

Algorithms

Jordi Planes

Escola Politècnica Superior Universitat de Lleida

2016

Opinion Poll

The Art of War What is the best way to attack a bigger army?

Syllabus

What's been done

- Formal specification
- Cost
- ▶ Transformation recursion → iteration
- Divide and conquer

Syllabus

What we'll do today

- Formal specification
- Cost
- ightharpoonup Transformation recursion ightarrow iteration
- Divide and conquer

Example

Demonstrate T(n) = T(n-1) + 1

- 1. Base case: T(1) = 1
- 2. Recursive case:
 - ▶ Assume T(n-1) is correct: T(n-1) = n-1

Example

Demonstrate T(n) = T(n-1) + 1

- 1. Base case: T(1) = 1
- 2. Recursive case:
 - ▶ Assume T(n-1) is correct: T(n-1) = n-1
 - ► $T(n) = (n-1) + 1 \Rightarrow T(n) = n$

Exercises

1.
$$T(n) = T(n-1) + n$$

Let us solve the recurrence.

$$C_N = C_{N/2} + 1$$

Assume $N = 2^n$ (note $n = \log N$). Let us expand the recurrence:

$$C_{N} = C_{N/2} + 1$$

$$C_{2^{n}} = C_{2^{n-1}} + 1$$

$$= C_{2^{n-2}} + 2$$

$$= C_{2^{n-3}} + 3$$

$$\vdots$$

$$= C_{2^{0}} + n$$

$$= 1 + n.$$

 C_N is about $\log N$.

Solve the following recurrences for $N \ge 2$ and $C_1 = 1$:

$$C_N = C_{N/2} + N$$
 (4)
 $C_N = 2C_{N/2} + 1$ (5)

$$C_N = 2C_{N/2} + N \tag{6}$$

Master theorem

$$T(n) = aT(n/b) + f(n^c), a \ge 1, b > 1$$

where: $\begin{array}{ll} n & \text{size of the problem} \\ a & \text{number of subproblems} \\ n/b & \text{size of each subproblem} \\ f(n^c) & \text{cost of the work out of recursive calls} \\ T(n) = \left\{ \begin{array}{ll} n^{\log_b a} & \text{if } c < \log_b a \\ n^c \log^{k+1} n & \text{if } c = \log_b a \\ f(n) & \text{if } c > \log_b a \end{array} \right.$

About computational cost

- We have assumed any parameter as cost variable
- Formally: The function of number of steps by number of input bits.

$$steps = f(bits)$$

▶ If input parameter x and n number of input bits, and function is in O(x), then the cost is:

$$O(x) = [n = \log_2 x \Rightarrow 2^n = 2^{\log_2 x} \Rightarrow 2^n = x] = O(2^n)$$

Let's take a look how we do integer multiplication

Several additions $O(2^n)$ $10 \times 5 = 10 + 10 + 10 + 10 + 10$

Let's take a look how we do integer multiplication

- Several additions $O(2^n)$ $10 \times 5 = 10 + 10 + 10 + 10 + 10$
- Decimal multiplication $O(n^2)$ $57 \times 32 = (5 * 10 + 7) \times (3 * 10 + 2) =$ $3 \times 5 * 10^2 + (3 \times 7 + 2 \times 5) * 10 + 2 \times 7 = 1500 + 310 + 14 = 1824$ 4 multiplications (roughly speaking:

$$O(n^2) \equiv num.multp. \times costmultp. = digits \times costmultp.)$$

Let's take a look how we do integer multiplication

- Several additions $O(2^n)$ $10 \times 5 = 10 + 10 + 10 + 10 + 10$
- ▶ Decimal multiplication $O(n^2)$ $57 \times 32 = (5*10+7) \times (3*10+2) =$ $3 \times 5*10^2 + (3 \times 7 + 2 \times 5)*10 + 2 \times 7 = 1500 + 310 + 14 = 1824$ 4 multiplications (roughly speaking: $O(n^2) \equiv num.multp. \times costmultp. = digits \times costmultp.$)
- ▶ Binary multiplication $O(n^2)$
 - binary shift and binary addition (Ex. 10×5) $110 \times 11 = 110 + 1100 = 10010$

