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Scheduling and resource allocation to optimize performance criteria in multi-cluster heterogeneous environments is known as an
NP-hard problem, not only for the resource heterogeneity, but also for the possibility of applying co-allocation to take advantage of
idle resources across clusters. A common practice is to use basic heuristics to attempt to optimize some performance criteria
by treating the jobs in the waiting queue individually. More recent works proposed new optimization strategies based on Linear
Programming techniques dealing with the scheduling of multiple jobs simultaneously. However, the time cost of these techniques
makes them impractical for large-scale environments. Population-based meta-heuristics have proved their effectiveness for finding
the optimal schedules in large-scale distributed environments with high resource diversification and large numbers of jobs in the
batches. The algorithm proposed in the present work packages the jobs in the batch to obtain better optimization opportunities.
It includes a multi-objective function to optimize not only the Makespan of the batches but also the Flowtime, thus ensuring a
certain level of QoS from the users’ point of view. The algorithm also incorporates heterogeneity and bandwidth awareness issues,
and is useful for scheduling jobs in large-scale heterogeneous environments. The proposed meta-heuristic was evaluated with a real
workload trace. The results show the effectiveness of the proposed method, providing solutions that improve the performance with
respect to other well-known techniques in the literature.
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1. Introduction

Multi-cluster environments are usually presented as an alternative
to high-performance computing for solving large-scale optimiza-
tion problems by leveraging the computational resources distrib-
uted throughout an organization. These environments are made up
of several clusters of computers joined by dedicated interconnec-
tion networks (Javadi et al, 2006). These environments are
distinguished from Grid environments in that the multi-cluster uses
a dedicated interconnection network between cluster resources
with a known topology and predictable performance characteris-
tics, while in Grid, the computing resources are distributed over
multiple organizations interconnected through Internet.

A critical aspect of exploiting the resources in a multi-cluster
environment is the use of co-allocation. Co-allocation of job tasks
across different clusters enables the execution of applications with
more requirements than those available in each single cluster. The
reduction of the internal cluster fragmentation thus improves the
resource usage and increases job throughput as the applications can
start their execution earlier. This situation also reduces job waiting
times (Bucur and Epema, 2007; Blanco et al, 2010). However,
mapping jobs across cluster boundaries can result in rather poor
overall performance when co-allocated jobs contend for inter-
cluster network bandwidth. Additionally, the heterogeneity of

processing and communication resources increases the com-
plexity of the scheduling, turning it into an NP-hard problem
(Abawajy and Dandamudi, 2003; Jones et al, 2005).

The existing methodologies used to solve this problem can be
divided into two different groups: Deterministic Algorithms (DA)
and Approximate Algorithms (AA). The former can find good
solutions among all the possible ones but do not guarantee
that the best or a near optimal solution will be found. These
methodologies are faster than traditional exhaustive algorithms
but inappropriate for large-scale scheduling problems. The latter
employ iterative strategies to find optimal or near optimal
solutions. Although they are less efficient than DA, they can find
good solutions for large-scale problems in a reasonable time.

Genetic Algorithms are an example of AAs able to find
efficient solutions for large and complex problems by simulating
the behaviour of nature. In this work, we propose a novel
approach based on genetic algorithms for solving the parallel
job-scheduling problemwith co-allocation in heterogenous multi-
cluster environments. Our approach treats the jobs in the waiting
queue as a set of work packages to provide better scheduling
opportunities. The computational heterogeneity and also the
inter-cluster link contention are considered to model the applica-
tions execution time more accurately.

The rest of the paper is organized as follows. In section 2
related work is presented. The problem statement is described in
Section 3. The proposed Genetic Algorithm and its profiling is
elaborated in Section 4. Section 5 shows the experimental results
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of the proposed GA heuristics in comparison with others
techniques in the literature. Finally, the conclusions are presented
in Section 6.

2. Related work

The scheduling strategies have generated great interest in recent
years due to the growth of resources in organizations. To take
advantage of the increasing computational resources, the co-
allocation technique allows pieces of jobs to be distributed across
different computing clusters. (Bucur and Epemal, 2007) carried
out a performance evaluation of different scheduling strategies
using co-allocation based on job queues. Their results show that
unrestricted co-allocation is not recommended and that perfor-
mance is improved by limiting the component size of the co-
allocated jobs. Other studies used co-allocation to develop load
balancing techniques (Heien et al, 2008; Yang et al, 2008) or
optimize the application execution time by selecting the most
suitable resources (Jones et al, 2005; Naik et al, 2005). These
studies share the optimization of a single performance metric,
such as the computing capability or the communication links
usage, without finding a compromise between these. Lérida et al
(2013) proposed a new model to estimate the application
execution time by considering heterogeneity and availability of
both resource processing and communicating, that we take as the
basis to produce our execution time estimations.

