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In this work we study the global analytic integrability, Louville integrability and
Puiseux integrability of the Tolman–Oppenheimer–Volkoff equation.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction and context

The hydrostatic equilibrium also called hydrostatic balance is the condition to have a fluid at rest. The
classical example is the Earth’s atmosphere. The pressure-gradient force prevents gravity to collapse the
atmosphere on the Earth’s surface, whereas gravity prevents the pressure gradient force to diffuse the
atmosphere into space. The balance of these two forces gives the hydrostatic equilibrium of the Earth’s
atmosphere. The balancing of the forces acting into the fluid must be zero. The total force on the fluid is
given by ∑

F = Fb + Ft + Fw = PbA − PtA − ρgAh = 0,

here Fb is the upward force due to the pressure from the fluid below, Ft is the downward force due to the
pressure from the fluid above and Fw is the weight of the fluid contained in the volume, ρ being the density,
A is the area and h is the height. The infinitesimal changes in the above equation give the differential form

dP = −ρ(P )g(h)dh, (1)
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where ρ and gravity depend on the pressure and the height, respectively. In fact Eq. (1) can be derived from
the three-dimensional Navier–Stokes equations in the particular case

µ = v = ∂P/∂x = ∂P/∂y = 0,

etting ∂P/∂z = −ρgz (where µ is the viscosity). The following shows that the same happens for the static
tars.

.1. The Newtonian static star

The equations for a Newtonian star in equilibrium are
dP

dr
= −gρ = −GM

r2 ρ,
dM

dr
= 4πr2ρ (2)

with the initial condition P = 0 when ρ = 0 and M = 0 when r = 0. By eliminating the mass between the
wo equations of (2) we obtain the equation

1
r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ. (3)

he pressure and the density are related by a power law of the form P = Kρ1+1/n for an isotropic bounded
uid where K and n are constants, n > 0 is the polytropic index and the power law is the state equation of
polytropic gas. The case in which n tends to infinity is the case of a isothermal gas, see for instance [1].

.2. The relativistic static star

A perfect fluid is a fluid that can be completely characterized by its rest frame mass density ρ and its
sotropic pressure P . Therefore, perfect fluids have no shear stresses, viscosity, or heat conduction. Hence,
n general relativity, the stress–energy tensor of a perfect fluid can be written in the form

T µν =
(

ρ + P

c2

)
UµUν + Pgµν ,

where U is the 4-velocity vector field of the fluid and gµν is the metric written with a space-positive signature.
Introducing this tensor into the Einstein field equations

Rµν = 8πG

c4

(
Tµν − 1

2gµνT

)
,

nd using the conservation condition ∇µT µν = 0, one can derive in isotropic coordinates the Tolman–
ppenheimer–Volkoff equation for the structure of a static, spherically symmetric relativistic star and is
iven by

dP

dr
= −GMρ

r2

(
1 + P

ρc2

) (
1 + 4πr3P

Mc2

) (
1 − 2GM

rc2

)−1
.

If c tends to infinity the last equation reduces to Newton’s hydrostatic equilibrium given as a first equation
of (2). Rearranging the last equation (taking from now G = c = 1) we have

dP

dr
= − (P + ρ)(M + 4πr3P )

r2(1 − 2M/r) (4)

nd the second equation of (2) with the same initial conditions. These two equations model the structure of
spherically symmetric body of an isotropic material which is in static gravitational equilibrium. In (4) the

ase
P + ρ = 0 and M + 4πr3P = 0
2
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corresponds to the cases where dP/dr = 0. The first case is when P = −ρ and the second one is when
= −ρ/3 and both are unrealistic cases. So from now on we assume that ρP ′ ̸= 0 because when ρ = 0, by

he initial conditions P = 0, we get that there is no star.
For Newtonian and relativistic stars in equilibrium, it is physically clear that if a family of solutions

xists, each particular solution of this family will be connected with other particular solutions by a scale
ransformation. Such transformations are called homologous transformations (see Chandrasekhar [1]). The
onsequence of the existence of such transformations is the existence of a state equation F (ρ, P ) = 0
hich relates density to pressure, see for instance [2]. These transformations, that transform solutions

