points close to rP . It is necessary to seed the cylinder with a number of 214

close points (sn), without checking the alignment ratio of each one with respect to the 215

parameters of the cylinder (d , 1P , 2P , r). The parameter sn is applicable to the initial 216

trunk and to all new branches to be reconstructed in the model. The parameter sn must 217

be selected considering the scanning density used to obtain the point cloud and the 218

branching order following the biological terminology of De Reffye et al. (1988). The 219

density of points in the cloud depends on the values of y∆ and θ∆ adopted in the 220

MTLS operation; the greater the density, the greater sn . The value of sn decreases as 221

branch order increases in the model, which implies a decrease in the radius and the 222

density of scanned points. 223

 224

In a ligneous structure, the radii of successor branches are smaller than that of their 225

parent. This property is used as a constraint in the model. This restriction has the 226

advantage of reducing the need to find a value of sn only for the formation of the main 227

trunk, but the behaviour is correct only in the major branches, where the order is low. 228

For higher orders, reconstruction becomes an unrealistic capillary-like structure as all 229

dependent cylinders are forced to have a smaller radius. As an intermediate alternative, 230

in Table 2, a restriction has been used so that the branches have a radius smaller than a 231

predecessor branch which can be considered significant. A branch is considered 232

significant if it meets one of the following two conditions: 233

 234

min2min

1min

nnordord

ordord

PC

C

><

<

U
 235

 236

where Cord is the order of the verified parent branch, 1minord and 2minord are 237

parameters with values of the order of the parent branch, Pn is the number of points of 238

one of the predecessor branches of the branch under construction and minn is the 239

minimum number of points that the branch should have to consider it significant. The 240

data model of the branch class used (CBranch) has the properties shown in Fig. 3. 241

 242

Each branch, except the trunk, has a pointer to the predecessor or parent branch and 243

from zero to N successor branches. In the data structure, a pointer to the predecessor is 244

provided, the value of which should be null for the main trunk which is the branch of 245

order 1. The successor branches, if any, are stored in an array of pointers. A significant 246

branch is selected by moving back recursively in the predecessor hierarchy of a given 247

branch, through the pointers of parents of following branches, searching for the 248

predecessor that fulfils the minimum order (2minordordC <) and a minimum number of 249

points (minnnP >). If this condition is not met in the hierarchy of predecessors, then the 250

first branch that meets the condition 1minordordC < , with 2min1min ordord < , is considered 251

significant. 252

 253

Determining if a point P is aligned with the current branch and may be incorporated to 254

a branch B or whether it is necessary to start the building of a new branch (BN) is a 255

process that depends on the characteristics of the cylinder B (d , 1P , 2P , r) and on the 256

characteristics of *B , with PBB ∪=* . The cylinder generated by *B is characterised 257

by *
d , *

1
P , *

2
P , *r . If rkr r ** > with 1>rk , then it is considered that the point does not 258

align and a new branch BN is started. The value of rk depends on the position of the 259

point P when it is projected on the branch. If dP is the projection on the straight line 260

defined by 1P and d , then it will be true that dtPP dd

r
∗+= 1 . Furthermore, as 2P is 261

selected so that dtPP
r

∗+= 212 , where 02 >t , it results that 21 PP < . Therefore, depending 262

on the position of dP (or the value of dt), different values of rk may be taken. 263

 264

 265

2.5 Clustering 266

The algorithm can make the mistake of considering that P generates a new branch BN 267

when it is actually a mere bulge of B . In addition, from this mistaken new branch BN , a 268

thread is reconstructed that actually belongs to the predecessor branch. The 269

multithreading problem is solved with two alternative clustering processes. The first 270

process, shown in Table 3, detects successor branches of one predecessor with a similar 271

direction d between them and merges them all. The second process, shown in Table 4, 272

detects a predecessor branch and one successor branch that must also be a continuation 273

of each other and forms a single cylinder. 274

 275

Finally a balanced clustering process, also following the hierarchy between each branch 276

and its successors, is adopted as shown in Table 5. It is considered that the tree structure 277

must be optimal, in other words that its main geometric parameters must be minimum. 278

Then the points between a predecessor (B) and successor (BN) branch must be 279

distributed minimising their volume. Calculating the volume of a current branch, 280

knowing d , 1P , 2P , r , is a direct operation without additional processing time cost. The 281

clustering process is done by comparing each branch with its successor, which requires 282

less time than comparing each branch with all the rest. 283

 284

3 RESULTS AND DISCUSSION 285

Both methods, iterative and least-squared estimate, were compared in a test by 286

generating 100 random directions d and, from each direction, an unstructured point 287

cloud. The results, showing both processing time and accuracy, are shown in Table 6. 288

