
Applied Energy 338 (2023) 120906

Available online 10 March 2023
0306-2619/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Optimizing planning and operation of renewable energy communities with 
genetic algorithms 

Florencia Lazzari a,b,*, Gerard Mor b, Jordi Cipriano b, Francesc Solsona a, Daniel Chemisana c, 
Daniela Guericke d 

a Department of Computer Science and Industrial Engineering, University of Lleida, Jaume II 69, 25001 Lleida, Spain 
b International Center for Numerical Methods in Engineering. Building Energy and Environment Group. CIMNE-Lleida. Pere de Cabrera 16. Office 2G, 25001 Lleida. 
Spain 
c Applied Physics Section of the Environmental Science Department, University of Lleida, Jaume II 69, 25001 Lleida, Spain 
d High-Tech Business and Entrepreneurship Department, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands   

H I G H L I G H T S  

• Optimization of renewable energy communities considering environment and economy. 
• Combinatorial optimization for participant selection. 
• Multi-objective optimization of solar energy allocation. 
• Results show high avoided CO2 emissions and low paybacks for all participants.  
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A B S T R A C T   

Renewable Energy Communities (REC) have the potential to become a key agent for the energy transition. Since 
consumers have different consumption patterns depending on their habits, their grouping allows for a better use 
of the resource. REC provide both economic and environmental benefits. However, its potential drastically di-
minishes when grouping of prosumers and energy al- location is performed improperly, as the energy generated 
ends up not being consumed. Given the importance of extracting the maximum potential of REC, this study 
presents a tool to assist in both the planning and the operation phases. We present a combinatorial optimization 
method for participant selection and a multi-objective (MO) optimization of solar energy allocation. Specific Ge- 
netic Algorithms (GA) were developed including problem-specific approaches for reducing the search space, 
encoding, techniques for space ordering, fitness functions, special operators to replace duplicate individuals and 
decoding for equality constraints. The performance of the novel solution approach was exper- imentally proved 
with an electrical solar installation and electricity consumers from Northern east Spain. The results show that the 
developed tool achieves energy sharing in REC with low solar energy excess, high self-consumption and high 
avoided CO2 emissions while assuring low payback periods for all partic- ipants. This tool will be essential to 
increase revenues of REC schemes and boost their beneficial environmental impact.   

1. Introduction 

To tackle the global environmental crisis, the emergence of a new 
power system, close to citizens and sustainable, is imminent. Putting 
citizens at the center will bring the energy issue into public debate, 
generating concern about the electricity consumption. It will enable a 
more equitable and democratic model, in which energy generation 

facilities will shift from being owned by a few companies to being owned 
by citizens. In addition, to ensure that this new power system is decar-
bonized, it should be powered by renewable energy sources (RES). 

Renewable Energy Communities (REC) represent the participation of 
a col- lective in the power system through renewable energy generation 
facilities placed near consumers [1]. REC offer citizens a means of co- 
ownership of energy sources that provides environmental and eco-
nomic benefits [2]. The environmental ben- efit is obtained through the 

* Corresponding author. 
E-mail address: florencia.lazzari@udl.cat (F. Lazzari).  

Contents lists available at ScienceDirect 

Applied Energy 

journal homepage: www.elsevier.com/locate/apenergy 

https://doi.org/10.1016/j.apenergy.2023.120906 
Received 16 November 2022; Received in revised form 13 February 2023; Accepted 22 February 2023   

mailto:florencia.lazzari@udl.cat
www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2023.120906
https://doi.org/10.1016/j.apenergy.2023.120906
https://doi.org/10.1016/j.apenergy.2023.120906
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2023.120906&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Applied Energy 338 (2023) 120906

2

decarbonization of the power system and reduction of the transmission 
losses. The economical benefit comes from direct financial returns to the 
involved members. Since REC are formed by a combination of. 

consumers with different daily electric consumption patterns, their 
grouping in sharing schemes optimizes the energy generation fitting [3]. 
Furthermore, the co-ownership of energy sources fosters consumer- 
empowerment, increases the energy sovereignty, helps to reduce en-
ergy poverty and boosts the local econ- omy [4]. 

In this study, the focus is on REC formed by residential prosumers, 
since it is one of the most promising markets. Amongst RES, solar pho-
tovoltaics (PV) is particularly attractive due to its low cost, high reli-
ability and consolidated technical service providers [1]. Therefore, the 
focus will be on REC addressed to residential consumers and fed by solar 
PV systems, hereafter referred to as REC. 

The actors involved in a REC have complex dynamics; consumer 
behaviour is highly stochastic, PV generation is intermittent and the 
price of electricity varies over time. Therefore, proper policy frames are 
necessary to provide the expected benefits of energy sharing [5]. Energy 
communities are now defined in the Clean Energy Package, and the 
Renewable Energy Directive 2018/2001 sets the framework for REC [2]. 
These recent favourable regulatory frameworks are boosting the crea-
tion of REC in the European Union (EU) [3,6]. 

Besides these advances in the EU regulation, REC in the EU by 2021 
only contributed 7 % of nationally installed capacities of renewables, 
estimated at. GW [7]. The fact that REC still have a marginal presence is 
due to inaccu- racies in the planning and operation stages. The planning 
phase is the period during which appropriate dimensions of community 
generation and flexible re- sources must be estimated [8]. Requirements 
in the planning phase are: how many peers are necessary to form effi-
cient groups or who are the ideal part- ners [9]. Later, during the 
operation phase, it is critical to optimize the energy sharing among the 
involved customers (considering their investment, how their daily pro-
file fits the generation or any other criteria as long as there is an agree- 
ment). These design requirements and energy allocation needs are 
generally addressed by simplifying the problem. However, specific 

optimization tools can improve these inaccurate procedures, improving 
the design and management of REC in a way that helps to achieve 
community goals and, therefore, promoting a successful rolling out of 
REC. All in all, the transition to a renewable energy model is leading to 
new opportunities for citizens but if they are not provided with the right 
tools, the high potential of REC will not be tapped [6]. 

When analysing the existing literature on REC optimization the first 
clear distinction is made between studies focused on the planning phase 
and studies addressing the operation phase [8]. In general, when 
focusing on the planning stage, the analysis is conducted from the 
perspective of Distribution System Operators (DSOs), that are mainly 
interested in voltage stability and power flow. Ghiani et al. [10] present 
the design of a REC in which the sizing of the generation is addressed 
using power flow simulation. Vahidinasab et al. [11] studied both the 
power flow optimization problem and the economic profitability of the 
community as a whole. Weckesser et al. [12] carried out an extensive 
study of REC and their potential impact on different topologies of the 
electricity network (city, village). In summary, most researchers propose 
detailed power. flow studies simulating the design of REC to guarantee 
the grid’s stability. 