nto solutions, are mathematically well-known, and are in fact transformations that leave invariant the
ifferential equations defining the problem. The most general continuous transformation which leaves the
econd equation of (2) and (4) invariant is the homology transformation in which

r → α r, P → α−2P, ρ → α−2ρ and M → αM,

forcing that P/ρ is also a homologous invariant. The most simple case of state equation satisfying the
above requirements is the one with a linear relation between the pressure and the energy density, that is,
P/ρ = (γ − 1), where γ is a constant different from 1. This state equation can also be considered in the
Newtonian case because the first equation of (2) is also invariant by the above homology transformation.
In [3] it is studied the qualitative behavior of the associated differential system for the case 1 < γ ≤ 2. In
the present work we study the integrability problem for any value γ ̸= 1 and in the whole real plane.

2. Qualitative description of relativistic stars in equilibrium

In this section we consider the second equation of (2) and (4) for a static star in general relativity in the
case of the existence of a homologous family of solutions. This requires the existence of a state equation and
we take the usually case given by P = (γ − 1)ρ. For convenience we express the second equation of (2) and
(4) in function of the invariants x := M/r and y := 4πr2ρ, and these equations take the form

dx

dt
= y − x,

dy

dt
= y

1 − 2x

(
2 − (5γ − 4)x

γ − 1 − γy

)
, (5)

here t = log r. In [2] Eq. (5) is misspelled. Since ρP ′ ̸= 0 we have that γ ̸= 1 and we can divide by γ − 1.
oing a change of time of the form dτ = (1 − 2x)dt we arrive to the system

x′ = (y − x)(1 − 2x), y′ = y
(

2 − 5γ − 4
γ − 1 x − γy

)
. (6)

Note that system (6) is a quadratic polynomial differential system in the plane. Moreover, the only
relevant region, i.e., the one having physical sense is the region x, y > 0. Moreover, the solutions with

> 1/2 (which imply that r < 2M) are not admissible since they correspond to stars with a radius inside
the Schwarzschild radii, that is, to black holes. The majority of solutions that satisfy 0 < x < 1/2 are
lso not valid because they cross the y-axes, which implies a finite value of y when x = 0 and this has no
hysical meaning because this would imply that M = 0 for certain r2ρ ̸= 0. From the phase portrait of
ystem (6) studied in [2] (see also [3]) it is clear that the unique solutions satisfying the above conditions
re the following. First a unique singular point p1 given by

p1 =
(

2(γ − 1)
γ2 + 4γ − 4 ,

2(γ − 1)
γ2 + 4γ − 4

)
,

in the first quadrant and whose eigenvalues are given by

λ1,2 = γ(2 − 3γ +
√

36 − 44γ + γ2 )
2 ,
2(γ + 4γ − 4)
3
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which is a strong focus if γ < 2(11 − 4
√

7) ≈ 0.834 or a stable node otherwise, and inside the admissible
egion. Second, a spiral solution that starts at the origin and ends at this unique singular point p1. This
orresponds to the special solution given in [1,4].

. Integrability of system (6)

The main goal of this paper is to study the integrability of system (6) for any value of γ ̸= 1. For a
wo-dimensional system the existence of a first integral determines completely its phase portrait. For such
ystems the notion of integrability is based on the existence of a first integral. Then a natural question
rises: Given a system of ordinary differential equations in the real plane depending on parameters, how to
ecognize the values of such parameters for which the system has a first integral?

A Liouville first integral (see its definition in Section 3.1) is a first integral expressed by quadratures of
lementary functions and it has an associated integrating factor expressible by elementary functions. If γ = 0
ystem (6), after the change of time dτ = (1 − 2x)dt, becomes

x′ = y − x, y′ = 2y

hich is Liouville integrable because it has an inverse integrating factor of the form V = y(2x − 1)(3x − y).
o from now on we will restrict to the cases in which γ ̸∈ {0, 1}.

Here a global analytic first integral is a nonconstant analytic function H : R2 → R, whose domain of
definition is the whole R2 and is constant on the solutions of the system.

We note that a complete characterization of the global analytic first integrals of polynomial differential
systems has been made for very few families of differential systems, see for example [5].

The first result of this work is to classify the values of γ ̸∈ {0, 1} for which system (6) has a global analytic
first integral.

Theorem 1. System (6) with γ ̸∈ {0, 1} has no global analytic first integrals.

