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DIFFERENTIAL SYSTEMS
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Abstract In this work we provide an effective method to prove the formal
integrability of the resonant saddles. The method is based on the use of a
blow-up and the resolution of a recurrence differential equation using induc-
tion. Using the method some open integrability problems for certain resonant
saddles are solved.
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1. Introduction

The integrability problem for systems of differential equations is one of the main
problems in the qualitative theory of differential systems [5,14]. In fact, integrability,
although a rare phenomenon, it is of great importance due to applications in the
bifurcation theory. For a certain systems of differential equations in R2 it is closely
connected with another problem in the theory of differential systems, i.e., with the
center-focus problem [24, 26]. The center-focus problem or shorter center problem
ask for the conditions under which a real system whose real part has two purely
imaginary eigenvalues admits periodic solutions in a neighborhood of the singular
point at the origin. Such real differential system can be embedded in the complex
plane and in this way the singular point at the origin which is of center-focus type
becomes a 1 : −1 resonant saddle singular point. A natural generalization of this
resonance is a p : −q resonant singular point of a polynomial vector field in C2,
see [29]. The analytic integrability of such singular points is an open problem
recently studied in several works for some families of differential systems, see for
instance [11,13,15–17,29].

The first step to establish the analytic integrability of a p : −q resonant singular
point is to find the necessary conditions. For this task, one can use different meth-
ods, including the use of a series of changes of variables which brings the original
system to its normal form, see for instance [1]. Other methods are based on the
construction of a formal first integral, see [28,29]. Once we obtain necessary condi-
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tions for integrability of the p : −q resonant singular point we have to prove their
sufficiency.

To prove the sufficiency there is no general algorithm that works for all the
systems. Sometimes the sufficiency is obtained verifying that the system is Hamil-
tonian or time-reversible, that is, invariant by a certain symmetry. Another method
is to find an explicit first integral which is well-defined in a neighborhood of the
singular point. If first integral can not be found directly or explicitly as a function
of elementary functions, one can try to find an integrating factor of the system and
using it to construct a first integral if it is possible. Some results connect the exis-
tence of the integrating factor with the existence of an analytic first integral, see for
instance [3,7,18,28] and references therein. Once in a while ad hoc methods to prove
the sufficiency are used for some particular families, see [6, 7, 13, 19, 21–23, 27, 29].
However, for certain families of systems that satisfy the necessary conditions all
these methods turn to be ineffective and the integrability problem for such families
remains as open problems, see for instance [8, 10–12].

As we will see in the next section (see Theorem 2.1), for an isolated singularity,
which is a resonant saddle, the existence of a formal first integral implies the exis-
tence of an analytic first integral. Consequently, one way to prove the sufficiency is
to show the existence of a formal first integral. Hence, it is important to develop
new methods for proving the existence of a formal first integral at a certain singular
point.

In [2] the analytic integrability through the formal integrability and the con-
nection of formal integrability with the existence of invariant analytic (sometimes
algebraic) curves has been studied. Using the results presented in [2] some fam-
ilies of differential systems in C2 that satisfy the sufficient conditions to have a
formal integrable resonant saddle are determined without previously computing the
necessary conditions.

In this paper we give a method to prove formal integrability. The method can
be successfully applied for showing that some necessary conditions for integrability
are also sufficient. Using this method we then solve some open cases.

2. Definitions and preliminary concepts

Poincaré and Lyapunov [24, 26] proved that the elementary point at the origin of
the system of differential equations

u̇ = v + P (u, v), v̇ = −u+Q(u, v), (2.1)

where P (u, v) and Q(u, v) are real analytic functions without constant and linear
terms, is a center if and only if the system admits a first integral of the form

Φ(u, v) = u2 + v2 +
∑

k+l≥3

φklu
kvl. (2.2)

This is the so-called Poincaré-Lyapunov Theorem. The theorem says that the qual-
itative picture of trajectories in a neighborhood of the singular point is related to
local integrability of the system: the singular point is a center if and only if there
exists an analytic first integral of the form (2.2). It can be also proved that there
exists an analytic first integral of system (2.1) if and only if there exists a formal
first integral of system (2.1) of the form (2.2) [4]. However, the Poincaré-Lyapunov
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Theorem does not give an answer to the question how to establish whether for a
given system of differential equations there exists a first integral of the form (2.2).
The answer to this question must be found for each particular system separately,
and so far we have no general method that enables us to answer this question for
an arbitrary system (2.1).

One of the tools to study the integrability problem for system (2.1) is to com-
plexify this system in the following way. First setting x = u + iv system (2.1)
becomes the equation

ẋ = ix+R(x, x̄).

Adjoining to this equation its complex conjugate we have the system

ẋ = ix+R(x, x̄), ˙̄x = −ix̄+ R̄(x, x̄).

Consider y := x̄ as a new variable and R̄ as a new function. Then, from the latter
system we obtain a system of two complex differential equations which after the
change of time idt = dT and rewriting t instead of T becomes

ẋ = x+G(x, y), ẏ = −y +H(x, y). (2.3)

System (2.3) is called the complexification of system (2.1). For such system we can
always find a function of the form

Ψ(x, y) = xy +
∑

i+j>2

ψijx
iyj ,

satisfying the equation

Ψ̇ =
∂Ψ

∂x
(x+G(x, y)) +

∂Ψ

∂y
(−y +H(x, y)) = v3(xy)4 + v5(xy)6 + · · · ,

where v2i+1 are polynomials in the coefficients of system (2.3). We see that if all the
polynomials v2i+1 vanish then Ψ(x, y) is first integral of system (2.3). And if system
(2.3) has formal first integral then also real system (2.1) has analytic first integral
(2.2). Complex system (2.3) has singular point at the origin which is called 1 : −1
resonant saddle singular point. The values v2i+1 are called the saddle constants or
focal values, see [28,29].