 289

The reconstruction of the pear tree model required the lowest values of rk and sn since 290

the generated point cloud was less dense. In the case of the vine, values of rk and sn 291

were smaller than those required for the apple tree since the virtual model had higher 292

ligneous shoot density (Table 7). The number of reconstructed branches and the 293

processing time are shown in Table 8. The reconstruction process, by steps, is shown in 294

Fig. 2. 295

 296

In the virtual apple tree, the process starts with a sapling which gives rise to the trunk of 297

order 1 and, in the subsequent growth iterations when a branch occurs an order is added 298

to it. The reconstruction process (superposition of branches in the virtual model together 299

with the operation of the MTLS) resulted in over branching of the tree pattern when 300

compared with the original virtual model. Total branch volume was over-estimated, 301

especially in the apple tree reconstruction. As the volume is 2rhπ , the error in the 302

radius must be the square root of the error in the volume. In other words, in the initial 303

point cloud, the belonging of a point to a cluster and the cluster hierarchy may have a 304

higher probability than indicated by the initial model. There are also model limitations 305

with respect to the adopted parameters (Table 7). Parameter dt has a stable value, the 306

value of sn is more dependent on the density of scan process. It is required an easy try 307

to verify that the trunk is generated in one cylinder. The algorithm has the advantage 308

that the control of radius with the parent branches is a self-tuning approach. 309

 310

The lack of accuracy, the reconstructed model is not equal to the SIMLIDAR virtual 311

model, is due to the lack of convergence of the method, defects in the virtual model and 312

the effects derived from the scanning operation. The simulated MTLS operation can 313

generate shadow effects which are aggravated if two branches in the virtual model are 314

superimposed. These shadow effects may cause the reconstruction of a branch to 315

bifurcate to a branch that is, in reality, a continuation of a different branch of the model. 316

 317

A wrong choice of input parameters can result in an unrealistic reconstruction. Figure 4 318

shows three examples where incorrect parameter selection led to a poor reconstruction. 319

If rk is given a large value (Fig. 4-a, with 22.1=rk and 9.0<dt) branches thinner than 320

normal are obtained, despite the limitations imposed by the constraint that the radius of 321

a branch cannot be greater than its predecessor branch. By taking a value that prevents 322

trunk branching (Fig. 4-b, with 23.1≥rk and 9.0<dt), a single unrealistic cylinder is 323

obtained which contains all the points in the point cloud. Choosing a low value of sn 324

(Fig 4-c, with 4=sn) also results in a poor reconstruction with excessive branching. 325

Based on the De Reffye et al. (1988) branching order, chains of small branches are 326

created resulting in a maximum order in the model much higher than actually exists (in 327

Fig 4-c the maximum order is about 35). 328

 329

It has been estimated that the cost of the algorithm is ())log()log(bnNNO ⋅⋅ , being O 330

an upper limit of growth of the algorithm response time with the increase of N , the 331

total number of points in the point cloud, and bn the total number of branches. The main 332

cost of the algorithm is located in the main process (Table 1, lines 4-16), where the 333

iteration is executed N times. Moreover, the FindTheClosestPoint function (Table 2, 334

lines 3-13) function has a cost of ())log()log(bnNO ⋅ . For nearby points in kd-tree it has 335

a cost of ())log(NO (Cormen et al. 2009). Together with the estimation of ())log(bnO 336

to check that the point is not closer to the other branches of the model (Table 2, line 7; 337

costing ()bnO , but underestimated as a result of line 6). Additionally, the cost to build a 338

kd-tree (Table 1, line 1) is also ())log(NNO ⋅ (Cormen et al. 2009). The 339

AlignedChildrenBranches procedure, which is called in line 17 (Table 1), has a cost of 340

()bnO , with bn being the total number of branches; the main cost is in iteration I (Table 341

3, line 1) because the cost of the rest of iterations (depending on the number of children 342

of the branch) is small and does not increase with bn . In line 18 (Table 1) 343

ConnectAlignedBranches is called, with a cost of ()bnO located in iteration I (Table 4, 344

line 1); the times this function is called is reduced, having an estimated cost of 345