Traditional scheduling techniques in the literature treat the jobs
in the waiting queue individually without considering the
remaining jobs (Braun et al, 2001), thus limiting the scheduling
opportunities for future allocation and decreasing overall system
performance Shmueli and Feitelson (2005); Tsafrir et al, 2007).
Shmueli and Feitelson (2005) proposed a backfilling technique in
which later jobs are packaged to fill in holes and increase
utilization without delaying the earlier jobs. Tsafrir et al proposed
a method to select the most suitable jobs to be moved forward
based on system-generated response time predictions. These
techniques however are based on predetermined order, only
moving forward jobs that accomplish specific deadline require-
ments. Blanco et al (2011, 2012) proposed diverse techniques for
determining the best scheduling of sets of job packages to
minimize their overall execution time, based on a Mixed-Integer
programming model. Although these techniques produce very
good results, their computational cost makes them impractical for
large-scale environments.

Algorithms that generate near-optimal schedules have a high
time-cost. Conversely, for any upper limit on time-cost, the
quality of the schedule, in general, will also be limited. Together,
this suggests a trade-off between performance and time-cost, and
as a result, many works in the literature propose ad-hoc heuristics
able to provide lower time-costs, but that obtain far from optimal
solutions (Braun et al, 2001; Blanco et al, 2012).

The Approximate meta-heuristic algorithms, such as Monte
Carlo, Simulated Annealing (SA), Tabu Search (TS), Genetic
Algorithms (GA), etc, have been presented as effective

schedulers in complex large-scale environments in attempts to
obtain better schedules. GAs are well known for their robustness
and have been applied successfully to solving scheduling pro-
blems in a variety of fields. Zomaya and Teh (2001) used GAs in
dynamic load balancing problems. Braun et al (2001) compared
the efficiency of a simple GA-based scheduler and the MinMin,
MinMax, Minimum Completion Time (MTC) algorithms. Gabal-
don et al (2013) presented a GA-based scheduling meta-heuristic
capable of treating a set of jobs but focused only on minimizing
the makespan. However, from the user point of view, fluctuations
in the waiting times due to alterations in the execution order have
a negative impact and do not guarantee any level of QoS. In
Carretero and Xhafa (2007), the authors presented an extensive
study of GAs for designing efficient Grid schedulers where
makespan and flowtime are minimized to include QoS in the
solutions, but considering independent jobs without inter-cluster
communications.

Taking the previous works into account, in this paper the
authors define a new scheduling solution to evaluate complete
packages of jobs, able to optimize not only the Makespan of the
batches but also the Flowtime, thus providing certain level of
QoS from the users point of view. To achieve this goal, being also
useful for large-scale heterogeneous environments executing
parallel jobs, the proposal incorporates heterogeneity and band-
width aware issues. Owing to the high complexity of the
scheduling problem posed, the authors decided to develop a
GA-based solution, which is detailed in the following sections.
This was due to the ability of such algorithms to explore the
solution space exhaustively in a reasonable execution time.

3. Parallel job execution model

In order to perform efficient scheduling in a heterogeneous multi-
cluster environment, our proposal have to deal with two chal-
lenges: (i) resource heterogeneity and availability, and (ii) task
allocation, since tasks from any job can be assigned to different
clusters in a co-allocation process. Note that the final job
allocation not only has to consider the execution time, but also
the communication necessities and availabilities in order to avoid
inter-cluster link saturation, which could have an unpredictably
effect on the job performance.