A generalization of 1 : −1 resonant saddle singular point is p : −q resonant
saddle singular point. Complex differential system with a p : −q resonant saddle
singular point at the origin is a system of the form

ẋ = p x+ F1(x, y), ẏ = −q y + F2(x, y), (2.4)

where F1 and F2 are analytic functions without constant and linear terms with
p, q ∈ Z and p, q > 0. The integrable resonant saddles of such systems also called
resonant centers were introduced by Dulac [9], see also [20,29].

Definition 2.1. A p : −q resonant saddle singular point of an analytic system
is a resonant center if an only if there exists a local meromorphic first integral
Ψ = xqyp +

∑
i+j>p+q ψijx

iyj .

The proof of the next result is given in [25], see also [28].
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Theorem 2.1. Assume that system (2.1) or (2.4) with an isolated singularity at
the origin has a formal first integral Ψ(x, y) ∈ C[[x, y]] in the neighborhood of the
singularity. Then, there exists an analytic first integral in the neighborhood of the
singularity.

Hence, if we want to prove the existence of an analytic first integral of system
(2.1) (or (2.4)) we only need to prove the existence of a formal first integral.

3. Blow-up method for resonant singular points

In this section we consider the blow-up method to detect formal integrability for a
resonant singular point. This method has been already applied to some systems of
ODE’s [2, 16, 17, 29], but mostly not successful. The method is the following. We
consider the resonant singular point at the origin of system (2.4) and we perform
the blow-up (x, y) → (x, z) = (x, y/x). Then the singular point x = y = 0 is
replaced by the line x = 0, which contains two singular points that correspond
to the separatrices of the singular point at the origin of system (2.4). These two
singular points are saddles given by: p1 which is (p+ q) : −p resonant and p2 which
is (p+ q) : −q resonant. We now establish the following result.

Theorem 3.1. The p : −q resonant singular point at the origin of system (2.4) is
analytically integrable if and only if either p1 or p2 is orbitally analytically lineariz-
able.

The proof of this theorem is straightforward since the fact that the p : −q
resonant singular point at the origin of system (2.4) has an analytic first integral
Ψ(x, y) means that both points p1 or p2 have a well-defined analytic first integral
Ψ̃(x, zx). The sufficiency was proven in Lemma 1 of [13] using the normal orbital
form of the p : −q resonant system (2.4) and the first integral of such normal orbital
form.

Corollary 3.1. The necessary integrability conditions for the p : −q resonant sin-
gular point at the origin of system (2.4) are the same, modulo the previous ones,
than the necessary integrability conditions of the singular points p1 or p2.

In order to apply Theorem 3.1 we need to prove the existence of a formal first
integral for one of the points p1 or p2 and this could not be done for some of the
cases studied in [2, 16,17].

4. Formal integrability for resonant singular points

In [2] the authors analyzed the formal integrability of system (2.4) so that they
found the first integral as a power series in original coordinates. Here, we apply the
blow-up method with z = y/x and then we consider the formal integrability at the
resonant saddle p1 or p2. In such a way system (2.4) is transformed into a system
of variables (x, z) of the form

ż = −(p+ q)z + xF(x, z), ẋ = p x+ x2G(x, z), (4.1)
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where F(0, 0) = 0. Taking into account that x = 0 is an invariant line of system
(4.1), we propose to look for a formal first integral of the form

H̃ =

∞∑
i≥1

fi(z)x
i, (4.2)

where fi(z) are polynomials of degree ≤ i (if the resonant saddle is formally inte-
grable). The first differential equation for f1(z) is pf1(z)− (p+ q)zf ′1(z) = 0 whose
solution is f1(z) = c1z

p/(p+q). Hence, we take c1 = 0 and, therefore, f1(z) = 0.
The next differential equation for f2(z) is 2pf2(z) − (p + q)zf ′2(z) = 0 and its so-
lution is f2(z) = c2z

(2p)/(p+q). Consequently, either (2p)/(p + q) ∈ N or we take
c2 = 0. Taking into account that p, q ∈ Z with p, q > 0 it always exists fk0

such
that (k0p)/(p + q) ∈ N (or (k0q)/(p + q) ∈ N for saddle point p2). Finally, at each
power of x we have the differential equation

k p fk(z)− (p+ q) z fk
′(z) + gk(z) = 0, (4.3)

where gk(z) depends on some previous functions fi(z) for i = k0, . . . , k − 1. The
solution of differential equation (4.3) is given by

fk(z) = ck z
kp
p+q + z

kp
p+q

∫ z s−1−
kp
p+q

p+ q
gk(s) ds, (4.4)

where ck is an arbitrary constant. However, we will see that functions fk in (4.4)
are not necessarily polynomials. In fact, from (4.4) it is easy to see that it always
exists a value kr such that for k ≥ kr the functions fi(z) for i = k0, . . . , kr −
1 can give logarithmic terms. Therefore, we are not able to apply directly the
induction method to prove that the solution fk of recursive equation (4.3) is always
a polynomial.