Considering the impact of the REC on the electric grid is essential. 
But in the planning stage, the physical viability of the REC should be 
complemented with optimization studies from the community’s point of 
view. Zarei et al. [13] identify the best combination of participants to 
form a REC assessing energy- efficient behaviors in a social network. 
They concluded that different combina- tions of the participants could 
considerably increase the energy savings rate. In this sense, the human 
energy-related behaviors have a significant impact. 

On the other hand, most literature studies addressing the operation 
stage provide tools to work on online markets using the Peer-to-Peer 
(P2P) energy trading modality. They generally use human-on-the-loop 
strategies that give feedback through apps, using systems similar to 
the betting ones. In a P2P model, participants buy or sell energy directly 
with each other. Ye et al. [14] designed an online algorithm to tackle 
cost-aware energy sharing among resi- dents in a REC. This included the 

Nomenclature 

Abbreviations 
DSO distribution system operator 
ESS energy storage systems 
EU european union 
GA genetic algorithm 
MO multi-objective 
NSGA-II non-dominated sorting genetic algorithm-II 
P2P peer-to-peer 
PV solar photovoltaics 
REC renewable energy communities 
RES renewable energy sources Indices 

Indices 
i participant 
j position inside an individual (possible solution) 
t time [hours] 
w objective function 

Parameters 
K number of participants forming the REC 
M number of time steps in one analysis period 
N number of available participants in the neighbourhood 
pp electricity purchase price [$/kWh] 
ps solar excess electricity sale price [$/kWh] 
Q cardinality of the search space 

W number of objective functions 
Y number of time steps in one year 

Variables 
βi(t) normalized hourly allocation coefficient 
Ẽs(t) solar electricity consumed [kWh] 
ϕsc self-consumption 
ϕss self-sufficiency 
x→ combination of participants from a set of candidates 
B matrix of the energy allocation coefficients 
Ci

n(t) cost of energy consumed from new sources, once the REC is 
set up [$] 

Ci
o(t) cost of energy consumed from old sources, before the REC 

is set up [$] 
Ei

s(t) hourly solar electricity corresponding to each participant 
[kWh] 

Ei
c(t) energy consumed by each participant [kWh] 

Ei
e(t) solar energy excess dispatched to the grid [kWh] 

Ei
g(t) energy imported from the grid [kWh] 

Es(t) hourly energy generated by the PV system [kWh] 
Ei

s(t) allocated solar energy generated by the PV system [kWh] 
fw objective functions 
Ii investment of each participant 
Pi profit for a whole year of each participant 
Ri payback of each participant [years]  
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cost of purchasing electricity from the main grid, and the cost of 
charging and discharging Energy Storage Systems (ESS). Liu et al. [15] 
developed P2P energy trading management approaches of RES inte-
grated with energy storage of hydrogen and battery vehicles for power 
sup- ply to a REC. Finally, Rodrigues et al. [16] investigated the man-
agement of a P2P energy sharing network considering different ESS 
ownership structures. 

However, when looking at real life implementations, these P2P 
transaction models are unfeasible under most current regulations. In the 
particular case of Spain, where our research is centered, the legal 
framework doesn’t allow for an online update of energy allocation or 
P2P transactions. 

We present a method to optimize the energy sharing in a REC. This 
research makes several contributions to the state of the art of REC 
planning and opera- tion. It contributes to fill the gap between theo-
retical methodologies presented in the literature and realistic tools. To 
do so, we present a combinatorial op- timization for participant selection 
and a multi-objective (MO) optimization of solar energy allocation. The 
study shows the implementation of Genetic Algo- rithms (GA) along 
with the novel heuristic designed to address the complexities of the two 
problems. The novel heuristic consists of: a procedure to reduce search 
space, encoding to represent possible solutions, technique for space or- 
dering, fitness functions to achieve the stated objectives, special oper-
ators to replace duplicate individuals and decoder as repair mechanism 
to modify indi- viduals which don’t comply equality constraints. The 
main distinctions from state-of-the-art studies are the following.  

• This method is applicable in real scenarios, more specifically in 
countries where the legal framework establishes that the distribution 
of RES genera- tion needs to be done based on allocation coefficients 
(such as the Spanish and French legal framework).  

• The methodology is developed with a prosumer-driven perspective, 
instead of the typical DSO’s point of view. Providing vital informa-
tion for the decision making of consumers eager forming a REC.  

• The objective of the tool is not limited only to the exploitation of RES 
potential or the economic profitability. Unlike many studies, our aim 
is focused on guaranteeing both low PV surplus and fair distribution 
of benefits.  

• The economic objective is achieved by considering each investor 
individ- ually, which is rarely done in the literature and often a 
requirement in practice. 

• The methodology is validated with real data. This allows us to un-
derstand that the developed method can work successfully in real 
scenarios. 

2. Optimization models 

Since there is no standard regulation and each country defines their 
specific technical implementation, we will focus on the electricity 
market of Spain as an example of implementation. However, the pre-
sented model can be applied to other countries with minor modifica-
tions. In Spain, the RD 244/2019 decree presents new possibilities for 
prosumers by enabling collective self-consumption [6]. It simplifies 
administrative procedures and improves the economic viability of the 
PV installations by recognizing the right of prosumers to sell the surplus 
electricity to the grid [3]. The decree presents different regimes ac-
cording to the installed capacity [17]. Among these, we will focus on the 
scenario for in- stallations from 15 to 100 kW, which is the most 
attractive for the residential sector. 

In this case, the regulation allows a simplified monthly net billing 
remuneration mechanism. The difference between PV generation and 
the energy consumption is obtained hourly. A positive result is consid-
ered a surplus (or excess) that benefits from a revenue price. Negative 
values are subtracted from the hourly consumption. The computation of 
these differences is made monthly. The customer will obtain an energy 
saving benefit when the energy generated is greater than the consumed 

and an income from the surpluses sold to the grid. These revenues are 
limited to the same quantity as the monthly energy cost. 

According to the regulation, the hourly solar electricity for billing 
purposes corresponding to each participant Ei

s(t), is: 

Ei
s(t) = βi(t)Es(t) (1)  

where Ei
s(t) is the total hourly energy generated by the PV system; and 

βi(t) is the normalized hourly allocation coefficient in time t (in hours) 
and participant i. The allocation coefficients are signed in an agreement 
by all the participants and notified to the DSO. βi(t) can be different for 
each hour, provided that the sum of them over all K participants forming 
the REC is one: 

∑K

i
βi(t) = 1∀t, (2) 

This enables a customized distribution of the generated energy. 
These coef- ficients may be determined according to the billing power of 
each participant, their economic contribution to the PV installation, or 
any other agreed crite- rion. The coefficients must be established a priori, 
before energy is generated and consumption is produced. They can be 
modified every 4 months. All these rules and regulation constrains have 
been taken into consideration hereafter to develop the optimization 
methods. 