The proof of Theorem 1 is given in Section 4.
The following results are only for γ ̸= 1 because system (6) is not well-defined for such value. For the

definition of Puiseux first integral see Section 6.

Theorem 2. System (6) is Liouville integrable, that is, it has a Liouville first integral if and only if
γ ∈ {0, 2

3 , 4
5 , 5

6 }.

The proof of Theorem 2 is given in Section 5. We note that a Liouville function is a Puiseux function and
therefore for γ ∈ {0, 2

3 , 4
5 , 5

6 } system (6) has also a Puiseux first integral. So, for our last result we restrict
to γ ̸∈ {0, 2

3 , 4
5 , 5

6 }.

Theorem 3. System (6) with γ ̸∈ {0, 2
3 , 4

5 , 5
6 } has no Puiseux first integrals.

The proof of Theorem 3 is given in the last part of Section 6.

3.1. Liouville integrability

Roughly speaking, Liouvillian functions are functions that arise from integrations of elementary functions.
Singer [6] gave the characterization of the existence of a Liouvillian first integral for a differential polynomial
4
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system by means of an inverse integrating factor, which is defined in the following way. Function V is an
nverse integrating factor of system ẋ = P (x, y), ẏ = Q(x, y) if it satisfies

P
∂V

∂x
+ Q

∂V

∂y
=

(
∂P

∂x
+ ∂Q

∂y

)
V. (7)

Theorem 4 ([6]). A polynomial differential system has a Liouville first integral if, and only if, there is an
inverse integrating factor of the form V = exp

{∫ (x,y)
(x0,y0) η

}
, where η is a rational 1-form such that dη ≡ 0.

Christopher in [7] gave the precise form of the inverse integrating factor in order to have Liouville
ntegrability in terms of the so-called invariant algebraic curves and exponential factors. An invariant
lgebraic curve of a polynomial differential system ẋ = P (x, y), ẏ = Q(x, y) is a curve associated to f = 0
here f is a polynomial satisfying

P
∂f

∂x
+ Q

∂f

∂y
= Kf. (8)

ere K is called the cofactor of f and it has degree at most d − 1, where d is the degree of the polynomial
ifferential system. Note that an invariant algebraic curve is in fact invariant by the dynamics because a
rajectory on it, always lies in it.

A function F = exp(g/f) is an exponential factor of a polynomial differential system ẋ = P (x, y),
˙ = Q(x, y) if it satisfies

P
∂F

∂x
+ Q

∂F

∂y
= LF, (9)

here L is called the cofactor of F and it has degree d − 1. Furthermore f is either constant or f = 0 is an
nvariant algebraic curve.

heorem 5 ([7]). If a polynomial differential system has an inverse integrating factor of the form V =
xp

{∫ (x,y)
(x0,y0) η

}
, where η is a rational 1-form such that dη ≡ 0, then there exists an inverse integrating factor

f such system of the form
V = exp{D/E}

∏
C

ℓi
i , (10)

here D, E, and the Ci are polynomials in x and y and ℓi ∈ C.

Note that Ci = 0 and E = 0 are invariant algebraic curves of the polynomial differential system and
xp{D/E} is an exponential factor of such system, see for instance [8]. Theorem 5 states that the search of
iouvillian first integrals can be reduced to the search of invariant algebraic curves and exponential factors.

. Proof of Theorem 1

Through the paper Z+ will denote the set of non-negative integers, Z− will denote the set of negative
ntegers, Q+ will denote the set of non-negative rationals and Q− will denote the set of negative rationals.

In the proof of Theorem 1 we need the following result due to Poincaré in [9] whose proof can be found
n [10,11].

heorem 6. Let X = X(x, y) = (P (x, y), Q(x, y)) be the vector field associated to system (6) and assume
hat the eigenvalues λ1 ̸= 0 and λ2 ̸= 0 of the Jacobian matrix of X at some singular point of X do not
atisfy any resonance condition of the form

λ1k1 + λ2k2 = 0 for k1, k2 ∈ Z+ with k1 + k2 > 0.
hen system (6) has no local analytic first integrals around the singular point.
5
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We continue with the proof of Theorem 1. Since γ ̸∈ {0, 1}, system (6) has the singular points

p1 = 2(γ − 1)
γ2 + 4γ − 4(1, 1), p2 = (0, 0), p3 =

(1
2 , 0

)
, p4 =

(1
2 ,

−1
2(γ − 1)

)
.