The logarithmic terms appear in the case when in the integrating function in
(4.4) there is a term αx−1. This is the case when

−1− krp

p+ q
+mk = −1,

where mk is the degree of the polynomial gk(s). So, we have kr = mk(p + q)/p.
Hence, if p = 1 then kr = mk(1+q) which can be satisfied sincemk and q are positive
integers. For the case of p 6= 1 taking into account that the value of mk increases
with increasing of k, it can also exist a value of mk such that mk is divisible by p
and it gives the value of kr that can give logarithmic terms. In fact, the coefficients
of these logarithmic terms are the necessary conditions for integrability at singular
point p1 and this gives by Corollary 3.1 an alternative method for computing the
saddle constants of the original system (2.4).

Thus using the blow-up transformation z = y/x and the formal series (4.2) not
necessarily means the existence of a formal first integral. We have to find a condition
under which logarithmic terms can not appear in any solution fk. In the following
sections we solve some open examples of recent papers finding the condition under
which we avoid the logarithmic term in the power series.
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5. Open resonant cubic system of [8]

In [8] the integrability of the complex cubic system of the form

ẋ = x(1− a10x− a01y − a20x2 − a11xy − a02y2),

ẏ = −y(1− b10x− b01y − b20x2 − b11xy − b02y2),
(5.1)

where aij , bij ∈ C is studied. The study was splitted into three different cases: (a)
a01 = b10 = 1, (b) a01 = 1 and b10 = 0, and (c) a01 = b10 = 0. In Theorem 1 of [8]
13 integrable cases corresponding to the case (a) are given. However, the sufficiency
of case (10) of this theorem remains open problem. Here, we apply our method to
solve this case.

The system associated to condition (10) of Theorem 1 in [8] with b10b01 6= 0
after a scaling of the variables x and y is given by

ẋ = x− 1

4
x2y − 1

8
xy2,

ẏ =− y + xy − x2y + y2 − 3

4
xy2 − 1

4
y3.

(5.2)

Applying the blow-up transformation

(x, y)→ (z, y) = (x/y, y) (5.3)

we obtain the system

ż = 2z − yz +
1

8
zy2 − yz2 +

1

2
y2z2 + y2z3 = F(z, y)

ẏ =− y + y2 − 1

4
y3 + y2z − 3

4
y3z − y3z2 = G(z, y).

(5.4)

Now, we look for a first integral of the form

H(z, y) =

∞∑
k=2

fk(z)yk. (5.5)

Computing Ḣ = (∂H/∂z)F + (∂H/∂y)G and equating to zero each coefficient of
power of y we obtain the following recursive differential equation for fk

(2− k)(
1

4
+

3

4
z + z2)fk−2 + (k − 1)(1 + z)fk−1

− kfk + (
z

8
+
z2

2
+ z3)f ′k−2 − (z + z2)f ′k−1 + 2zf ′k = 0.

For k = 2, 3, . . . , 10 we find f2 = z, f3 = z(1− z), f4 = z( 13
16 + z2),

f5 = z(
29

48
+

19

16
z − 1

4
z2 − 2

3
z3), f6 = z(

655

1536
+

379

192
z +

4

3
z3 +

5

12
z4),

f7 =
z

7680
(−2231− 17605z − 18680z2 + 1280z3 + 12160z4 + 1664z5),

Next, f8 = zQ6(z), where Q6(z) is a polynomial of degree 6 without the term with
z3; f9 = zQ7(z), where Q7(z) is a polynomial of degree 7; f10 = zQ8(z), where
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Q8(z) is a polynomial of degree 8 without the term with z4. So, we claim for k odd
that fk is of the form

fk(z) = z(C0 + C1z + C2z
2 + · · ·+ Ck−2z

k−2),

and for k even that fk is of the form fk = zQk−2, where Qk−2 is a polynomial of

degree k − 2 without the monomial term z
k
2−1, i.e.,

fk(z) = z(C0 + C1z + C2z
2 + · · ·+ C k

2−2
z

k
2−2 + C k

2
z

k
2 + · · ·+ Ck−2z

k−2).

Now, using the induction we prove that for each k we obtain a polynomial fk.
Suppose that the assumption is true for k = 1, . . . , n − 1 and we compute fk for
k = n solving the differential equation

f ′n −
n

2z
fn =

1

2z

[
(n− 2)(

1

4
+

3

4
z + z2)fn−2 − (n− 1)(1 + z)fn−1

− (
z

8
+
z2

2
+ z3)f ′n−2 + (z + z2)f ′n−1

]
.

(5.6)

Let first n be odd and we want to prove that fn(z) = zQn−2, where Qn−2 is a
polynomial of degree at most n − 2. If n is odd then also n − 2 is odd and n − 1
is even. The expression on the righthand side of differential equation (5.6) that we
call Rn−2(z) is a polynomial of degree at most n− 2, and the differential equation
(5.6) becomes f ′n − n

2z fn = Rn−2(z). We know that the general solution of a linear
differential equation of the form

f ′(z) + g(z)f(z) = h(z) (5.7)

is

f(z) = e−
∫
g(z)dz

(
C +

∫
e
∫
g(z)dzh(z)dz

)
. (5.8)

In our case we have g(z) = − n
2z and h(z) = Rn−2(z) = A0 +A1z+ · · ·+An−2z

n−2.
Thus, the solution is

fn(z) = e
∫

n
2z dz

[
C +

∫
e−

∫
n
2z dz(A0 +A1z + · · ·+An−2z

n−2)dz
]

= e
n
2 ln z

[
C +

∫
e−

n
2 ln z(A0 +A1z + · · ·+An−2z

n−2)dz
]

= Cz
n
2 + z

n
2

∫
z−

n
2 (A0 +A1z + · · ·+An−2z

n−2)dz

= Cz
n
2 + z

n
2

∫
(A0z

−n
2 +A1z

1−n
2 + · · ·+An−2z

n
2−2)dz

= Cz
n
2 + z

n
2 (Ã0z

1−n
2 + Ã1z

2−n
2 + · · ·+ Ãn−2z

n
2−1)

= Cz
n
2 + Ã0z + Ã1z

2 + · · ·+ Ãn−2z
n−1)

= Cz
n
2 + z(Ã0 + Ã1z + · · ·+ Ãn−2z

n−2) = Cz
n
2 + zQn−2(z).