This study presents optimization algorithms to enhance energy sus-
tainability and economic profitability of the participants of a REC. En-
ergy sustainability is considered by minimizing the solar energy 
generated and not consumed by the REC (which is dispatched to the 
electricity grid). This is supported by the fact that energy from the grid 
has higher CO2 emission rates than the local solar. energy production. 
On the other hand, economic profitability is considered by. looking for 
individual payback periods which are acceptable and at similar levels for 
all participants. 

Fig. 1 shows the process flow for the optimization of the planning 
and oper- ational phases of the REC, and the algorithms designed to be 
applied in each phase. Both in the planning and the operation phases, 
the required inputs are the investment of each participant, historical 
data of the energy generated by the PV collective installation, the 
electricity consumption of each participant, and the price signal of the 
addressed electricity market. The method comprises two optimization 
algorithms for the planning phase: i) Selection and ii) Al- location. The 
Selection algorithm aims to select the optimal combination of partici-
pants that minimizes the surplus generation to be delivered to the grid. 
The Allocation algorithm aims to determine the optimum βi(t) assigned 
to each participant i in an hourly granularity. This last algorithm mini-
mizes the solar energy excess and ensures a fair investment return for all 
the participants. In the operational phase, only the Allocation algorithm 
is executed. 

The energy consumed by each participant i at time t is defined as 
Ei

c(t) (eq. (3)). 

Ei
c(t) = Ei

g(t) +Ei
s(t) − Ei

e(t) (3)  

were Ei
g(t) is the energy imported from the grid, Ei

s(t) is the allocated 
solar energy generated by the PV system, and Ei

e(t) is the solar energy 
excess dispatched to the grid. In this study Ei

c(t) and Ei
s(t) are known 

values. Ei
e(t, β) and Ei

g(t, β) are calculated according to Equations (4) and 
(5), respectively. 

Ei
e(t; β) =

(
βi(t)Es(t) − Ei

c(t)
)+ (4)  

Ei
g(t; β) =

(
βi(t)Es(t) − Ei

c(t)
)− (5)  

where ()+ and ()− represent the positive and negative part respectively 
of the calculation inside the (Macaulay) brackets. Notice that Ei

s(t) =
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βi(t)Es(t). 
In the planning phase, historical data sets of energy consumed by 

each par- ticipant are available. In some cases, the PV system is already 
installed, and historical data sets of the generated power are also 
available. The energy gen- erated should be simulated when the PV 
system is not yet installed. In this phase, Es(t) is defined as the hourly 
mean of the solar energy generated or simu- lated, calculated over each 
hour slot within each month.) Ei

c(t) is also defined as the hourly mean of 
the energy consumption for each participant calculated over hourly slots 
within each month. Still, here, two types of days are distinguished to 
calculate the hourly means: weekday and weekend. This categorization 
is done because consumption behaviour significantly varies these days. 

In the operational phase, two different scenarios can be distinguished 
ac- cording to the energy allocation procedure defined by each national 
regulation: 

i) the a priori scenario, where the allocation coefficients should be 
determined before the billing period (Spanish electricity market); and ii) 
the a posteriori scenario, where the energy allocation coefficients are 
determined after the billing period (French electricity market). In the 
first case, the a priori scenario, naive forecasting of the previous period is 
performed, and the hourly mean values are determined following the 
same procedures as in the planning phase. In the second case, the a 
posteriori scenario, the energy consumed and generated is already 
metered. Therefore, no forecasting of Ei

c(t) and Es(t) is needed. 

2.1. Selection optimization 

The Selection optimization has to be executed in the planning phase 
of the REC. It is typified as a combinatorial optimization aiming to find 
the best combination of participants from a set of candidates. As an 
example, a possible. solution could be x→ = (1, 21,80), representing the 
combination of participants 1, 

21 and 80. To choose among the possible combinations, the objective 
function to be minimized is the solar energy excess Ei

e(t) of each 
participant (eq. (6)), throughout the whole analysis period, comprising 
M time steps (in hours) and over the total amount of participants K. 

min x→
∑M

t

∑K

i
Ei

e(t)where x→∈ {x1
→, x2

→,⋯, xQ
̅→} (6)  

where Q is the cardinality of the search space and is calculated as the 

combination 
(

N
K

)

; N is the number of all available participants in the 

neighbourhood; and K is the number of participants to form the REC. 
This means that when choosing, for example K = 6 participants among 

N = 100, the order of magnitude of the cardinality is 109. Search spaces 
with this cardinality can’t be explored using brute force. Therefore, 
specific combinatorial optimization techniques, combined with REC 
domain expertise, should be smartly taken into account when imple-
menting the algorithm to solve this problem. 

2.2. Allocation optimization 

The Allocation optimization is designed to be executed in each 
optimization period (4 months in Spain). The objective is to find the β s 
that minimize the difference among individual payback periods and the 
solar energy excess. Therefore, two target functions should be 
implemented. 

Several variables related to the economic costs are considered to 
minimize the difference between individual payback periods (herein-
after referred to as paybacks). Ci

0(t) is the cost per time unit (i.e. hour), 
for each participant i, of the energy consumed from old sources (the 
grid), before the REC is set up and there has been no generation of solar 
energy yet (eq. (7)). It is calculated considering the energy consumed 
and the time varying electricity purchase price pp. 

Ci
o(t) = pp(t)Ei

c(t) (7) 

The energy cost of each participant, once the REC is established and 
the solar energy generation is allocated, is defined as the cost of new 
sources Ci

n(t) per time unit (eq. (8)). This energy cost is affected by the 
revenues of the solar excess dispatched to the grid, which is sold at the 
solar excess sale price ps. 

Ci
n(t) = pp(t)Ei

g(t) − ps(t)Ei
e(t) (8) 

In general, pp ∼ 3 ps. This implies that self-consuming solar energy is 
always more convenient than selling it. 

The aggregated profit for a whole year of each participant is 
expressed as Pi 

Pi =
∑Y

t

(
Ci

o(t) − Ci
n(t)

)
(9)  

where Y is the overall number of time steps (hours) in a year. On the 
other hand, the payback of each participant is expressed in years as Ri 

(eq. (10)). 

Ri =
Ii

Pi (10)  

where Ii is the investment of each participant. 