Note that the first singular point is only defined whenever γ ̸= 2(±
√

2 − 1). The Jacobian matrix of system
6) at the singular point p4 has eigenvalues

λ1 = γ

2(γ − 1) , λ2 = γ

γ − 1 .

ote that
λ1λ2 = γ2

2(γ − 1)2 > 0 for γ ∈ (1, 2).

o given k1, k2 ∈ Z+ with k1 + k2 > 0 we have λ1k1 + λ2k2 ̸= 0. Then Theorem 6 implies that system (6)
as no local analytic first integrals around the origin and so it cannot have global analytic first integrals.

. Proof of Theorem 2

In this section we are going to study the Liouville integrability of system (6). Doing the change of variable
= 1 − 2x, system (6) takes the form

X ′ = X(1 − X − 2y), y′ = y

(
−γ + (5γ − 4)X + 2(γ − γ2)y

2(γ − 1)

)
, (11)

hich is a quadratic Lotka–Volterra system. The Liouville integrability of such system was studied in [12,13].
n fact the complete classification of the Liouville first integrals for the quadratic Lotka–Volterra systems,
hat is, quadratic systems of the form

ẋ = x(ax + by + c), ẏ = y(Ax + By + C), (12)

n C2, where a, b, c, A, B, C ∈ C were given in [12]. Moulin Ollagnier [13] studied the Liouville first integrals
f the systems in C3

ẋ = x(C̄y + z), ẏ = y(x + Āz), ż = z(B̄x + y). (13)

hese homogeneous Lotka–Volterra systems can be formulated as the planar projective version of the planar
otka–Volterra systems in C2

ẋ = x(−B̄x + (C̄ − 1)y + 1), ẏ = y((1 − B̄)x − y + Ā). (14)

f c (a − A)B ̸= 0, system (12) becomes system (14) with the following rescaling of the variables:

(x, y, z) →
(

c

A − a
x, − c

B
y,

1
c

t

)
(15)

here
Ā = C

c
, B̄ = a

a − A
and C̄ = B − b

B
. (16)

e define also p = −Ā − 1/B̄, q = −B̄ − 1/C̄, r = −C̄ − 1/Ā.
We say that two 3-dimensional Lotka–Volterra systems (13) are equivalent if we can pass from one to the

other doing a circular permutation of the variables x, y, z and of the parameters Ā, B̄, C̄; that is, doing

(x, y, z, Ā, B̄, C̄) → (y, z, x, B̄, C̄, Ā),

6



J. Giné, N. Khajoei and C. Valls Nonlinear Analysis: Real World Applications 69 (2023) 103715

O
e
t
c
a

T
i

C

a

or doing the transformation

(x, y, z, Ā, B̄, C̄) → (B̄x, Āz, C̄y, 1/C̄, 1/B̄, 1/Ā).

f course, the analogous equivalences exist for the Lotka–Volterra systems (14), and such classes of
quivalences are denoted by the triple [Ā, B̄, C̄]. Conditions (15) and (16) imply that we only consider
he cases with a(B − b)C ̸= 0 and c(a − A)B ̸= 0. The following result was given in [13] and gives the
omplete classification of the Liouville integrable quadratic Lotka–Volterra systems when a(B − b)C ̸= 0
nd c(a − A)B ̸= 0.

heorem 7. System (14) with a(B − b)C ̸= 0 and c(a − A)B ̸= 0 has a Liouville first integral, if and only,
f the triple [Ā, B̄, C̄] of parameters falls, up to equivalences, in one of the cases of the following list.