())log(bb nnO ⋅ . Finally, in the Clustering function (Table 5) iteration I (line 1) is 346

performed bn times, while for iteration K (line 10) the average number of points in a 347

branch can be estimated as
bn

N
, resulting in a cost of ()NO

n

N
nO

b

b =







⋅⋅2 which 348

includes, as before, the cost to call it in the main function, ())log(bnNO ⋅ . To 349

summarize, by adding all the above results (Table 9, lines 1-6) and considering that the 350

order of magnitude of bn is lower than N , the proposed algorithm is 351

())log()log(bnNNO ⋅⋅ . That is, in the worst case, the computational cost increases in a 352

linear logarithmic order according to the number of points in the cloud. 353

 354

CONCLUSIONS 355

Individual tree reconstruction is feasible with a short processing time cost using the 356

proposed algorithm. The disadvantage of the algorithm is the absence of a unique 357

convergence. It is important to correctly adjust the values of the input parameters, in 358

general depending on the MTLS point cloud density. The main parameters are the 359

number of free seed points (sn) and the radius factor (rk), which are used to determine 360

whether or not a point is aligned with a branch. The reconstructions obtained correctly 361

matched with the real woody structure of the trees although they are not completely 362

accurate. 363

 364

The combination of constraints used (sn , rk and significant branch radius criterion) 365

avoids divergence of the algorithm and makes the values of the parameters easier to find 366

and less dependent on the type of tree to be reconstructed. 367

 368

One major advantage of the model is that it only requires a short processing time, and it 369

could therefore be suitable for use in whole orchard reconstruction with several trees 370

trained with common agricultural systems. Orchard reconstruction could be approached 371

by selecting N tree feet or root points and applying the algorithm to all of them 372

simultaneously. In this case, a kd-tree structure will be required to improve the point-373

searching operations. Finally, a clustering process to separate branches that intermingle 374

with each other in different trees would need to be introduced. 375

 376

Table Captions 377

• Table 1. Function of the main process of reconstruction. 378

• Table 2. Function that searches for the nearest point to a branch (top) and the 379

auxiliary function that gets the significant parent of a current branch (bottom). 380

• Table 3. Function that joints a set of children branches that get a single aligned 381

branch. 382

• Table 4. Function that joints a branch with its parent branch when both are aligned. 383

• Table 5. Function that balances every branch with its parents to minimise both 384

volumes. 385

• Table 6. Performance of the iterative and least-squares methods to estimate cylinder 386

direction. 387

• Table 7. Main parameters used in the analysed reconstructions. rk is the radius 388

factor used to consider if a new point is aligned in a current branch or allows a new 389

branch; y∆ is the distance between vertical scans; θ∆ is the angular resolution of 390

the LiDAR sensor; dt is the parameter of the projection of a point over cylinder axis 391

21PP (0=dt when it is projected over 1P and 1 if it is projected over 2P); sn is the 392

number of points that freely seed a cylinder when the building of a new branch starts 393

(this parameter changes depending on the branch order (ord)). 394

• Table 8. Number of points in the point cloud, number of branches, processing 395

time and volume simulated and reconstructed by the process. 396

• Table 9. Cost of the developed functions, being N the total number of points of the 397

cloud, bn the total number of branches and O the worst case of computing time by 398

dimension of input data.. 399

400

Figure Captions 401

• Fig. 1. MTLS unstructured point cloud simulated with SIMLIDAR (a), where a402

triangulated irregular network (TIN) has been calculated. The broad capillarity 403

prevents reconstruction through filtering of initial tetrahedrons (b) by size (c). 404

• Fig. 2. Reconstructions of a virtual apple-tree (a) and vineyard (b) from their405

simulated MTLS. Reconstruction of a real pear-tree (c) from their MTLS. The order 406

number is represented as cycles of red, green and blue colours. 407

• Fig. 3. Data model of CBranch class.408

• Fig. 4. Effect of input parameters on tree model reconstruction: branches of the409

model wider than those of the measured tree (a); one unrealistic large trunk 410

containing all the points (b); excessive branching (c). 411

412

ACKNOWLEDGMENTS 413

This research was partially funded by the Spanish Ministry of Science and Innovation 414

(SAFESPRAY Project; Agreement No. AGL2010-22304-C04-03) 415

416

REFERENCES 417

De Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P., & Thrun, S. (2008a). 418

Performance capture from sparse multi-view video. ACM Transactions on Graphics. 419