Let's take a look how we do integer multiplication

- Several additions $O(2^n)$ $10 \times 5 = 10 + 10 + 10 + 10 + 10$
- ▶ Decimal multiplication $O(n^2)$ $57 \times 32 = (5 * 10 + 7) \times (3 * 10 + 2) =$ $3 \times 5 * 10^2 + (3 \times 7 + 2 \times 5) * 10 + 2 \times 7 = 1500 + 310 + 14 = 1824$ 4 multiplications (roughly speaking: $O(n^2) \equiv num.multp. \times costmultp. = digits \times costmultp.$)
- ▶ Binary multiplication $O(n^2)$
 - binary shift and binary addition (Ex. 10×5) $110 \times 11 = 110 + 1100 = 10010$
- ► Al-Khwarizmi (780–850) method $O(n^2)$ 10 × 5; 5 × 10; 2 × 20; 1 × 40 = 10 + 40
 - divide and multiply by 2, add odds

```
\begin{array}{ll} \mbox{function product( x, y ) is} \\ x = 0 \rightarrow \mbox{return 0} \\ x > 0 \rightarrow \\ p \leftarrow \mbox{product( x-1, y )} \\ \mbox{return } y + p \end{array}
```

Computational cost

$$T(x) = T(x-1) + 1 \Rightarrow T(x) = O(x) \ T(n) = O(2^n)$$

Let us multiply 11 by 13 using Al-Khwarizmi method.

11	13
5	26
2	52
1	104

Let us multiply 11 by 13 using Al-Khwarizmi method.

11	13
5	26
2	52
1	104

Let us multiply 11 by 13 using Al-Khwarizmi method.

11	13
5	26
2	52
1	104
	143

Observe that only the addition and the 2 tables are needed.

Multiplication

$$x \cdot y = \begin{cases} 2(x \cdot (y/2)) & \text{if x is even} \\ x + 2(x \cdot (y/2)) & \text{if x is odd} \end{cases}$$

```
\begin{array}{c} \textbf{function} \ \ \text{product(} \ \times, \ y \ \textbf{) is} \\ x = 0 \ \ \text{or} \ \ y = 0 \ \rightarrow \ \ \textbf{return} \ \ 0 \\ y > 0 \ \rightarrow \\ p \ \leftarrow \ \ \text{product(} \ \ 2*x, \ y/2 \ \textbf{)} \\ \textbf{return} \ \ (x \ * \ (y\%2)) \ + \ p \end{array}
```

```
function product ( x, y ) is  \begin{array}{c} x=0 \text{ or } y=0 \rightarrow \textbf{return } 0 \\ y>0 \rightarrow \\ p \leftarrow \textbf{product} \big( \ 2*x , \ y/2 \ \big) \\ \textbf{return } \big( x \ * \ (y\%2) \big) \ + \ p \end{array}
```

Computational cost

$$T(y) = T(y/2) + 1 \Rightarrow T(y) = O(\log_2 y)$$

 $T(n) = O(n^2)[T(n) = T(n-1) + O(n)]$

Exercises

- 1. Power by multiplications
- 2. Division by substractions
- 3. Natural square root
- 4. Combinatorial number $\binom{m}{n}$

The divide and conquer strategy solves a problem by:

- 1. Breaking it into subproblems
- 2. Recursively solving these subproblems
- 3. Appropriately combining their answers.

Multiplication

Gauss' (1777–1855) method $O(n^{1.59})$

- complex num. multiplication: (a+bi)(c+di) = ac - bd + (bc + ad)i, and bc + ad = (a+b)(c+d) - ac - bd
- ▶ Given 4 "digits", instead of 4 multiplications, there are 3.