Taking C = 0 it yields fn(z) = zQn−2(z) as we have assumed. We note that for n
odd in the calculation no logarithmic term can appear. This is not the case for n
even. Therefore, a bit more detailed analysis is needed. Let n be even. Then also
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n− 2 is even and n− 1 is odd and functions fn−2, f ′n−2, fn−1, and f ′n−1 are of the
form

fn−2(z) =z (C0 + C1z + C2z
2 + · · ·+ Cn

2−3z
n
2−3 + Cn

2−1z
n
2−1

+ · · ·+ Cn−4z
n−4),

f ′n−2(z) = C0 + 2C1z + 3C2z
2 + · · ·+ (

n

2
− 2)Cn

2−3z
n
2−3 +

n

2
Cn

2−1z
n
2−1

+ · · ·+ (n− 3)Cn−4z
n−4,

fn−1(z) = z(A0 +A1z +A2z
2 + · · ·+An−3z

n−3),

f ′n−1(z) = A0 + 2A1z + 3A2z
2 + · · ·+ (n− 2)An−3z

n−3,

as we have assumed. Moreover, we assume that the coefficients of polynomials fn−2
and fn−1 satisfy the condition

n

2
An

2−2 +
n− 2

2
An

2−1 −
n

2
Cn

2−3 +
8− 3n

16
Cn

2−2 = 0. (5.9)

Now, we insert these expressions in differential equation (5.6) and condition (5.9)
assures that fn with n even does not have a term zn/2, i.e., is of the required form.
Next, we compute fn+1 which has no problem because n+1 is odd. The last step is
to see what happens for fn+2 with n+ 2 even. We compute the expression of fn+2

and we see that the coefficient of z
n
2 +1 is given by

n+ 2

2
An

2−1 +
n

2
An

2
− n+ 2

2
Cn

2−2 +
2− 3n

16
Cn

2−1. (5.10)

If condition (5.10) is zero then after integration equation no logarithmic term ap-
pears in fn+2(z) because the coefficient in front of monomial z

n
2 +1 vanish. However,

condition (5.10) is condition (5.9) for n + 2. Hence, the induction is proved. Con-
sequently, if condition (5.9) is satisfied for the coefficients of the polynomials fn−2
and fn−1, whenever n is even we have not logarithmic terms. Then, we obtain that
fn = zQn−2 which is of the form

fn = z(B0 +B1z +B2z
2 + · · ·+Bn

2−2z
n
2−2 +Bn

2
z

n
2 + · · ·+Bn−2z

n−2).

Moreover, the first integral of system (5.4) is

H(z, y) =

∞∑
k=2

zQk−2(z)yk = zy2 +

∞∑
k=3

zQk−2(z)yk

and the first integral of system (5.2) is

Ψ(x, y) = H(
x

y
, y) = (

x

y
)y2 +

∞∑
k=3

x

y
· Q̃k−2(

x

y
) · yk

= xy +

∞∑
k=3

xyk−1(B0 +B1
x

y
+B2(

x

y
)2 + · · ·+Bk−2(

x

y
)k−2))

= xy +

∞∑
k=3

(B0xy
k−1 +B1x

2yk−2 +B2x
3yk−3 + · · ·+Bk−2x

k−1y),

which is a formal first integral of the required form.
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6. Open resonant quartic system of [11]

In [11] the integrability of the complex quartic system of the form

ẋ = x(1− a30x3 − a21x2y − a12xy2 − a03y3),

ẏ = −y(1− b30x3 − b21x2y − b12xy2 − b03y3),
(6.1)

where aij , bij ∈ C is studied. Note, that if for system (6.1) we have a12 6= 0
and b21 6= 0 then by a linear change of variables we can take in system (6.1)
a12 = b21 = 1. In view of this remark the study of system (6.1) in [11] was splitted
into three different cases: (a) a12 = b21 = 1, (b) a12 = 1 and b21 = 0, and (c)
a12 = b21 = 0. In Theorem 2 of [11] 13 integrable cases corresponding to the case
(a) are stated. However, the sufficiency of case (10) remains open. We are going to
apply our method to solve this case.

The system associated to statement (10) of Theorem 2 in [11] with a12 = b21 = 1
is given by

ẋ = x− 3

16
x4 +

1

2
x3y − x2y2 +

8

9
xy3,

ẏ =− y − 9

16
x3y + x2y2 − 5

3
xy3 − 16

9
y4.

(6.2)

We proceed in a similar way as in the case of previous section. After transformation
(5.3) we obtain system

ż = 2z +
8

3
y3z +

2

3
y3z2 − 1

2
y3z3 +

3

8
y3z4,

ẏ =− y − 16

9
y4 − 5

3
y4z + y4z2 − 9

16
y4z3.