27(3), Article No. 98. 420

421

De Aguiar, E., Theobalt, C., Thrun, S., & Seidel, H.-P. (2008b). Automatic conversion 422

of mesh animations into skeleton-based animations. Computer Graphics Forum. 27(2), 423

389-397. 424

425

Auat Cheein, F., & Guivant J. (2014). SLAM-based incremental convex hull processing 426

approach for treetop volume estimation. Computers and Electronics in Agriculture 102, 427

19–30. 428

429

Besl, P., & McKay, N. (1992). A method for registration of 3D shapes. IEEE 430

Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256. 431

432

Cormen, T.H., Leiserson, C.E., Rivest, R.L., & Stein, C. (2009). Introduction to 433

Algorithms (pp. 248-300), (3rd ed.). The MIT Press. 434

435

Costes, E., Smith, C., Renton, M., Guédon, Y., Prusinkiewicz, P., & Godin, C. (2008). 436

MAppleT: simulation of apple tree development using mixed stochastic and 437

biomechanical models. Functional Plant Biology, 35, 936–950. 438

439

Crouse, M.S., Nowak, R.D., & Baraniuk, R.G. (1998). Wavelet-based signal processing 440

using hidden Markov models. IEEE Transactions on Signal Processing, 46, 886–902. 441

442

Delagrange, S., & Rochon, P. (2011). Reconstruction and analysis of a deciduous 443

sapling using digital photographs or terrestrial-LiDAR technology. Annals of Botany 444

108, 991–1000. 445

446

Durand, J.B., Guédon, Y., Caraglio, Y., & Costes, E. (2005). Analysis of the plant 447

architecture via tree-structured statistical models: the hidden Markov tree models. 448

New Phytologist, 166, 813–825. 449

450

Gorte, B., & Winterhalder, D. (2004). Reconstruction of laser-scanned trees using filter 451

projections in the 3D-raster domain. International Archives of Photogrammetry, Remote 452

Sensing and Spatial Information Sciences, 36 (Part 8/W2), 39-44. 453

454

Guivant, J., Nebot, E., & Durrant-Whyte, H. F. (2002). Simultaneous Localization and 455

Map Building Using Natural features in Outdoor Environments. Robotics and 456

Autonomous Systems, 20(2-3), 79-90 457

458

Henning, J., & Radtke, P. (2006). Detailed stem measurements of standing trees from 459

ground-based scanning LIDAR. Forest Science, 52(1), 67-80. 460

461

Iagnemma, K., Kang, S., Shibly, H., & Dubowsky, S. (2004). Online terrain parameter 462

estimation for wheeled mobile robots with application to planetary rovers. Robotics, 463

IEEE Transactions 20 (5), 921-927. 464

465

Lloyd, S. (1982). Least square quantization in PCM. IEEE Transactions on Information 466

Theory, 28, 129-137. 467

468

Lukács, G., Martin, R., & Marshall, D. (1998). Faithful least-squares fitting of spheres, 469

cylinders, cones and tori for reliable segmentation. In: ECCV ’98: Proceedings of the 470

5th European Conference on Computer Vision-Volume I (pp. 671-686), Springer-471

Verlag. 472

473

Marshall, A. D., Lukács, G., & Martin, R. (2001). Robust segmentation of primitives 474

from range data in the presence of geometric degeneracy. IEEE Transactions on Pattern 475

Analysis and Machine Intelligence 23(3), 304–314. 476

477

Méndez, V., Catalán, H., Rosell, J.R., Arnó, J., Sanz, R., & Tarquis, A. (2012). 478

SIMLIDAR – Simulation of LiDAR performance in artificially simulated orchards. 479

Biosystems Engineering, 111(1), 72-82. 480

481

Méndez, V., Catalán, H., Rosell, J.R., Arnó, J., & Sanz, R. (2013). LiDAR simulation in 482

modelled orchards to optimise the use of terrestrial laser scanners and derived 483

vegetative measures. Biosystems Engineering, 115, 7-19. 484

485

Mizoue N., & Masutani T. (2003). Image analysis measure of crown condition, foliage 486

biomass and stem growth relationships of Chamaecyparis obtusa. Forest Ecology and 487

Management 172, 79–88. 488

489

Nebot E., & Durrant-Whyte H. (1999). Initial Calibration and Alignment of Low Cost 490

Inertial Navigation Units for Land Vehicle Applications. Journal of Robotics Systems, 491