3.1. Problem description

A multi-cluster environment consists of a set of α arbitrary sized
clusters with heterogeneous resources. Let C= fC1; ¼ ; Cαg
be the set of cluster sites. Each cluster consists of a set of
computation nodes. Let N = fN1

1 ; ¼ ; Nα
ng be the set of nodes

(or resources), which are connected to each other by a dedicated
link through a central switch. Let L= fL1; ¼ ; Lαg be the inter-
cluster links, where Lk is the link between the site Ck and the
central switch, and let {B1,…, Bα} be the corresponding max-
imum bandwidth for every link.
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The problem consists of scheduling a set of jobs
J = fJ1; ¼ ; Jng in the multi-cluster. A job Ji is composed of
a fixed number τi of collaborative tasks. Each task consists of
various processing, communication and synchronization phases,
and can only be executed in one node. Given a schedule, job Ji is
in node Nr, expressed as Ji∈Nr, if there is at least one task of job
Ji being executed in node Nr.

In our model, each task uses an all-to-all communication
pattern with similar processing and communicating requirements,
where all tasks start and finish at the same time, following the
Bulk-Synchronous Parallel model (Skillicorn et al, 1997). Job
assignment is static, avoiding re-allocations while the job is being
executed. Additionally, jobs can be co-allocated to different
clusters in order to reduce their execution time and the internal
cluster fragmentation.

In order to compute the execution time for a job in a
heterogeneous multi-cluster environment, based on the model
presented in Lérida et al (2013), we characterize every job by two
factors: the Processing Slowdown (PS) and the Communication
Slowdown (CS). The PS for job Jj is obtained from the slowest
processing node Jj is assigned to, that is, the allocated node
providing the maximum processing slowdown:

PSj = max
8r : Jjr

PSrj

n o
; Jj 2 J

where PSj
r is the slowdown of job Jj in node Nr, which is

inversely proportional to the node computation power.
The co-allocation of a parallel job Jj consumes a certain

amount of bandwidth in each inter-cluster link Lk, which is:

Bk
j = tkj � Bj

� �
� τj - tkj

τj - 1

 !
; Jj 2 J ; Ck 2 C

where Bj is the required per-task bandwidth, τj is the number of
tasks in job Jj, and tj

k is the number of tasks of job Jj allocated in
cluster Ck. The first term in the equation is the total bandwidth
consumed by tasks of job Jj in cluster Ck, and the second term is
the percentage of communication with other clusters.

Saturation occurs when co-allocated jobs use more bandwidth
than available, and jobs sharing the link are penalized by an
increment in their communication time. The inter-cluster Satura-
tion Degree SDk relates the maximum bandwidth Bk of each link
Lk with the bandwidth requirements of the allocated parallel jobs:

SDk =
BkP

8Jjk
Bk
j

� � ; Lk 2 L

where Bj
k is the bandwidth of job Jj when it is in node Nk.

When SDk< 1 the link Lk is saturated, and jobs using the link
are delayed, otherwise it is not. Then, the communication slow-
down for job Jj and link Lk, which depends on the saturation, is
expressed by:

CSkj =
SDk
� � - 1

when SDk < 1

1 otherwise

(
Jj 2 J ; Ck 2 C

The communication slowdown for job Jj is the CSj
k from the

most saturated used link, expressed by:

CSj = max
8Nk : Jjk

CSkj

n o
; Jj 2 J

Finally, the estimated execution time for a parallel job Jj is:

Te
j =Tbj � tcj; Jj 2 J (1)

where Tbj is the base time of job Jj in dedicated resources, and tcj
is the time cost factor when a job is allocated. It is assumed that
the base-time Tbj is known from user-supplied information,
experimental data, job profiling, etc. Previous authors computed
the time cost tcj from the allocated resources without considering
communications (Jones et al, 2005) or considered a fixed
communications penalty when co-allocation is applied
(Ernemann et al, 2010). In contrast, we model the time cost
based on the heterogeneity of the processing resources selected
and the availability of the inter-cluster links used. The time cost
for job Jj is expressed by:

tcj = σj � PSj + 1 - σj
� � � CSj; Jj 2 J

where PSj denotes the processing slowdown from the resources,
CSj is the communication slowdown from the inter-cluster links,
and σj is the portion of the total execution time spent on
processing.