(6.3)

Next, we look for a first integral of the form (5.5). We compute Ḣ = ż∂H/∂z +
ẏ∂H/∂y for system (6.3) and equating to zero the coefficients of the same power of
y yields the following recurrence differential equation

(k − 3)(−16

3
− 5z + 3z2 − 27

16
z3)fk−3(z)

+
1

24
z(64 + 16z − 12z2 − 9z3)f ′k−3(z)− kfk(z) + 2zf ′k(z) = 0.

We now compute the first several fk using the recurrence equations and find f2(z) =
z, f3(z) = 0, f4(z) = z2, f5(z) = z(4 + 3z)(−8 − 66z + 9z2)/108, f6(z) = z3,
f7(z) = z(−32z − 288z2 − 162z3 + 27z4)/54,

f8(z) = z(
224

729
+

238

81
z +

28

3
z2 +

7

12
z4 − 105

128
z5 +

7

128
z6),

f9(z) = z(−8

9
z2 − 8z3 − 9

2
z4 +

3

4
z5),

f10(z) = z(
512

729
z +

604

81
z2 +

80

3
z3 +

25

12
z5 − 153

64
z6 +

11

64
z7),

f11(z) = zQ9(z), where Q9(z) is a polynomial of degree 9, f12(z) = zQ8(z), where
Q8(z) is a polynomial of degree 8 without the term with z5, f13(z) = zQ10(z),
where Q10(z) is a polynomial of degree 10, f14(z) = zQ12(z), where Q12(z) is a
polynomial of degree 12 without the term with z6.
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Hence, we assume for k being odd fk(z) is of the form

fk(z) = z(C0 + C1z + · · ·+ Ck−2z
k−2),

and for k being even fk(z) is of the form

fk(z) = z(C0 + C1z + · · ·+ C k
2−2

z
k
2−2 + C k

2
z

k
2 + · · ·+ Ck−2z

k−2),

i.e., a polynomial without the term containing monomial z
k
2 .

We prove this by induction. Suppose that this is the case for k = n− 1 and we
will prove that it is true also for k = n. In order to do that we solve the differential
equation

f ′n(z)− n

2z
fn(z) =

1

2z

[
(3− k)(−16

3
− 5z + 3z2 − 27

16
z3)fk−3(z)

− 1

24
z(64 + 16z − 12z2 − 9z3)f ′k−3(z)

]
.

(6.4)

Let first n be odd. Then n− 3 is even and the expression on the right hand side of
(6.4) is a polynomial of degree at most n− 2 and we call it Pn−2(z). Therefore the
differential equation (6.4) becomes

f ′n(z)− n

2z
fn(z) = Pn−2(z).

In the sense of (5.7) and (5.8) g(z) = − n
2z and h(z) = Pn−2(z) = A0 +A1z + · · ·+

An−2z
n−2 and the solution takes the form

fn(z) = z
n
2 (C +

∫
z−

n
2 (A0 +A1z + · · ·+An−2z

n−2)dz,

which after the same procedure as integration in previous section yields

fn(z) = Cz
n
2 + z(C0 + C1z + · · ·+ Cn−2z

n−2).

Taking C = 0 yields fn(z) = z(C0 + C1z + · · ·+ Cn−2z
n−2) as we assumed.

Let n be an even number, then n − 3 is odd and the expression on the right
hand side of (6.4) is polynomial of degree at most n − 2 and we call it P̃n−2(z).
Differential equation (6.4) becomes

f ′n(z)− n

2z
fn(z) = P̃n−2(z).

Since n is even number after integration we could obtain a logarithmic term in
fn(z). To avoid this the coefficients Ci in fn−3(z) must satisfy the condition

− 3

16
(2n− 3)Cn

2−4 + (
3n

4
− 2)Cn

2−3

+
1

3
(13− 4n)Cn

2−2 −
4

9
(n− 12)Cn

2−1 = 0.

(6.5)

Under these conditions for n even n− 3 is odd and fn−3 is of the form

fn−3(z) = z(C0 + C1z + · · ·+ Cn−5z
n−5).
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We insert this expression in differential equation (6.4) and no logarithmic term
appear in function fn(z) since the coefficient in front of monomial z

n
2 vanish due to

the coefficients of polynomial fn−3 satisfy the condition (6.5). Now, we will take a
look what happens in the next step when we compute fn+3 and fn+6 where n+ 6 is
also even. The computation of fn+3 is carried out without any problem since n+ 3
is odd. However, when we compute fn+6 for n+ 6 even we see that the coefficient
of z

n
2 +3 is given by

− 3

16
(2n+ 9)Cn

2−1 + (
3n

4
+

10

4
)Cn

2

− 1

3
(4n+ 11)Cn

2 +1 −
4

9
(n− 6)Cn

2 +2 = 0.

(6.6)

If condition (6.6) is satisfied then after integration no logarithmic term appears in
fn+6(z) since the coefficient in front of monomial z

n
2 +3 vanishes. However, condition

(6.6) is condition (6.5) for n+ 6. Hence, the induction is proved. Consequently, as
long as condition (6.5) is satisfied for the coefficients of the polynomials fn−3 with
n being even we have no logarithmic term.

Hence, whenever n is even we obtain

fn = z(B0 +B1z +B2z
2 + · · ·+Bn

2−2z
n
2−2 +Bn

2
z

n
2 + · · ·+Bn−2z

n−2).