16(2), 81-92. 492

493

Neira, J., Tardos, J.D., & Castellanos, J.A. (2003). Linear time vehicle relocation in 494

SLAM. Proceedings. ICRA '03. IEEE International Conference on Vol 1 (pp. 427-433). 495

Robotics and Automation, 2003. 496

497

Phattaralerphong J., & Sinoquet H. (2005). A method for 3D reconstruction of tree 498

crown volume from photographs: assessment with 3D-digitized plants. Tree Physiology 499

25, 1229–1242. 500

501

Phattaralerphong J., & Sinoquet H. (2007). Tree analyser: software to compute tree 502

structure parameters from photographs. User manual. PIAF-INRA. 503

http://www2.clermont.inra.fr/piaf/eng/download/download.php. 504

505

Pfeifer, N., Gorte, B., & Winterhalder, D. (2004). Automatic reconstruction of single 506

trees from terrestrial laser scanner data. Proceedings of 20
th

 ISPRS Congress: Geo-507

Imagery Bridging Continents, 12-23 July, Istanbul, Turkey, pp. 114-119. 508

509

Preuksakarn, C., Boudon, F., Ferraro, P., Durand, J.B., Nikinmaa, E., & Godin, C. 510

(2010). Reconstructing Plant Architecture from 3D Laser scanner data. 6th International 511

Workshop on Functional-Structural Plant Models, Davis: USA. 512

513

Rabbani, T., & Heuvel, F. (2005). Efficient Hough transform for automatic detection of 514

cylinders in point clouds. ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005", 515

Enschede, the Netherlands, September 12-14 516

517

De Reffye, P., Edelin, C., Jaeger, M., & Puech, C. (1988). Plant models faithful to 518

botanical structure and development. Computer Graphics, 22, 151–158. 519

520

Reulke, R., & Haala, N. (2005). Tree Species Recognition with Fuzzy Texture 521

Parameters. Combinatorial Image Analysis, Springer. Lecture Notes in Computer 522

Science, 3322, 607-620. 523

524

Rosell, J. R., Llorens, J., Sanz, R., Arnó, J., Ribes-Dasi, M., Masip, J., Escolà, A., 525

Camp, F., Solanelles, F., Gràcia, F., Gil, E., Val, L., Planas, S., & Palacín, J. (2009). 526

Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial 527

LIDAR scanning. Agricultural and Forest Meteorology, 149, 1505–1515. 528

529

Sanz-Cortiella, R., Llorens-Calveras, J., Escolà, A., Arnó-Satorra, J., Ribes-Dasi, M., 530

Masip-Vilalta, J., Camp, F., Gràcia-Aguilá, F., Solanelles-Batlle, F., Planas-DeMartí, 531

S., Pallejà-Cabré, T., Palacin-Roca, J., Gregorio-Lopez, E., Del-Moral-Martínez, I., & 532

Rosell-Polo, J. R. (2011). Innovative LIDAR 3D Dynamic Measurement System to 533

Estimate Fruit-Tree Leaf Area. Sensors, 11, 5769–5791. 534

535

Shlyakhter I., Rozenoer M., Dorsey J., & Teller S. (2001). Reconstructing 3D tree 536

models from instrumented photographs. IEEE Computer Graphics and Applications, 537

21, 53–61. 538

539

Simonse, M., Aschoff, T., Spiecker, H., & Thies, M. (2003). Automatic determination 540

of forest inventory parameters using terrestrial laser scanning. Proceedings of 541

ScandLaser Workshop, 3-4 September 2003, Umea, Sweden, 251-257. 542

543

Tan P., Fang T., Xiao J., Zhao P., & Quan L. (2008). Single image tree modeling. ACM 544

Transactions on Graphics 27: Article 108. doi:10.1145/1409060.1409061. 545

546

Verroust, A., & Lazarus, F. (2000). Extracting skeletal curves from 3D scattered data. 547

The Visual Computer, February 2000, 16(1), 15-25. 548

549

Yan, D.-M., Wintz, J., Mourrain, B., Wang, W., Boudon, F., Godin, & C. (2009). 550

Efficient and robust tree model reconstruction from laser scanned data points. 551

CAD/Graphics 2009, 572-575. 552

Function MainProcess

Input Void

Output Void

1: CreateKTree()

2: Branch ← GetFootTree()

3: List_Branches.Insert(Branch)