The optimization problem to be solved can be stated as the
minimization of two parameters in the creation of a job schedule:
the makespan and the flowtime. The makespan is defined as the
elapsed time between submitting the first job until the finalization
of the last one. The makespan is:

max
Ji2J

Fið Þ - min
Jj2J

Sj
� �

Fi being the time in which job Ji finishes, which is defined as
Fi= Si+Ti

e, where Si is the time when the job starts and Ti
e the

estimated execution time of the job, defined in (1). The smaller
the makespan, the faster the workload completion. The flowtime
is defined as the sum of the response times for all the jobs in the
workload. The response time is the elapsed time from submission
Sb until job finalization Fj. In other words, the flowtime of a job Jj
consists of the waiting time Tj

w and the execution time Tj
e. Thus,

the flowtime can be expressed as:X
Jj2J

Tw
j + Te

j

� �
=
X
Jj2J

Fj - Sb
� �

This metric is usually considered as a QoS criterion from the
user point of view.

4. Genetic algorithm

The scheduling of tasks in a multi-cluster environment is a hard
problem, where exact methods for finding the optimal solution
are impractical due to the long computation time. A better
approximation is to use stochastic algorithms, with a near optimal
solution with a short computation time. A Genetic Algorithm is
one of these methods and the one chosen in the present work.
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A Genetic Algorithm is a stochastic search heuristic used to
find nearly optimal solutions through nature-based techniques. It
starts by creating an initial population of solutions known as
individuals, each one encoded using a chromosome. To create a
new generation, four steps are performed: ranking the individuals
driven by a fitness function, a ranking-based selection, the
crossover and the mutation. The algorithm is motivated by the
hope that after several generations, the new population will be
better than the previous ones.

In the next subsections, the chromosome definition and the GA
core functions are detailed.

4.1. Chromosome encoding

Each individual in the GA population is represented by means of
a chromosome. In our design, the chromosome corresponds to a
sequence of alleles, and an allele corresponds to an integer in a
specific position (locus) in the chromosome, representing the job
order and task allocation to the computational nodes.

Example 1 A set of four jobs J1,…, J4, a set of five nodes
N1,…,N5, a set of four tasks for job J1 (T11, T12, T13, T14), a
set of two tasks for job J2 (T21, T22), a set of one task for job
J3 (T31), and a set of two tasks for job J4 (T41). In our
chromosome example, shown in Figure 1, job J1 is initially
assigned to the nodes {N1,N2,N3,N4}, job J2 to nodes
{N1,N2}, job J3 to node N5, and job J4 to node N5. When
multiple jobs are assigned to the same node, the loci where
the jobs are in the chromosome determine their execution
order. In our example, job J4 waits in the system queue until
node N5, assigned to job J3, is free. Figure 2 shows the job
scheduling Gantt chart considering the node reservation
precedences.

4.2. Initial population

To start the evolutionary process, it is necessary to have an initial
population composed of a diverse set of individuals to facilitate a
thorough exploration of the search space. We analysed two
techniques for creating the initial population to observe the
convergence of the GA. In the first one, the individuals were
generated randomly without considering the node status, that is,
whether the nodes selected were busy or free. In the second, the
individuals are randomly generated by selecting resource alloca-
tions that avoid inter-cluster link saturation. Initially, the GA
creates a random permutation of the jobs. Then, for each job in
the chromosome, a job is allocated to the free nodes of a
randomly selected cluster. If a job needs more nodes than those

available in the selected cluster, the operation is repeated until all
the job tasks are allocated.

If we run out of computational nodes, the GA uses a
bandwidth-aware parallel job model to predict the first job to
finish and release its allocated nodes for the subsequent jobs. By
creating the initial population with this technique, a set of
individuals with low inter-cluster communications is provided
for the first generation.

An experiment was performed to evaluate the convergence of
the two strategies. We experimented with 10 different workloads
composed of 200 jobs, a starting population of 50, and the
average execution times needed to obtain the results of three
executions were computed. Table 1 shows that an initial popula-
tion created with the second strategy converged faster than the
totally random strategy.

4.3. Fitness function definitions

The individuals in the population of each generation are eval-
uated to obtain the score that determines the quality of the
resulting scheduling solutions. The fitness value F for each
individual is computed by:

F = α ´makespan + 1 - αð Þ ´ flowtime
The α parameter balances the weight of each metric in the score
obtained. Besides, the individual assignments that produce net-
work saturation are penalized by avoiding their reproduction in
future iterations. For every generation, we record the individual
with the minimum F, and the final solution is the best among these.

4.4. Genetic operators

In this paper we consider parallel jobs following the Bulk-
Synchronous Parallel model (BSP) (Skillicorn et al, 1997). The
BSP jobs are made of a fixed number of tasks (not malleable)
with similar requirements, and each task comprises various
iterations in which computation alternates with communication
and synchronization phases. This model is widely used inFigure 1 Chromosome design in Example 1.