Fig. 1. Scheme showing the optimizations and the couplings.  
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Our objective is to minimize the difference among the paybacks of 
the different participants and the exported solar energy excess. This MO 
optimization is stated in eq. (11). 

minB{f1(B), f2(B) }

s.t.B = βi(t) ∈ RMxK
[0,1]

∑K

i
βi(t) = 1∀t = t1⋯tM

f1(B) =
∑K

i
Ei

e

f2(B) =
∑K

i
exp

(
Ri)

(11)  

where f1(B) is the solar excess function, f2(B) is the payback function; and 
B is the matrix of the energy allocation coefficients βi(t). B contains all 
the K participants in the REC for every time step in the analysed period 
(M time steps, in hours). To complete the problem statement, the 
constrain in eq. (2) must be satisfied independently for each time step 
(represented by each row of the matrix). 

B =

⎛

⎝
β1(t1)⋯βi(t1)⋯βK(t1)

⋮
β1(tM)⋯βi(tM)⋯βK(tM)

⎞

⎠s.t.
∑K

i
βi(t) = 1, ∀t = t1⋯tM 

Our goal is to minimize both objective functions simultaneously. 
However, it is impossible to find a solution that optimizes two con-
flicting objectives. Instead, the solution to a MO problem is a number of 
points belonging to the objective function space, these are called Pareto 
optimal solutions. For a Pareto optimal solution, no objective can be 
improved without degrading the other objective. Without additional 
information on subjective preferences, there are an infinite number of 
Pareto optimal solutions. All of them can be considered equally good, 
and none of them is preferred over the others. 

With the above in mind, the Pareto set of best solutions will be 
searched first. Afterwards, an ideal or utopian point will be drawn in the 
objective function space. Finally, the best solution will be selected from 
the Pareto set of candidate solutions as the one that minimizes the 
euclidean distance to the ideal point. Therefore, the selected solution 
will be as close as possible to the ideal solution. The main outcomes of 
this optimization will be: (i) the selected solution; and. 

(ii) the complete set of Pareto solutions found. These outcomes can 
be delivered to the decision makers so they can choose among all the 
possible scenarios. 

3. Solution method 

The Selection and Allocation optimization problems are high- 
dimensional, non derivable and NP-Hard problems. There is no 
polynomial-time algorithm to find the solution when the problem is of 
these characteristics. In the worst case, one would need to evaluate all 
possible solutions in an exact optimization approach to prove opti-
mality. However, the cardinality of the search spaces being considered 
grows rapidly (due to the curse of dimensionality), making it compu-
tationally intractable to use an exact optimization approach. 

Therefore we trade optimality for speed, using an approximation 
algorithm. Ad-hoc heuristic methods are often ineffective because they 
are handicapped by their biased set of rules. Stochastic optimization 
approaches are the alternative approach for solving these types of 
problems. Stochastic optimizations cannot guarantee optimal solutions. 
However, they outperform traditional deterministic search methods 
when applied to complex problems. 

There is a large variety of stochastic optimization approaches. None 
of them can be said to be generally superior to all the others. When 
selecting a solu- tion method, the specific features of the problem to be 
solved must be taken into consideration. We chose Genetic Algorithms 
(GA) to solve the two opti- mization problems presented. There is a 
scientific community working on GAs which shows consensus on the fact 

that GAs are empirically good at provid- ing near-optimal solutions in 
cases where: 1) the function to be optimized is non-differentiable, 2) the 
function evaluation has low computational cost, 3) complex constraints 
are involved (including equality constraints), 4) the search space is not 
smooth (for example in combinatorial optimization, there is a need to 
optimize over a discrete domain), and 5) for MO optimization (when the 
relation among the functions is not known in advance). If it is possible to 
define an heuristic where the representation in which the genetic op-
erators work at their best (which requires tuning and domain knowl-
edge), then the GA shows. 

fast convergence and requires low computational time to produce 
high-quality solutions [18]. 

GA are inspired by natural selection, relying on mutation, crossover 
and selection of individuals (which represent the candidate solutions) 
[19]. Algo- rithm 1 shows the pseudocode describing a general GA. The 
heuristic defined by the GA designer includes several aspects. Firstly, the 
encoding scheme that transforms possible solutions into strings. Sec-
ondly, the objective function that maps problem solutions to fitness 
values. Thirdly, the population size (Np). Then, the method to select 
parents (roulette-wheel selection, tournament selec- tion, rank selection, 
among others). Furthermore, the crossover type should also be specified. 
This means, choose the way in which parents will share some of its 
genetic information with their offspring. In addition, the mutation rate 
should be selected accordingly. A high rate will turn the GA into random 
search. In- stead, a low rate could leave parts of the search domain 
unexplored. Finally, the stopping criterion may be set to a pre-
determined number of generations or to run until the fitness of the best 
individual is better than some user-defined threshold or when evolu-
tionary process is not changing significantly.  

Algorithm 1: GA pseudocode 

1: initialize Np individuals {xi } 
2 encode individuals with specific representation 
3 evaluate objective function for each individual 
4 while not (stopping criterion) 
5 for k = 1 to Np 
6 select parents from {xi } 
7 use crossover to create a new child ck 
8 r ← random number between 0 and 1 
9 if r < mutation rate 
10 mutate ck 
11 end if 
12 evaluate objective f u n c t i o n using ck 
13 next child 
14 replace duplicate individuals in {xi } U {ci } 
15 {xi } ←best Np individuals from {xi } U {ci } 
16 next generation  

According to the Law of Conservation of Information [20], it is pointless 
to attempt to design a GA that is better than random search, unless you 
can incorporate problem-specific information in the algorithm. This 
translates in the fact that, if the GA is not correctly implemented, it will 
end taking large computational time or premature convergence to a 
local minimum (this ap- plies especially in problems with large cardi-
nality). Performance improvements hinges on using prior information to 
match procedures to problems [21]. The performance of a GA highly 
depends on the definition of: the function assigning fitness values to 
possible solutions, an encoding (mapping) mechanism between. 

the problem and algorithm domains, the representation, and special 
operators to handle constraints. There are no hard-and-fast rules to 
define them. The understanding of the problem is critical, so that a 
problem-specific heuristic is constructed in a way that leads to successful 
results. There are infinite heuristics to represent any optimization 
problem. However, it must be carefully designed to match the structure 
of the target problem, because if the heuristic fails, the GA will fail 
lamentably [22]. 

To motivate the particular heuristic proposed, studies considering 
different combinatorial and MO problems were analyzed. Combinatorial 
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problems ana- lyzed include the traveling salesman problem, the graph 
coloring problem, the minimum spanning tree problem, the job shop 
scheduling problem, the knapsack problem, and the bin packing prob-
lem [18,21,23]. On the other hand, MO prob- lems incorporating the 
concept of Pareto dominance were considered [24,25]. 