(1) ĀB̄C̄ + 1 = 0;
(2) B̄ = 1, where C̄ = 0 is possible, or C̄ = 1, where Ā = 0 is possible, or Ā = 1, where B̄ = 0 is possible;
(3) p = 1, q = 1 consequently ĀB̄C̄ = 1 and r = 1;
(4) Ā = 2, q = 1, or B̄ = 2, r = 1, or C̄ = 2, p = 1, or C̄ = 1/2, p = 1, or Ā = 1/2, q = 1, or B̄ = 1/2,

r = 1;
(5) [Ā, B̄, C̄] = [(j − 1)/3, j − 1, j] or equivalently [p, q, r] = [1, 2, 2], here (ĀB̄C̄)3 = −1;
(6) [Ā, B̄, C̄] = [(i − 2)/5, (i − 3)/2, i − 1] or equivalently [p, q, r] = [1, 2, 3], here (ĀB̄C̄)2 = −1;
(7) [Ā, B̄, C̄] = [j − 1, (j − 2)/7, (j − 4)/3] or equivalently [p, q, r] = [4, 1, 2], (ĀB̄C̄)3 = −1;
(8) [Ā, B̄, C̄] = [−7/3, 3, −4/7];
(9) [Ā, B̄, C̄] = [−3/2, 2, −4/3];

(10) [Ā, B̄, C̄] = [2, 4, −1/6];
(11) [Ā, B̄, C̄] = [2, −8/7, 1/3];
(12) [Ā, B̄, C̄] = [6, 1/2, −2/3];
(13) [Ā, B̄, C̄] = [−6, 1/2, 1/2];
(14) [Ā, B̄, C̄] = [3, 1/5, −5/6];
(15) [Ā, B̄, C̄] = [2, −13/7, 1/3];
(16) [Ā, B̄, C̄] = [2, 2, 2];
(17) [Ā, B̄, C̄] = [2, 3, −3/2];
(18) [Ā, B̄, C̄] = [2, 2, −5/2];
(19) [Ā, B̄, C̄] = [−4/3, 3, −5/4];
(20) [Ā, B̄, C̄] = [−9/4, 4, −5/9];
(21) [Ā, B̄, C̄] = [−3/2, 2, −7/3];
(22) [Ā, B̄, C̄] = [−5/2, 2, −8/5];
(23) [Ā, B̄, C̄] = [−10/3, 3, −7/10];
(24) [Ā, B̄, C̄] = [−(2ℓ + 1)/(2ℓ − 1), 1/2, 2], ℓ = 1, 2, . . .

Moreover all the cases of Theorem 7 have an invariant algebraic curve different from x = 0 and y = 0.
Hence we are going to apply Theorem 7 to system (11). In system (11) has a = −1, b = −2, c = 1, and

A = 5γ − 4
2(γ − 1) , B = −γ, C = −γ

2(γ − 1) .

onsequently
Ā = −γ

2(γ − 1) , B̄ = 2(γ − 1)
7γ − 6 , C̄ = γ − 2

γ
,

nd
p = −3, q = − (3γ − 2)2

, r = 1.
(γ − 2)(7γ − 6)
7
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Then case (1) of Theorem 7 implies γ = 2/3, case (2) of Theorem 7 implies γ = 2/3 or γ = 4/5, case (4)
mplies γ = 5/6 and the rest of the cases of Theorem 7 do not give any other value of γ.

If γ = 4/5, system (6) has the inverse integrating factor

V =
√

y (1 − 2x)2

2y − 5 .

herefore it is Liouville integrable.
For the case γ = 2/3, system (6) has the inverse integrating factor

V = y(1 − 2x)(3x − y) (17)

and so it is Liouville integrable.
For the case γ = 5/6, system (6) has the inverse integrating factor

V = y2(18x − 6y + y2)3

(1 − 2x)3/2 .

Therefore it is also Liouville integrable.
Finally the cases a(B − b)C = 0 and c(a − A)B = 0 imply for system (6) that

γ(2 − γ)2

2(γ − 1) = 0 and γ(7γ − 6)
2(γ − 1) = 0,

espectively. See [14] to see the technique to find the integrating factors.
For the case γ = 0, system (6) has the same inverse integrating factor (17) and therefore it is also Liouville

ntegrable.
For the cases γ = 2 and γ = 6/7 it is easy to see, from Theorem 7 of [12], that they are not Liouville

ntegrable. This completes the proof of the theorem.