4: Iter From I = 1 To length(List_Branches)

5: Branch ← List_Branches[I]

6: If Branch.Status = 0 Then

7: Status ← FindTheClosestPoint(Branch, ClosestPoint)

8: If Status = 0 Then

9: Branch.Status ← 1

10: Else If Status = 1 Then // No Aligned, new branch

11: List_Branches.Insert(new CBranch(ClosestPoint))

12: Else // Aligned, insert point in current branch

13: Branch.AddPoint(ClosestPoint)

14: End(If)

15: End(If)
16: End(I)
17: AlignedChildrenBranches()

18: While(ConnectAlignedBranches)

19: While(Clustering)

20: Return

Table 1.- Function with the main process of reconstruction.

Function FindTheClosestPoint

Input Branch Object

Output Status, ClosestPoint

1: storedDist = -1

2: mTree ← Find_Closed_KDTtree(objBranch)

3: Iter From I = 1 To lenth(mTree.ListPoint)

4: Point = mTree.ListPoint[I]

5: Dist = Distance(objBranch, Point)

6: If Dist < storedDist and Dist < Precision Then

7: If NoCloserOtherBranch(Point, Branch) Then

8: storedDist ← Dist

9: ClosestPoint ← Point

10: IndexPoint ← I

11: End(If)

12: End(If)

13: End(I)

14: If storedDist = -1 Then

15: Status ← 0

16: Return

17: End(If)

18: mTree.ListPoint[IndexPoint].RemovePoint()

19: If Branch.NumPoints < FreeSeed Then

20: Status ← 2

21: Return

22: End(If)
23: Iter From I = 1 To Branch.NumPoints

24: Temp.AddPoint(Branch.Point[I])

25: Temp.AddPoint(ClosestPoint)

26: ParentSignif ← ParentSignificant(Branch.Parent)

27: If Temp.Radius > ParentSignif.Radius Then

28: Status ← 1

29: Else

30: Status ← 2

31: End(If)

32: Return

Function ParentSignificant

Input currentBranch

Output signifBranch

1: If currentBranch.order < OrderMin_1 Then

2: signifBranch ← currentBranch

3: Else If currentBranch.order < OrderMin_2 Then

4: If currentBranch.NumPoints > MinNumPoints Then

5: signifBranch ← currentBranch

6: Else

7: signifBranch ← ParentSignificant (currentBranch.Parent)

8: End(If)

9: Else

10: signifBranch ← ParentSignificant (currentBranch.Parent)

11: End(If)

12: Return

Table 2.- Function that searchs the nereast point to a branch (top) and the auxiliary

function that gets the significant parent of a current branch (bottom).

Functio

n

AlignedChildrenBranches

Input void

Output void

1: Iter From I = 1 To length(List_Branches)

2: Branch ← List_Branches[I]

3: If Branch.NumChildren > 1 Then

4: Iter From K = 1 To Branch.NumChildren

5: Child ← Branch.ListChildren[K]

6: Angle[K] ← ArcCos(Branch.direction,

Child.direction)

7: End(K)
8: Iter From K = 1 To Branch.NumChildren

9: Iter From J = 1 To Branch.NumChildren

10: If K≠J and abs(Angle[K]-Angle[J])<4º Then

11: Child1 ← Branch.ListChildren[K]

12: Child2 ← Branch.ListChildren[J]

13: Iter From T = 1 To Child2.NumPoints

14: Child1.AddPoint(Child2.Point[

T])

15: Remove(Child2)

16: ChangeParent(Child2, Child2)

17: End(If)

18: End(J)

19: End(K)

20: End(If)

21: End(I)

Table 3.- Function that joints a set of children branches that get a one aligned branch.

Function ConnectAlignedBranches

Input Void

Output Connected

1: Iter From I = 1 To length(List_Branches)

2: Branch ← List_Branches[I]

3: Parent ← Branch.Parent

4: Angle ← ArcCos(Branch.direction, Parent.direction)

5: If abs(Angle)<11.5º Then

6: Iter From K = 1 To Branch.NumPoints

7: Parent.AddPoint(Branch.Point[K])

8: Remove(Branch)

9: ChangeParent(Branch, Parent)

10: Connected ← True

11: End(If)

12: End(I)

Table 4.- Function that joints a branch with its parent branch when both are aligned.