3.1. GA for selection optimization 

The objective of the Selection optimization is to find the best com-
bination of participants to form the REC. This type of optimization is 
called combinatorial optimization, where independent variables are 
restricted to a set of discrete values. 

Searching for all possible solutions is often the only way to solve 
combinato- rial problems. But when solving real-life problems, search 
spaces tend to grow rapidly, making it impossible to carry out an 
exhaustive search. Therefore, the aim here is not to find the exact so-
lution but a reasonable, near-optimal, feasi- ble solution in an acceptable 
timescale. In this sense, studies in the literature revealed that GAs have a 
great potential to solve a wide range of combinato- rial problems [18]. 
This is mainly because GAs use an intelligent way to seek through the 
domain, avoiding the infeasible brute-force search. 

However, for this type of problems with large cardinality, the 
implementa- tion should avoid large computational time or premature 
convergence to a local. 

minimum. We propose the introduction of specific knowledge by 
limiting the number of participants (K) by a maximum defined as 
Kmax(K ≤ Kmax). First, the periods in the data set where the solar 
generation peaks occur, tsmax, are found by using derivatives. We then 
obtain Es(tsmax), the maximum solar electricity generated per day, and 
Ec(tsmax), the electricity consumption for that time (tsmax). Finally, the 
ratio of self-consumption φsc (eq. (12)) for each user is obtained. φsc 
measures the usage of the generated solar electricity. 

φsc =
Ẽs(t)
Es(t)

(12) 

where Ẽs(t) is the solar electricity consumed 
(

Ẽs = Es − Ee
)

. To es-

timate the φsc here, Ei
s = Ei

c was used. This is, we assumed that all the 
energy consumed will be solar. Then φsc is calculated as the temporal 
mean over all periods tsmax and over all participants. Finally, the 
maximum number of participants Kmax is estimated as the inverse of the 
self-consumption percentage of the generated electricity (eq. (13)). 

Kmax =
⌈
(φsc)

− 1⌉ (13) 

This approach to estimating the maximum number of participants 
only con– siders the sustainable side (solar surplus). It is supported by 
the fact that participants’ investments are usually not a barrier because 
installation costs are currently low [3]. Therefore, we can affirm that the 
maximum number of participants in the REC depends only on their 
consumption capacity and the generation capacity of the PV installation. 
Once the maximum number of participants is determined, we search for 
the most suitable consumers to take advantage of the available solar 
energy. 

Different ways to represent combinatorial candidate solutions exist. 
The chosen encoding determines the size of the space. Encoding was 
defined as an integer vector x→ of size Kmax, representing the participants 
forming the REC. It was designed to avoid redundant possible solutions 
(in GA terminology; individuals). An encoding which allows duplicate 
individuals (two individuals representing the same solution) can 
generate an entire population of clones, leading to premature conver-
gence. 

For example, x→1 = (4, 8,7) and x→2 = (7, 4,8) are duplicated in-
dividuals. Both represent the same feasible solution. The coordinates are 
ordered in ascending order. In the same example, x→1 and x→2 are 
replaced by x→0 = (4,7, 8). This process is performed in the replace 

duplicate individuals step, in Algorithm 1, line 15. 
In addition, infeasible solutions must be removed. For example x→3 =

(5, 5,40) is a valid individual, but in real life, only one participant 5 
exists. Therefore, all duplicated participants in one solution vector are 
replaced by 0. Such a vector should be transformed into x→3 = (0,5, 40). 
This approach avoids infeasible solutions. 

When analysing GA implementations of similar combinatorial 
problems, an important aspect is the ordering of the search domain. 
Therefore, the participants are ordered according to their % self- 
consumption (eq. (12)) before the GA is executed. This led neighbors 
in the search space to come closer in the fitness space. 

According to eq. (1), it is clear that the solar allocation depends on 
the βs. Since we don’t know in advance the ideal hourly βi(t) for each 
participant, they are established to be proportional to their hourly 
consumption Ei

c(t). In this way, the only independent variables partici-
pating in the optimization are the number and chosen participants. This 
strategy is based on a “divide and conquer” technique because if the 
βi(t)’s were not fixed, the problem-optimization complexity could in-
crease excessively. 

The parameters of the GA for the Selection optimization are sum-
marized in Table 1. The population size, mutation rate and number of 
generations for the stopping criterion were obtained doing a sensitivity 
analysis, carrying out multiple runs of the algorithm with different 
values and comparing the outcome [26]. The algorithm performance 
was defined as the best fitness at termination. The tuning algorithm 
performed 20 runs with different values for. 

each parameter. The whole implementation was done in R language, 
using the package GA (version 3.2) [27,28]. 

3.2. GA for allocation optimization 

The objective of the Allocation optimization is to find the best B 
matrix, which contains the βi(t) coefficients for each participant for all 
the hours in the optimization period. The search is performed consid-
ering economic and environmental aspects using the payback and the 
solar excess functions, defined in eq. (11). As stated previously, this is a 
MO problem. Two methods can be used to solve MO problems: a priori 
and a posteriori methods. 

The a priori methods require preference information from the deci-
sion maker before the solution process, in order to define the objectives’ 
relative importance. This information is used to produce a single scaled 
objective function (such as a weighted sum). Following this approach, 
the problem is transformed into a single-objective optimization and 
thus, allowing it to be solved. The a priori methods reduce the search 
space and may not be able to find all the available solutions. Therefore, 
these methods are not desirable for exploring all the do- main. More-
over, in real-world problems, these techniques generally lead to poor 
quality solutions because obtaining the objective function is a non- 
trivial task. In addition, in our case, we don’t know in advance the 
trade-off between the payback and solar excess functions because it is 
different for each combination of participants. Besides, the units of both 
functions are different. 

In a posteriori methods, a representative set of Pareto optimal 

Table 1 
Implementation of Selection optimization.  

Encoding Integer (through Binary -Gray code) 

Size of individuals Kmax 
Population size 80 
Selection of parents Linear Rank selection 
Crossover type Uniform binary 
Mutation rate 0.08 
Fitness function f1, with βi(t)’s fixed proportionally to their Ei

c(t)
Stopping criterion 50 generations without changes 
Output Combination of participants with minimum solar excess  
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solutions is first found, and then the decision maker chooses one of 
them. These methods do not require preference information. Instead, 
they produce a set of elements of the Pareto optimal set. GAs are popular 
within the a posteriori methods because they simultaneously deal with a 
set of possible solutions (the so-called population) and can find several 
members of the Pareto optimal set in a sin- gle “run” by incorporating 
the concept of Pareto dominance into the selection mechanism [24,25]. 
Therefore, a posteriori is the most appropriate method to be used in our 
scenario. 