Figure 2 Job schedule in Example 1.
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scientific computing in such areas as simulation of fluid dynamics
(Nibhanupudi et al, 1995), combinatorial problems (Abu Salem,
2004), etc. In order to define the suitable scheduling solutions,
some constraints must be satisfied for the scheduling solutions:

● All the tasks from the same job must be allocated to different

nodes, and each allocated node can only have one task from the
same job.

● All tasks from a job start at the same time.

● The computational nodes allocated to any job remain occupied
until all the job tasks have finished.

To satisfy these constraints, we define specific genetic operators
that ensure the correctness of the solutions: the crossover
operator, the selection operator, the mutation operator, and the
replacement policy.

The crossover operator is the method that uses individuals in
the current generation to evolve and create new individuals that
will go on to the next generation (offspring). We implemented an
ad-hoc crossover function that acts in two stages:

1. Job-order inheritance: First, the algorithm compares the
parents to be mated. If a job is placed in the same position in
both parents, it will remain there. If the job is allocated in
different positions in the two parents, it is randomly selected.

2. Computation node allocation: Once the job order in the
offspring chromosome is defined, the task allocation in the
computational nodes is compared. Those that are equal in both
parents are copied to the child. The rest are randomly selected.

Example 2 Taking the same set of jobs, tasks and nodes as in
Example 1, and given a set of two chromosomes P1, P2, the
creation of their child C, shown in Figure 3, has the
following steps:

1. Job-order: Since job J3 is placed in position 2 in both parents
P1 and P2, it is also placed at position 2 in child C. The rest of
the jobs are placed at random positions in the child: Job J1 in
position 1, job J2 in position 3 and job J4 in position 4.

2. Job allocation: Since job J1 is in nodes N1,N2,N3 in both
parents P1 and P2, these nodes are also selected for the
allocation in child C. Node N4 is randomly selected from the
rest of the nodes. Since Job J3 is in node N5 in both parents, it
is also in this node in child C. Job J4 is allocated to node N3 by
selecting a random node. Since job J2 is in node N1 in both
parents P1 and P2, such job is also in node N1 in child C. And
finally, node N2 is randomly selected.

The selection operator is used to choose which individuals
should mate. The population is arranged with the standard linear
ranking selection algorithm—the more suitable they are, the more
chances they have of being selected.

Mutation is a common operation used to find new points to
evaluate the search space. When a chromosome is chosen for
mutation with probability γ, a random choice is made of some
genes to be modified. In our case, this process is done in two
different phases:

1. Job ordering mutation: Any job in the scheduling list can be
moved into any other position in the chromosome, allowing
different execution orderings to be explored.

2. Node allocation mutation: The tasks for the previously
selected job can be re-allocated to any other computational
node. Note that this mutation must preserve the constraints
presented above, which means that mutation is done under
supervision.

Our replacement policy depends on the selection and mutation
schema. Each generation creates a new population based on the
selection operator that acts over the previous population. A new
individual is obtained from each pair of parent chromosomes.
Because the parents are not preserved, the population decreases
after each crossover operation. Therefore, to keep the number of
chromosomes stable, the GA creates new individuals in each
generation.

4.5. Genetic algorithm profiling

The performance of a GA is sensitive to the value of its control
parameters, such as population size, number of iterations and

Table 1 Number of generations for the GA to converge with the
two initial population creation strategies

Workload GA-Random GA-Guided

1 600 390
2 220 50
3 300 10
4 190 15
5 300 210
6 50 10
7 350 50
8 1000 810
9 700 100
10 500 50

Figure 3 Crossover in Example 2.
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frequency of mutation. Furthermore, the proposed fitness function
has been defined by the α parameter, which determines how the
makespan or flowtime affect the decision process. For this reason,
an experimental study was carried out to determine the suitable
parameter values to be used in further experimentation.

The parameters were tuned by executing the GA with three
different workloads obtained from the real trace HPC2N (Parallel
Workloads Archive). Each workload was divided into packets of 20
jobs, based on the results obtained by Gabaldon et al (2013), and
executed several times to minimize randomization in the results.
The multi-cluster system was made up of four clusters with 60
computational nodes with a range of computational capacities and
interconnected by a Gigabit network. The multi-criteria fitness
function was evaluated in the [20–200] range, with increments of
20 for the population size and number of iterations, and in the
[10–90] range, with increments of 10 for the frequency of mutation.
Owing to the differences in the workload job composition, we
present the boxplot of the normalized values obtained by the fitness
function for each experiment. The time-cost obtained is also
evaluated and presented.