Multiplication

Divide and Conquer

- ▶ Supose x and y are two *n*-bit integers
- ► Split each of them into their left and right halves

$$x = 2^{n/2}x_L + x_R$$
$$y = 2^{n/2}y_L + y_R$$

The product:

$$xy = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R) = 2^n x_L y_L + 2^{n/2}(x_L y_R + x_R y_L) + x_R y_R$$

- ▶ Recurrence relation: T(n) = 4T(n/2) + O(n)
- Gauss' trick: $x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) x_L y_L x_R y_R$
- ▶ Three multiplications: $x_L y_L, x_R y_R$ and $(x_L + x_R)(y_L + y_R)$
- ▶ Recurrence relation: T(n) = 3T(n/2) + O(n)

Multiplication

```
function product (x, y) is
    n = max(size of x, size of y)
    if n = 1 \rightarrow return xy
   xL, xR = leftmost n/2, rightmost n/2 bits of x
    yL, yR = leftmost n/2, rightmost n/2 bits of y
    P1 = multiply(xL, yL)
    P2 = multiply(xR, yR)
    P3 = multiply(xL + xR, yL + yR)
    return P1 2^n + (P3 - P2 - P2) 2^{n/2} + P2
```

Multiplication

```
function product (x, y) is
    n = max(size of x, size of y)
    if n = 1 \rightarrow return xy
   xL, xR = leftmost n/2, rightmost n/2 bits of x
    yL, yR = leftmost n/2, rightmost n/2 bits of y
    P1 = multiply(xL, yL)
    P2 = multiply(xR, yR)
    P3 = multiply(xL + xR, yL + yR)
    return P1 2^n + (P3 - P2 - P2) 2^{n/2} + P2
```

Computational cost

$$T(n) = 3T(n/2) + O(n) \Rightarrow T(n) \in O(n^{1.59})$$

Exercises

- 1. Triminoes problem
- 2. Pancake sorting problem
- 3. Skyline problem

Exercises

Convert to tail call and to iterative, tracing the calls:

- 1. Product by additions
- 2. Product by al-Khwarizmi
- 3. f(x) = x/f(x-1)
- 4. f(x) = x f(x 1)

- Conversion to tail call not allways possible
- It requires the operation to be commutative

When conversion to tail call is not possible

```
x' = x
while not base case
    x' = reduce( x' )

a = trivial( x' )
while x ≠ x'
    x' = inverse reduce( x' )
    a = compute( a, x' )
```

return a


```
When inverse is not possible
while not base case
   push to stack x
   reduce(x)
a = trivial(x)
while stack not empty
   a = compute( a, top )
   pop
return a
```

Exercises

Convert to tail call and to iterative, tracing the calls:

- 1. f(x) = x/f(x-1)
- 2. f(x) = x f(x 1)

Exercises

- 1. Power by multiplications
- 2. Division by substractions
- 3. Natural square root
- 4. Combinatorial number $\binom{m}{n}$

A bit of history

Very well known moto: Divide et impera. It was used by Julius Cæsar, Napoleon and Sun Tzu:

The art of using troops is this: When ten to the enemy's one, surround him; When five times his strength, attack him; If double his strength, divide him; . . .

Sun Tzu, in The Art of War, Chapter 3

This is the basis of the method: When the problem is complex, divide it; when the problem is tractable, atack it; when the problem is trivial, there is nothing to be done.

A bit of history

Known Battles:

- ► Marathon (490 BC) Persians divided, Greeks attacked both separately
- Trafalgar (1805) British (Nelson) split Franco-Spanish forces,
- ▶ Italian Campaign of Napoleon (1796–1797), ...

Syllabus

What's been done

- Formal specification
- Cost
- lacktriangle Transformation recursion ightarrow iteration
- ► Divide and conquer
- Sorting

Syllabus

What we'll do next day

- ► Formal specification
- ► Cost
- lacktriangle Transformation recursion ightarrow iteration
- Divide and conquer
- Sorting