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [29] has 
become a standard approach and it is one of the most commonly used a 
posteriori method. 

NSGA-II emerged as an early approach, and several enhancements 
were made over the years. NSGA-II assigns fitness of each individual by 
considering non– domination level and crowding distance. 

In the non-domination, every individual is ranked in Pareto fronts 
based on its performance regarding the objective functions. To construct 
the Pareto fronts, the domination between individuals is considered. A 
feasible solution x→1 ∈ Ω (domain) is said to dominate another solution 
x→2 ∈ Ω, if. 

∀w ∈ {1, ...,W}, fw ( x→1) ≤ fw ( x→2), and (14). 
∃w ∈ {1, ...,W}, fw( x→1) < fw ( x→2), (15).where W is the number of 

objective functions which in our case is W = 2. Ω is the domain 
composed of all the feasible parameters which in our case is equal to 
Ω = B ∈ RMxK

[0,1]RMxK. If one individual dominates another, then: i) for the 
two objective functions, the value of the dominating individual is lower 
or equal to the other one, and ii) for one of the functions, the value of the 
dominating individual is the lowest one. The set of Pareto optimal so-
lutions are those that are not dominated by any other feasible solutions. 

Each individual is compared with the rest of the individuals in the 
popula- tion. A list of dominant individuals and the number of domi-
nants is obtained. Based on this information, a sorting process finds the 
different Pareto fronts in which all individuals are ranked. 

In one Pareto front, all individuals have the same performance. The 
crowding distance is used to distinguish among individuals in the same 
front. It is defined as the average distance to the nearest neighbours 
along each objective function dimension. Individuals in more crowded 
regions of the objective function space are assigned the worst crowding 
distance, encouraging population diversity. 

The main procedure of the NSGA-II algorithm is then as follows: a) all 
individuals from the best fronts with the best crowding distance are 
chosen to be the next parent population, b) tournament selection for 
parents, c) offspring through crossover, and d) mutation. This whole 
process is repeated until the stopping criterion is reached. The param-
eters of the NSGA-II algorithm for. 

the Allocation optimization are summarized in Table 2. The 
parameter tuning was obtained doing a sensitivity analysis [26]. The 
algorithm performance was defined as the best fitness at termination. 
The tuning algorithm performed 20 runs with different values for each 
parameter. The whole implementation was done in R language, using 
the package nsga2R (version 1.1). 

Regarding the encoding, each individual is composed of real 

numbers be- tween 0 and 1, representing the hourly βi(t) of each 
participant. The problem with this encoding arises when looking for 
individuals that satisfy the equality constraint for βi(t) s in eq. (2). If we 
randomly generate an initial population in a continuous search domain, 
we have an essentially zero probability of obtaining individuals satis-
fying equality constraints. Therefore, given that rejecting infeasible in-
dividuals would eliminate all the individuals, we apply a decoder to 
convert them into feasible solutions [30]. Then, each individual in the 
population is transformed by an instruction set for building a candidate 
solution that always satisfies the problem constraint. 

This decoder consists of a normalization of the individual, obtaining 
xdecoded

j (eq. (16)). 

xdecoded
j =

xj
∑K

j xj
(16)  

where j represents the position inside the individual. This decoder dis-
tributes the population non-uniformly in the search space, with a peak 
density around 1/K. This introduces bias in the search, that can be 
problematic. However, in this case it is advantageous, because this 
accumulation point is in the subspace we are looking to benefit (equi-
distribution of energy), which makes it a good way of focusing the space 
of search. 

Once all the optimal Pareto set is found, the ideal point is defined by 
drawing in the objective function space the (usually utopian) scenario 
comprising the minimum for both objective functions, as shown with a 
cross in Fig. 2. To help the decision maker, the best point solution is 
selected from the Pareto set of candidate solutions as the one that 
minimizes the euclidean distance to the ideal point (highlighted with a 
rhombus). 

4. Results and discussion 

The case study comprises electricity consumption data from smart 
meter readings of 128 households and solar generation data from 1 PV 
installation. The data sets contain information generated for the year 
2021. All the house- holds and the solar generation installation are from 
the city of Barcelona, Spain. In this case study, the number of partici-
pants to be selected (obtained with eq. (13)) was 7. That is, the selection 
optimization had to select 7 participants out of 128 possible 
participants. 

4.1. GA domain-ordering performance 

Since GAs are nondeterministic, different results may be obtained 
every time they are executed. Therefore, a convergence study should be 
conducted. 

to determine if our algorithm is reliable and avoid biased conclu-
sions. The same test was performed 40 times using the Monte Carlo 
method, seeded with different random numbers. Fig. 3 and Fig. 4 shows 
how the self-consumption ordered domain implementation of the GA 
outperforms the non-ordered one. Both figures are the convergence 
study of the solar excess (f1) carried out for the two variants. 

Fig. 3 shows in a log scale, the solar excess corresponding to the best 
candi- date solutions, with and without ordering the domain. It can be 
observed that over the generations, on average, the solar excess de-
creases faster in the case of the ordered domain. 

Fig. 4 shows the histograms of f1 for the final selected combinations 
on the Monte Carlo analysis for both implementations (with and without 
ordering the. 

domain). When comparing both histograms, we can conclude that, 
firstly, both algorithms reached the same best solution (combination of 
participants with minimum solar excess). This can be determined since 
both the ordered and the non-ordered achieved an equal minimum solar 
excess of 3.75 kWh. However, the ordered one performs better because, 
for this implementation, the amount of outputs with the mentioned 

Table 2 
Implementation of Allocation optimization.  

Encoding R[0,1] 

Size of individuals M × K 
Population size 200 
Selection of parents Tournament selection 
Crossover type Simulated binary crossover 
Mutation rate 0.2 
Fitness functions f1 and f2 

Stopping criterion 500 generations 
Outputs 1)Pareto set of possible scenarios 

2) Matrix B ∈ RMxK
[0,1]
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minimum solar excess is higher. This is shown by a significant peak of 
outcomes for the lowest value of f1 reached. Moreover, the ordered 
implementation shows minor variance, meaning it is more robust. To 
sum up, the novel proposed optimization algorithm can find 

combinations more concentrated in low ranges of f1. 
Finally, an aspect generally criticised of GAs is that they are time- 

consuming. However, in our case, the average processing time of 
convergence was ~ 6 min-. 

Fig. 2. . Normalized solutions plot on objective functions space. The cross represents the ideal point and the rhombus remarks the best scenario found by minimizing 
the euclidean distance to the ideal point. 