So, first integral of system (6.3) is

H(z, y) =

∞∑
k=2

zQk−2(z)yk = zy2 +

∞∑
k=3

zQk−2(z)yk,

and the first integral of system (6.2) is

Ψ(x, y) = xy +

∞∑
k=3

(B0xy
k−1 +B1x

2yk−2 +B2x
3yk−3 + · · ·+Bk−2x

k−1y).

7. Open resonant quintic systems of [12]

In [12] the integrable resonant saddles of the following system with quintic homo-
geneous nonlinearities

ẋ = x− a40x5 − a31x4y − a22x3y2 − a13x2y3 − a04xy4 − a−15y5,
ẏ = − y + b5,−1x

5 + b40x
4y + b31x

3y2 + b22x
2y3 + b13xy

4 + b40y
5,

where x, y, aij , bij ∈ C with a−15 = 0 were studied. The study was split in four
different cases: (C1) a31 = b13 = 1, (C2) a31 = 1, b13 = 0, (C3) a31 = 0, b13 = 1 and
(C4) a31 = b13 = 0. In Theorem 1.2 of [12] 17 integrable cases corresponding to the
case (C1) are given. However, the sufficiency of case (8) and (17) remains open. We
prove the sufficiency of these two cases using the method proposed in this paper.

The system associated to statement (8) of Theorem 1.2 in [12] is written as

ẋ = x− 5

3
b22x

5 − x4y − b22x3y2 +
1

5
x2y3 +

3

5
b22xy

4,

ẏ = − y − 25

3
b22x

4y − x3y2 + b22x
2y3 + xy4 − 3

2
b22y

5,
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with b22 = ±
√

2/15. Here, we consider only the case b22 =
√

2/15 but the case of
negative b22 can be solved in a similar way. Hence, we begin with the system

ẋ = x− 1

3

√
10

3
x5 − x4y −

√
2

15
x3y2 +

1

5
x2y3 +

1

5

√
6

5
xy4

ẏ = − y − 5

3

√
10

3
x4y − x3y2 +

√
2

15
x2y3 + xy4 − 1

5

√
6

5
y5.

(7.1)

After applying the blow-up (5.3) system (7.1) takes the form

ż = 2z +
2

5

√
6

5
y4z − 4

5
y4z2 − 2

√
2

15
y4z3 +

4

3

√
10

3
y4z5

ẏ = − y − 1

5

√
6

5
y5 + y5z +

√
2

15
y5z2 − y5z3 − 5

3

√
10

3
y5z4.

(7.2)

Now, we look for a power series of the form (5.5). As in the previous section we
compute Ḣ = (∂H/∂z)ż + (∂H/∂y)ẏ for system (7.2) and equate to zero each
coefficient of different powers of y. So, we obtain the following recursive differential
equation

k − 4

225
(−9
√

30 + 225z + 15
√

30z2 − 225z3 − 125
√

30z4)fk−4

+
2

225
(9
√

30z − 90z2 − 15
√

30z3 + 50
√

30z5)f ′k−4

− kfk + 2zf ′k = 0.

(7.3)

Computing fk for the first several k we find f2 = z, f4 = z2, f6 = 3
5z

2 + z4 +
√

5
6z

5,

f8 = 6
5z

3+2z5+
√

10
3 z

6, f10 = − 1
25

√
6
5z

2+ 33
50z

3+ 2
5

√
6
5z

4+ 19√
30
z6+ 11

6 z
7+ 23

9

√
5
6z

8+

25
36z

9, f12 = − 2
25

√
6
5z

3 + 42
25z

4 + 4
5

√
6
5z

5 + 22
√

2
15z

7 + 14
3 z

8 + 32
9

√
10
3 z

9 + 20
9 z

10, and

fk = 0 for k = 3, 5, 7, 9, 11. Therefore, we assume that fk = 0 if k is odd and

fk = z(C0 + C1z + · · ·+ C k
2−2

z
k
2−2 + C k

2
z

k
2 + · · ·+ Ck−2z

k−2), (7.4)

if k is even. We prove this using induction. Suppose that the assumption holds for
k = 1, . . . , n−4 and we compute fk for k = n solving the differential equation (7.3).

If n is odd, then also n−4 is odd and fn−4 = f ′n−4 = 0. The recurrence formula
yields homogeneous differential equation

2zf ′n − nfn = 0,

which has solution fn = Cn/2z
n
2 . Choosing at each step Cn/2 = 0 we obtain fn = 0

for each n being odd.
Now, assuming that n is even then also n − 4 is even. Since n is even number

after integration we could obtain a logarithmic term in fn(z). To avoid this the
coefficients Ci of fn−4(z) must satisfy the condition

− 1

3

√
10

3
(3n− 4)Cn

2−5 + (4− n)Cn
2−4

+
3n− 16

5
Cn

2−2 +
4
√

30

25
Cn

2−1 = 0.

(7.5)
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Under this condition fn−4 and f ′n−4 are of the form

fn−4 = C0z + C1z
2 + · · ·+ Cn

2−4z
n
2−3 + Cn

2−2z
n
2−1 + · · ·+ Cn−6z

n−5,

f ′n−4 = C0 + 2C1z + · · ·+ (
n

2
− 3)Cn

2−4z
n
2−4 + (

n

2
− 1)Cn

2−2z
n
2−2 + · · ·

+ (n− 5)Cn−6z
n−6.