Function Clustering

Input Void

Output ChangedPoint

1: Iter From I = 1 To length(List_Branches)

2: Iter From Side = 1 To 2

3: If Side = 1 Then

4: Branch ← List_Branches[I]

5: Parent ← Branch.Parent

6: Else
7: Branch ← Branch.Parent

8: Parent ← List_Branches[I]

9: End(If)

10: Iter From K = 1 To Branch.NumPoints

11: Iter From J = 1 To Branch.NumPoints

12: If J ≠ K Then

13: Tmp1.AddPoint(Branch.Point[J])

14: End(J)

15: Iter From J = 1 To Parent.NumPoints

16: Tmp2.AddPoint(Parent.Point[J])

17: Tmp2.AddPoint(Parent.Branch[K])

18: DiffBranch ← Tmp1.Volume() – Branch.Volume()

19: DiffParent ← Tmp2.Volume() – Parent.Volume()

20: If DiffBranch + DiffParent < 0 and Tmp1.radio <

Tmp2.radio Then

21: Parent.AddPoint(Branch.Point[K])

22: Branch.DeletePoint[K]

23: ChangedPoint ← True

24: End(If)

25: End(K)

26: End(Side)

27: End(I)

Table 5.- Function that balance every branch with its parents to minimize the volume of

both.

Method Runinng time (ms) Average

Angle(d , *
d)

Standard Deviation

Angle(d , *
d)

Iterative 9.37 0.45 º 0.23 º

Least-squared 0.31 0.13 º 0.06 º

d real direction, *
d estimated direction

Table 6.- Performance of the Iterative and Lest-squared methods to estimate the

cylinders direction.

rk

y∆ (cm) θ∆ (º) 9.0<dt 9.0≥dt)(snord sn

Apple tree 1 0.5 1.05 1.10 1;3;7;10;9999 80;60;40;30;20

Vine 1 0.5 1.05 1.10 1;3;9999 80;50;20

Pear tree 1.5 1 1.05 1.05 1;7;9999 20;15;10

Table 7.- Main parameters used in the analysed rebuildings. Being rk the factor of

radium to consider if a new point is aligned in a current branch or allow a new branch;

y∆ the distance between vertical scans; θ∆ the angular resolution of laser; dt parameter

of projection of a point over cylinder axis 21PP (0=dt when is projected over 1P and 1

if is projected over 2P); sn the number of points that seed freely a cylinder when starts

the building of a new branch, parameter that changes depending of order of branch

(ord).

#Points # Branches Processing

time (min)

Model

order

Rebuilding

order

Vol.

model

(dm
3
)

Vol.

rebuilt

(dm
3
)

%

Vol.

Error

Apple tree 2,350 164 1 7 11 2.80 3.63 29%

Vine 4,941 271 2 10 12 6.83 7.41 8%

Pear tree 2,741 278 0.5 20

Table 8.- Number of points in the point cloud, number of branches, processing time and

volume simulated and rebuilt by the process.

Function Cost

CreateKTree ())log(NNO ⋅

FindTheClosestPoint ())log()log(bnNO ⋅

AlignedChildrenBranches ()bnO

ConnectAlignedBranches ())log(bb nnO ⋅

Clustering ())log(bnNO ⋅

MainFunction ())log()log(bnNNO ⋅⋅

Table 9. Cost of the functions. Being N the total number of points of the cloud, bn the

total number of branches and O the worst case scenario in terms of computing time

according to the dimension of input data.

Fig. 1. MTLS unstructured point cloud simulated with SimLidar (a), where a

triangulated irregular network (TIN) has been calculated. The broad capillarity prevents

that a filters of initial tetrahedrons (b) by size (c) could be used to characterize the stems

structure.

(a)

(b)

(c)

Fig 2. Rebuildings of a virtual apple-tree (a) and vineyard (b), from its simulated T-

LiDAR. Rebuilding of a real pear-tree (c) from their T-Lidar. The order number is

represented as cycles of red, green and blue colors.

class CBranch

{

CPoint3D * m_points;

long NPoints;

CPoint3D * m_P1;

CPoint3D * m_P2;

CPoint3D * m_G;

CPoint3D * m_direct;

float m_radius;

CRama * m_predecessor;

CRama ** m_successor;

int NSuccessor;

int m_order;

}

Fig. 3. Data model of CBranch class.

(a)

(b) (c)

Fig 4. Effect of the input parameters in the rebuilding of tree models: branches of the

model wider than the actual tree (a); one unreal big trunk containing all the points (b);

too much branching (c).