Fig. 3. Monte Carlo convergence analysis. In red, GA with non-ordered domain. In blue, GA with self-consumption ordered domain. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Histogram of f1 for the final selected combination on the Monte Carlo analysis. The top graph shows the GA with free domain. The bottom graph shows the 
GA with self-consumption ordered domain. 
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utes when running in a 16 threads processor - AMD2700x. 
These results show that the proposed approach successfully detects 

combi- nations of participants with low solar excess and a high degree of 
convergence in an acceptable time to be used in real applications. 

4.2. Comparison to traditional REC 

A general evaluation of the results of the whole optimization is 
carried out. Regarding environmental objectives, the aim is to guarantee 
that the overall solar excess is low. This is, to minimize f1. In the eco-
nomic aspect, all par- ticipants have invested differently and each has a 
different capacity to take advantage of solar generation due to distinct 
consumption patterns (for exam- ple, a REC formed by family house-
holds and student apartments). However, all of them want a reasonable 
and similar investment payback period. This is, to minimize f2. 

The performance of the optimization methods is analyzed by 
comparing the obtained REC with two other REC configurations. The 
first one is named profitable REC, and it is designed to look at equitable 
profitability for all par- ticipants. The usual strategy used to define this 
profitable REC is choosing participants out of a random selection and 
then using solar allocation based on investment (βi = Ii∑

k
Ik, this is the 

common way to calculate allocation coefficients in Spain). The second 
one is named sustainable REC, and its main objective is to extract the 
maximum potential of renewable sources. The usual strategy to define 
the sustainable REC is choosing participants out of a random selection 
but including a higher number of participants. In this case, we decided to 
double the number of participants and to allocate the solar energy 
considering only the solar excess (βi =

Ei
c∑
i
Ei

c
, this is the common way to 

cal-. 
culate allocation coefficients in France). 
To perform the comparison, different parameters are calculated. The 

eco- nomic parameters are related to the payback period. The mean, the 
maximum and the difference between the maximum and minimum (Δ) 
are calculated. The environmental parameters are the solar excess 
delivered to the grid, the avoided CO2 emissions (using the CO2 emis-
sion factor of the Spanish electricity mix, 0.357 kg CO2/kWh [31]) and 
the self-consumption (eq. (12) calculated over the sunny hours). In 

addition, the self-sufficiency is calculated (eq. (17)), even though it is 
not a strictly environmental parameter, to provide more information in 
the assessment of the sustainable and novel REC. 

φss =
Ẽs(t)
Ec(t)

(17)  

where Ec(t) is the energy consumed and Ẽs(t) is the solar consumption, 
defined as the solar electricity assigned and consumed (Ẽs = Es(t) − Ee). 

The results are shown in Fig. 5. 
When looking at the environmental parameters, the first thing that 

stands out is that both the sustainable and the novel REC obtain similar 
results in three of the four parameters: low solar excess, high self- 
consumption and high reduction of CO2 emissions. This shows a good 
environmental performance of the novel and sustainable REC. In contrast, 
if we look at the profitable REC, it can be observed that it achieves a poor 
environmental performance (high solar excess, low self-consumption and 
low reduction of CO2 emissions). Finally, when comparing the novel and 
sustainable REC, it is seen that the sustainable REC will find it more 
difficult to fulfil the amount of electricity needed with solar energy 
(because the number of participants has doubled) and this is translated 
into a lower self-sufficiency. 

When comparing the economic parameters, the first thing we 
observe is that for the three REC configurations, the mean payback is 
acceptable (considering 7 years as an acceptable payback). However, the 
average payback by itself is not a good measure on which to base de-
cisions, since despite having a reasonable average payback, it can hide a 
large variance, generating disparity between the participants. When 
observing in more detail, the max and delta payback of the sustainable 
REC are significantly high, showing an important profitability disparity 
of the participants. The profitable REC shows, in this respect, better 
outcomes. However, the novel REC has the lowest max and delta 
payback. This is because, although the profitable REC allocation focused 
on the economic aspect, the participants were randomly selected. 
Therefore, their capacity to minimise the solar excess delivered to the 
grid (at a significantly lower selling price than the purchased price) is 
much lower than the capacity of the novel REC. Overall, the novel REC 
performed the best in the economic tests. 

Fig. 5. Environmental and economic performance of the different REC:profitable, sustain- able and novel.  
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4.3. Profitable, sustainable and novel REC configurations performance 

Figs. 6, 7 and 8 show the results obtained in the 3 REC scenarios 
(prof- itable, sustainable and novel) in a more detailed study. Figures a) 
represent the hourly mean aggregated energy for the whole REC during 
a day. The colours distinguish between solar excess, solar and grid con-
sumption. SC and SS stands for self-consumption and self-sufficiency 
respectively. The graphs on the left side of figures b) show the invest-
ment of three selected participants. In order to better understand the 
behaviour for a wide variety of participants, the ones with minimum, 
median and maximum paybacks where chosen. The graph on the right 
side of figures b) show the solar energy consumed and excess (delivered 
to the grid) for the three participants. The darker area represents the 
solar energy consumed by each participant and the lighter area repre-
sents the energy excess, sold to the grid at price ps. The dotted line rep-
resents the electricity-grid purchase price pp. 

Fig. 6 shows the results obtained for the profitable REC. Looking at 
Fig. 6b, 

a possible problem with this type of allocation arises. By distributing 
the energy proportionally to the investment, the participant who 
invested the most, receives more energy than anyone else. This seems 
like a fair choice and, in fact, leads to acceptable paybacks. The problem 
appears when this participant is not the one with the highest con-
sumption during peak solar generation hours. In these cases, the energy 
received by this participant will contribute to the solar energy excess. 
This leads to the aggregated consumption pattern shown on Fig. 6a, 
where it is reflected that the solar excess is very significant with respect 
to the solar energy consumed by the REC. 

Fig. 7 shows the analysis for the sustainable REC. In Fig. 7a it is 
observed that adding a high amount of participants generates a con-
sumption peak that matches the peak of solar generation. Moreover, 
complementing with the indi- vidual consumption on the right, it is 
evidenced that the allocated generation is adjusted to the consumption 
of each participant. So that, there is no individual. 

surplus, leading to zero total surplus and the self-consumption is 
maximized. But when analyzing Fig. 7b in detail, we can see that there 
were participants who consumed little with high investment (right-top 
graph), and others that with small investment consumed a lot (right-top 
graph). What happened is that the first participant will obtain an 
extremely high payback and the second a very low payback. In this way, 
it is understood that although this model fulfils sustainability objectives, 
at the same time it encourages low investment and high energy 
consumption. 