We insert these expressions in differential equation (7.3) and no logarithmic term
appear in function fn(z) since the coefficient in front of monomial z

n
2 vanish due

to the coefficients of polynomial fn−4 satisfy the condition (7.5). Now, we compute
fn+4 where n+ 4 is even and we see that the coefficient in front of z

n
2 +2 is given by

− 1

3

√
10

3
(3n+ 8)Cn

2−3 − nCn
2−2 +

3n− 4

5
Cn

2
+

4
√

30

25
Cn

2 +1. (7.6)

If coefficient (7.6) is zero then after integration no logarithmic term appears in
fn+4(z) since the coefficient in front of monomial z

n
2 +2 vanishes. However, condition

(7.5) is condition (7.6) for n + 4. Hence, the induction is proven. Consequently, if
condition (7.5) is satisfied for the coefficients of the polynomials fn−4, whenever n
is even there is no logarithmic term.

Finally, we insert the expressions of fn−4 and f ′n−4 in differential equation (7.3).
Then differential equation (7.3) becomes

f ′n −
n

2z
fn =

z(B0 +B1z + · · ·+Bn
2−2z

n
2−2 +Bn

2
z

n
2 + · · ·+Bn−2z

n−2)

2z

= B0 +B1z + · · ·+B n
2−2z

n
2−2 +B n

2
z

n
2 + · · ·+Bn−2z

n−2,

which regarding to (5.7) and (5.8) has the solution

fn(z) = Cz
n
2 + z

n
2

∫
z−

n
2 (B0 +B1z + · · ·+B n

2−2z
n
2−2 +B n

2
z

n
2

+ · · ·+Bn−2z
n−2)dz

= Cz
n
2 + z

n
2

∫
(B0z

−n
2 +B1z

1−n
2 + · · ·+B n

2−2z
−2 +B n

2

+ · · ·+Bn−2z
n
2−2)dz

= Cz
n
2 + z

n
2 (D0z

1−n
2 +D1z

2−n
2 + · · ·+Dn

2−2z
−1 +Dn

2
z

+ · · ·+Dn−2z
n
2−1)

= Cz
n
2 + z(D0 +D1z + · · ·+Dn

2−2z
n
2−2 +Dn

2
z

n
2

+ · · ·+Dn−2z
n−2).

Setting C = 0 we finally obtain

fn(z) = z(D0 +D1z + · · ·+Dn
2−2z

n
2−2 +Dn

2
z

n
2 + · · ·+Dn−2z

n−2),

which has the claimed form (7.4). The first integral of system (7.2) is

H(z, y) = zy2 +

∞∑
k=3

z(D0 +D1z + · · ·+D k
2−2

z
k
2−2 +D k

2
z

k
2 + · · ·+Dk−2z

k−2)yk



1846 B. Ferčec & J. Giné

and the first integral of system (7.1) is

Ψ(x, y) = H(
x

y
, y) = (

x

y
)y2+

∞∑
k=3

x

y
· (D0+D1

x

y
+D2(

x

y
)2 + · · ·+Dk−2(

x

y
)k−2) · yk

= xy +

∞∑
k=3

xyk−1(D0 +D1
x

y
+D2(

x

y
)2 + · · ·+Dk−2(

x

y
)k−2))

= xy +

∞∑
k=3

(D0xy
k−1 +D1x

2yk−2 +D2x
3yk−3 + · · ·+Dk−2x

k−1y).

The system corresponding to open case (17) of Theorem 1.2 in [12] is of the form

ẋ = x− x4y +
7

6
b04x

3y2 +
1

7
x2y3,

ẏ =− y + 28x5 +
245

3
b04x

4y − 3x3y2 − 7

6
b04x

2y3 + xy4 + b04y
5,

(7.7)

where b04 = ± 2
√
3

7
√
7
. As in the case above we take the positive root but the proof is

similar for the negative one. Hence, we consider the system

ẋ = x− x4y +
1√
21
x3y2 +

1

7
x2y3,

ẏ =− y + 28x5 + 10

√
7

3
x4y − 3x3y2 − x2y3√

21
+ xy4 +

2

7

√
3

7
y5.

(7.8)

After applying (5.3) we obtain the system

ż =2z − 2

7

√
3

7
y4z − 6

7
y4z2 +

2√
21
y4z3 + 2y4z4 − 10

√
7

3
y4z5 − 28y4z6,

ẏ =− y +
2

7

√
3

7
y5 + y5z − 1√

21
y5z2 − 3y5z3 + 10

√
7

3
y5z4 + 28y5z5.

(7.9)

The proof of integrability of system (7.8) is done in a similar way as before. We
look for a power series of the form (5.5). We compute Ḣ = (∂H/∂z)ż + (∂H/∂y)ẏ
for system (7.9) and equate to zero each coefficient of different powers of y. We
obtain the following recurrence differential equation

(k − 4)
(2
√

3

7
√

7
+ z − 1√

21
z2 − 3z3 + 10

√
7

3
z4 + 28z5

)
fk−4

− 2

147

(
3
√

21z + 63z2 − 7
√

21z3 − 147z4 + 245
√

21z5 + 2058z6
)
f ′k−4

− kfk + 2zf ′k = 0.