. Proof of Theorem 3

In this section we apply the Puiseux integrability theory developed in [15]. The Puiseux integrability
s based on finding and studying the structure of Puiseux series that are solutions of the first order
rdinary differential equations associated to the original differential system. We denote by C[x, y] the ring of
olynomials with coefficients in C. The Puiseux integrability includes the Weierstrass integrability developed

n [16–18] and applied in [19].
In [15,20] it was established the relation between Puiseux series and irreducible invariant algebraic curves.

he result is the following:

heorem 8. Let f(x, y) = 0 with f(x, y) ∈ C[x, y]\C such that fy ̸≡ 0 be an irreducible invariant algebraic
urve of the polynomial differential system ẋ = P (x, y), ẏ = Q(x, y). Then f(x, y) takes the form

f(x, y) =

⎧⎨⎩µ(x)
N∏

j=1
{y − yj(x)}

⎫⎬⎭
+

, N ∈ N, (18)

where µ(x) ∈ C[x] and y1(x), y2(x), . . . , yN (x) are pairwise distinct Puiseux series in a neighborhood of the
oint x = ∞. The symbol {W (x, y)}+ means that we take the polynomial part of the expression W (x, y).
oreover, the degree of f(x, y) with respect to y does not exceed the number of distinct Puiseux series,
henever the latter is finite.
8
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Following the lines in [15] we first construct the associated differential equation to system (6) given by

(y − x)(1 − 2x)yx − y
(

2 − 5γ − 4
γ − 1 x − γy

)
= 0. (19)

The Newton polygon is presented in Fig. 1. The dominant balances near the point x = ∞ giving power
symptotics and their power solutions take the form

(Q2, Q3) : (2x2 − 2xy)yx + γy2 + 5γ − 4
γ − 1 xy = 0, y(x) = c0x;

Q2 : −2xyyx + γy2 = 0, y(x) = d0 xγ/2;

Q3 : 2x2yx + 5γ − 4
γ − 1 xy = 0, y(x) = e0 x

4−5γ
2(γ−1) ;

(20)

In these expressions c0 = (6−7γ)/((γ −2)(γ −1)) and d0, e0 are arbitrary constants different form zero. We
recall that γ ̸∈ {0, 2

3 , 4
5 , 5

6 } otherwise is Liouville integrable. It can be proved that the second one does not
rovide Puiseux series for any arbitrary γ. The third one only provides Puiseux series for γ = 5/6 (which

is a value excluded). Hence, we are left with the first case. This first case provides Puiseux series for almost
all value of γ and the generic Puiseux series near x = ∞ is given by

y1(x) =
+∞∑
k=0

ckx1−k, (21)

here
c0 = 6 − 7γ

(γ − 2)(γ − 1) , c1 = γ(7γ − 6)
(γ − 2)(γ − 1)(3γ − 2)

nd the other constants ck are uniquely determined in terms of γ for any k ≥ 2.
It is easy to see that for the values of γ = 2 and γ = 6/7 we do not have Puiseux series and consequently

ystem (6) is not Puiseux integrable for such cases.
Hence for γ ̸∈ {0, 2

3 , 4
5 , 5

6 , 2, 6
7 }, in view of Theorem 8 we get

f(x, y) = µ(x)
{

y − c0x − c1 − c2

x
− c3

x
− · · ·

}
+

. (22)

ote that the degree of f in the variable y is one.
Now we study Puiseux solutions x = x(y). Hence interchanging the variables x ↔ y we can write the

ystem (6) into the associated equation

y
(

2 − 5γ − 4
γ − 1 x − γy

)
xy − (y − x)(1 − 2x) = 0. (23)

Next we find the Newton polygon for this case and the dominant balances related to the point y = ∞. The
unique generic balance that has Puiseux series is(

−5γ − 4
γ − 1 xy − γy2

)
xy − 2x2 + 2xy = 0, (24)

hich has a unique associated Puiseux series

x1(y) =
+∞∑
k=0

bky1−k,

where bk can be determined by the recurrence and

b0 = (γ − 2)(γ − 1)
, b1 = γ
6 − 7γ 3γ − 2
9
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Fig. 1. The Newton polygon of Eq. (19).

ith the other constants bk being uniquely determined in terms of γ for any k ≥ 2. Therefore, in view of
heorem 8 we get

f(x, y) = ν(y)
{

x − b0y − b1 − b2

y
− b3

y
− · · ·

}
+

. (25)

ote that the degree of f in the variable x is one. In short it follows from (22) and (25) that the degree of
(x, y) in the variables x and y is one. Therefore, we have

f(x, y) = α0 + α1x + α2y + α3xy, αi ∈ C. (26)

mposing that f(x, y) is an invariant algebraic curve and for γ ̸∈ {0, 2
3 , 4

5 , 5
6 , 2, 6

7 } we obtain that the curve f

oes not exist. Straightforward computations show that it also does not admit an inverse integrating factor
f the form exp (g(x, y) with g(x, y) a polynomial of arbitrary degree m. Therefore we can state the following
emark.

emark 9. We have a straightforward proof of Theorem 2 without using the results of the previous works
12,13].