Finally, Fig. 8 shows the results for the novel REC. From 8a, it can be 
seen that using the Selection optimizer, a group of participants whose 
peak con– sumption coincides with the peak of solar generation has been 
found, obtaining a high self-consumption without the need of recruiting 
many participants. Fur- thermore, when compared with the two previ-
ous REC, we must highlight that the difference between the participant 

with the minimum and maximum pay- back is very small. From 8b it is 
clear what strategy the Allocation optimizer uses to achieve this: the 
participant who has invested the most receives more solar energy when 
the price of grid electricity is most expensive (in the after- noon). In this 
way, these graphs show how the two novel optimizers manage to form 
REC groups of participants with their allocation coefficients, meeting 
the objectives of sustainability and equidistributed and reasonable 
profit. 

From the results, it can be appreciated that the novel REC model 
presented generated using the Selection and Allocation optimizers pro-
posed in this study, self-consumes all of the solar energy generated, thus 
reducing the solar excess and maximising the reduction of CO2 emis-
sions. At the same time, all partici-. 

pants obtained a very acceptable and equitable payback. This means 
that the. 

proposed method can optimize the energy generated in a neighbor-
hood, manag- ing this energy so that all participants obtain the same 
benefits without budget discrimination. Hence, the presented optimi-
zation method configures a REC that meets both economic and sus-
tainable objectives. 

Studies focused on similar combinatorial problems were analysed to 
moti-vate this particular implementation. Reference [21] describes a 
complete survey of the recent advances of adapting metaheuristic al-
gorithms when applied to combinatorial problems. And [23] presents a 
GA along with a novel heuristic to solve the Bin Packing Problem in 
which individuals are generated through sorting descending order ac-
cording to the value of volume, length, width and height of each prod-
ucts respectively. The reason to do this is that when the search space has 
some regularity, recombination tends to perform well. Based on these 
previous works we proposed a new model, using GAs, that outperforms, 
in an acceptable computational time our minimization problem. Despite 
GAs solutions being not deterministic, in our case, the presented results 
provide a solution (group of participants with their allocation co-
efficients) with reasonable performance. 

This novel development has been validated with data from a col-
lective solar PV installation and hundreds of electricity consumption 
profiles from house- holds placed in Barcelona, in Northern east Spain. 
The results show that, regarding the environmental aspects, the novel 
algorithm successfully obtained a REC with low solar excess (1 kWh in a 
year), high self-consumption (100 %) and high avoided CO2 emissions 
(7 kg/day). And, regarding the economic as- pects, savings were evenly 
spread among all members and low paybacks for all participants (mean 
payback of 2.8 years, max payback of 3.1 years and delta payback of 0.7 
years). Overall, the proposed approach can be applied without much 
computational cost. 

Nevertheless, some limitations should be highlighted. One of the 
limitations comes from the current Spanish legislation, which doesn’t 
allow the change of the allocation coefficients within four months. Since 
updating these coefficients is subject to this regulation, our results will 

Fig. 6. . Analysis for profitable REC: aggregated for the whole REC and individualized for the participants with the lowest, mean and minimum payback.  
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have an error margin that will depend on the constancy of the partici-
pants in terms of their consumption habits. For example, suppose some 
participants were to change their consumption patterns within that 
period. In that case, the restructuring of energy allocation could only be 
done at the beginning of the next period. Such a limitation would be 
reduced if the legislative framework reduced the period for allocation 
updates. Therefore, we believe that the impact of this study will be even 
more relevant when this change in the regulation is applied. On the 
other hand, more sophis- ticated consumption forecasting models could 
be used to avoid such unexpected consumption changes [32]. 

5. Conclusions and future work 

A transition towards a more sustainable energy model where citi-
zenship will play a central role is taking place in all European countries. 
REC have the potential to become a key instrument for this citizen- 
driven energy transition. However, if the grouping of prosumers and 
their respective allocation of energy is not implemented smartly, the 
high potential of REC will remain untapped. Furthermore, the lack of 
optimized design and operation of REC may lead to in- creased energy 
generation but decreased self-consumption, with many surpluses dis-
patched to the grid and lowering economic profits. This study presents 
and validates a set of optimization procedures to assist the REC’ par-
ticipants in both the planning and the operation phases and, therefore, 
support them to get the maximum environmental and economic profit 
from their collective initiative. Considering the unpredictable energy 
usage patterns, radically intermittent characteristics of RES, and dy-
namic electricity price, it would be difficult for participants of a REC to 
intelligently share their energy with others and thus minimize the 
overall cost of the whole community. This research contributes to filling 
the gap regarding tools for the better development of REC. Specific GAs 
were developed to find the best combination of users and allocation of 

the generated solar energy. The presented framework is a practical and 
extensible approach which will assist in decision-making for REC. 

More specifically, this study presents a GA including problem- 
specific com- ponents designed to enable the algorithm to address the 
complexities of the problems. Regarding the Selection optimization, 
different novel aspects were presented. Firstly, a procedure to calculate 
the maximum number of partici- pants to reduce the search space. 
Secondly, a novel encoding to represent the possible solutions. Thirdly, a 
novel technique for space ordering to generate regularity in search space 
according to self-sufficiency. Moreover, the mathe- matical definition of 
the fitness function that allowed us to achieve the stated objective. 
Finally, the definition of a special operator to replace duplicate and 
infeasible individuals that avoids having duplicate individuals. For the 
Alloca- tion optimization, the following problem-specific concepts were 
added. First of all, a novel encoding to represent the possible solutions 
was presented. Then, the definition of two fitness functions was devel-
oped. And finally, a decoder as repair mechanism to modify infeasible 
individuals which do not comply the equality constraint was designed. 

To conclude, this methodology sets the basis for the design of tools to 
help REC participants increase their economic revenues and their posi-
tive impact on the environment. If people are not advised with the right 
tools, the great potential of REC will not be realized. Therefore, this 
study is essential to provide important guidance for stakeholders. 

Finally, further work could assess more in deep REC. For example, 
consider the inclusion of energy storage systems (such as batteries or 
electric vehicles), or different consumer typologies (such as those with 
commercial or industrial loads), or the use of other energy sources to 
hybridize (as could be the wind). All these possible add-ons would make 
the tool more versatile, allowing it to adapt to a wider range of REC 
scenarios, becoming a highly valuable asset for tomorrow’s power 
system. 

Fig. 7. Analysis for sustainable REC: aggregated for the whole REC and individualized for the participants with the lowest, mean and minimum payback.  

Fig. 8. Analysis for novel REC: aggregated for the whole REC and individualized for the participants with the lowest, mean and minimum payback.  
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