(7.10)

For k = 2, 3, . . . , 14 we find f2 = z, f4 = z2, and

f6 =
1

14

√
3

7
z +

4

7
z2 + 2z4 − 5

2

√
7

3
z5 − 14

3
z6,

f8 =− 1

147
z(−3

√
21z − 168z2 − 588z4 + 245

√
21z5 + 1375z6),
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f10 = zp9(y), where p9(y) is a polynomial of degree 9 without the term with the
monomial z4, f12 = zp11, where p11(y) is a polynomial of degree 11 without the
term with the monomial z5, f14 = zp13, where p13(y) is a polynomial of degree 13
without the term with the monomial z6, and f3 = f5 = f7 = f9 = f11 = f13 = 0.
Hence, we assume that fk = 0 if k is odd and

fk = z(C0 + C1z + · · ·+ C k
2−2

z
k
2−2 + C k

2
z

k
2 + · · ·+ Ck−1z

k−1) (7.11)

if k is even. We prove this by induction. Suppose that the assumption holds for
k = 1, . . . , n − 4 and we compute fk for k = n solving the recursive differential
equation (7.10).

If n is odd, then also n − 4 is odd and consequently fn−4 = f ′n−4 = 0. The
recurrence formula yields the homogeneous differential equation

2zf ′n − nfn = 0,

which has solution fn = Cn/2z
n
2 . Choosing at each step Cn/2 = 0 we obtain fn = 0

for each n being odd.

Now, assuming that n is even yields that also n−4 is even and after integration a
logarithmic term could appear in fn(z). To avoid this the coefficients Ci in fn−4(z)
must satisfy the condition

14(n+ 2)Cn
2−6 + 5

√
7

3
nCn

2−5 + 2(3− n)Cn
2−4

+
2

7
(2n− 11)Cn

2−2 +

√
21

49
(n− 8)Cn

2−1 = 0.

(7.12)

Under this condition and taking into account that fn−4 and f ′n−4 are of the form

fn−4 = C0z + C1z
2 + · · ·+ Cn

2−4z
n
2−3 + Cn

2−2z
n
2−1 + · · ·+ Cn−5z

n−4,

f ′n−4 = C0 + 2C1z + · · ·+ (
n

2
− 3)Cn

2−4z
n
2−4 + (

n

2
− 1)Cn

2−2z
n
2−2 + · · ·

+ (n− 4)Cn−5z
n−5,

we insert these expression in differential equation (7.10) and no logarithmic term
appears in function fn(z) since the coefficient in front of monomial z

n
2 vanishes due

to the coefficients of polynomial fn−4 satisfy the condition (7.12). Computing fn+4

for n+ 4 even we see that the coefficient of z
n
2 +2 is given by

14(n+ 6)Cn
2−4 + 5

√
7

3
(n+ 4)Cn

2−3 − 2(1 + n)Cn
2−2

+
2

7
(2n− 3)Cn

2
+

√
21

49
(n− 4)Cn

2 +1.

(7.13)

If coefficient (7.13) vanishes then after integration no logarithmic term appears in
fn+4(z) since the coefficient in front of monomial z

n
2 +2 is zero. However, condition

(7.13) is condition (7.12) for n + 4. Hence the induction is proved. Therefore, if
condition (7.12) is satisfied in the coefficients of the polynomial fn−4, where n is
even there is no logarithmic term.



1848 B. Ferčec & J. Giné

Now, we insert the expressions of fn−4 and f ′n−4 in differential equation (7.10)
and differential equation (7.10) becomes

f ′n −
n

2z
fn =

z(B0 +B1z + · · ·+B k
2−2

z
k
2−2 +B k

2
z

k
2 + · · ·+Bk−2z

k−2

2z

= B0 +B1z + · · ·+B k
2−2

z
k
2−2 +B k

2
z

k
2 + · · ·+Bk−1z

k−1,

which regarding to (5.7) and (5.8) has the solution

fn(z) = Cz
n
2 + z

n
2

∫
z−

n
2 (B0 +B1z + · · ·+B n

2−2z
n
2−2 +B n

2
z

n
2

+ · · ·+Bn−1z
n−1)dz

= Cz
n
2 + z

n
2

∫
(B0z

−n
2 +B1z

1−n
2 + · · ·+B n

2−2z
−2 +B n

2

+ · · ·+Bn−1z
n
2−1)dz

= Cz
n
2 + z

n
2 (D0z

1−n
2 +D1z

2−n
2 + · · ·+Dn

2−2z
−1 +Dn

2
z

+ · · ·+Dn−1z
n
2 )

= Cz
n
2 + z(D0 +D1z + · · ·+Dn

2−2z
n
2−2 +Dn

2
z

n
2

+ · · ·+Dn−1z
n−1).

Now setting C = 0 we obtain

fn(z) = z(D0 +D1z + · · ·+Dn
2−2z

n
2−2 +Dn

2
z

n
2 + · · ·+Dn−1z

n−1).

Then, first integral of system (7.9) is

H(z, y) = zy2+

∞∑
k=3

z(D0 +D1z + · · ·+D k
2−2

z
k
2−2 +D k

2
z

k
2 + · · ·+Dk−1z

k−1)yk,

which yields a first integral of system (7.8)

Ψ(x, y) = H(
x

y
, y) = (

x

y
)y2+

∞∑
k=3

x

y
· (D0+D1

x

y
+D2(

x

y
)2 + · · ·+Dk−1(

x

y
)k−1) · yk

= xy +
∞∑
k=3

xyk−1(D0 +D1
x

y
+D2(

x

y
)2 + · · ·+Dk−1(

x

y
)k−1))

= xy +

∞∑
k=3

(D0xy
k−1 +D1x

2yk−2 +D2x
3yk−3 + · · ·+Dk−1x

k),

which is a formal first integral of the required form.
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