We recall that for γ = 5
6 system (6) is Liouville integrable, but we are going to see what happens for this

ase in the context of the theory developed in [15]. In this case Eq. (19) has two leading terms given by

y(x) = c0x and y(x) = d0x1/2.

here c0 and d0 are different from zero. The second leading term has the Puiseux series

y1(x) =
+∞∑
k=0

dkx1/2−k/2,

here d0 is arbitrary,
d1 = −d2

0
6 , d2 = −45d0 + 2d3

0
12 ,

nd the other constants dk are uniquely determined in terms of d0 for any k ≥ 2. Therefore the analysis
ade at the end of the proof of Theorem 3 is not possible and, so, it could have an invariant algebraic curve
ifferent from (26). In fact it has an algebraic curve of the form f(x, y) = 18x − 6y + y2.
10
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Sometimes the analysis made above is not possible due to the complex structure of the balances and
leading terms (specially when the number of Puiseux series is infinite as for instance in the case γ = 5/6).

However we can always check if the system satisfies the necessary conditions to be Puiseux integrable.
hese conditions are given in [15] and can be used to verify if the system is Puiseux integrable. Recall that
uiseux integrable systems include Liouville integrable systems, but there are Puiseux integrable systems

hat are not Liouville integrable, see [15].
Finally, we now analyze the necessary conditions to have Puiseux integrability in the previous generic

ase when γ ̸= 5/6. Therefore we construct the cofactor associated to the elementary solution y − y1 where
1 is given in (21) and which can be computed using the equation

X (y − y1) = K1(x, y)(y − y1), (27)

here X is the vector field associated to system (6), see [15,21]. Solving Eq. (27) the cofactor is given by

K1(x, y) = k1(x)y + k0(x) = −γy + 2x + 2 − γ

3γ − 2 + O( 1
x

).

We call K2 and K3 the cofactors of the algebraic curves y = 0 and 1−2x = 0, respectively. All these cofactors
must satisfy the sufficient condition of Puiseux integrability given by

α1K1 + α2K2 + α3K3 = divX , (28)

where divX is the divergence of the vector field associated to system (6). In this case, generically, the first
orders of condition (28) are satisfied taking

α1 = (2 − 3γ)2

12 − 20γ + 7γ2 , α2 = 5γ − 4
7γ − 6 , α3 = − 4

γ − 2 . (29)

owever we have a unique Puiseux series near x = ∞ whose cofactor takes the form

K1(x, y) = −γy + 2x + 2 − γ

3γ − 2 − γ(γ − 2)(γ + 2)(7γ − 6)
x(3γ − 2)2(−4 − 4γ + 11γ2)

− (γ − 2)γ(7γ − 6)(−8 − 48γ + 42γ2 + 18γ3 + 11γ4)
x2(3γ − 2)3(−4 − 4γ + 11γ2)(−12 + 4γ + 13γ2) + O( 1

x3 ).

But this cofactor cannot vanish with any other cofactor, which implies that the Puiseux series must be zero
for negative powers of x. Hence this implies that γ ∈ {0, 2, 6

7 }. For γ = 0 it is Liouville integrable and the
ases γ = 2 and γ = 6/7 could be Puiseux integrable. But as we have seen before, these last cases are not
uiseux integrable because they do not have associated any Puiseux series. The cases γ ∈ { 2

3 , 4
5 , 5

6 }, where
he αi are not defined, have been considered before and are Liouville integrable but they are not generic
ases and so they are not included in this analysis. This completes the proof of Theorem 3.
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[14] J. Chavarriga, I.A. Garćı a, J. Giné, On integrability of differential equations defined by the sum of homogeneous vector

fields with degenerate infinity, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 11 (3) (2001) 711–722.
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