The results of the fitness function (primary Y axes) and the time-
cost (secondary Y axes) obtained for the population size and
number of iterations parameters are shown in Figure 4, and the
frequency of mutation parameter, in Figure 5. As can be observed,
in general, the higher the value of the evaluated parameter, the
better the fitness function obtained, reaching a steady state after a
certain threshold. Beside this, the time-cost increases linearly.

With regard to the α parameter, we evaluated the makespan
and flowtime for α values ranging from 0 to 1. The α parameter
represents the importance of the makespan in the fitness function.
Thus, α= 0 means that the flowtime completely dominates the
fitness function, while α= 1 means that only the makespan is
considered for evaluating the solution. Any intermediate value
represents a combination of both parameters. As Figure 6 shows,
increasing α reduces the makespan to 0.6, where a steady state is
reached. Figure 6 also shows the results obtained for the
flowtime. As can be seen, the higher the makespan weight, the
lower the flowtime, until a turning point where the flowtime
grows. A more comprehensive study shows that the behaviour of
the waiting time and the execution times are inversely propor-
tional. While the waiting time increases with α, the execution

time decreases rapidly, the trade-off between the waiting and
execution times being at 0.6.

The most suitable value for each parameter is summarized in
Table 2 and used in the next section for the performance study of
our tuned proposal.

5. Experimental evaluation

The full experimental study was carried out by simulation using
the GridSim framework (GridSim simulation framework). This
framework was adapted to use our job execution time model and
to simulate a dedicated network among the heterogenous multi-
cluster environment. We conducted an experimental evaluation
with the aim of determining the effectiveness of the proposed
GA-based heuristic in a batch multi-cluster scheduler with a real
workload trace. The metrics for measuring the effectiveness were
the makespan and flowtime. The evaluation was performed with
greedy and stochastic heuristics which have been incorporated
into the scheduling toolkit of the GridSim framework.

The results were compared with other well-known greedy
heuristics for multi-cluster systems that we took as references.
These were namely JPR, CBS and METL. The first, the JPR
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Figure 4 GA profiling: Population size and number of iterations.
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technique, for Job Preferences on Resources, is a variant of the
heuristic presented by Naik et al (2005), where the tasks are
matched with the most powerful available resources to take
advantage of the heterogeneity in multi-cluster resources. The
second, the CBS technique, for Chunk Big Small, was presented
by Jones et al (2005) and tries to allocate a ‘large chunk’ (75% of
the job tasks) to a single cluster in an attempt to avoid inter-
cluster link saturation. Finally, theMETL technique, forMinimum
Execution Time Lost, is a heuristic presented by Blanco et al
(2012) which tries to select in each scheduling step the job that
minimizes the delay in the execution time with the available
resources. This technique considers the saturation of the inter-
cluster links in order to model the execution time of the
applications.

We also compared our proposal with a GA-based meta-
heuristic (GA-MA) and a local search optimization technique
(HILL). The former, was proposed by the authors in Gabaldon
et al (2013), is capable of treating with sets of jobs but only
focused on minimizing the makespan. The latter is an implemen-
tation of the Hill climbing (HILL) algorithm; it starts with a
random solution and attempts to improve such a solution by
searching in the neighbourhood. One of the neighbours is chosen
by changing the solution by a little. When no better neighbour is
found, the last solution is returned.

We assessed the behaviour of our proposals with different
workloads obtained from 30 independent real traces in the
HPC2N (HPC2N—High Performance Computing Center North)
composed of 20 jobs. Most of the jobs in these workloads are
computational-intensive with an average execution time of 15
520 s and 90 tasks per job. The multi-cluster system used during
the experimentation was made up of four clusters with 60
computational nodes with effective powers of {1000, 1500,-
2000, 1500} MIPS, respectively, and interconnected by a Giga-
bit network. The settings of the GA-MF parameters were those
presented in Table 2.

Figure 7 shows the results obtained from evaluating the
makespan parameter for each evaluated workload and sorted
from the lowest to the highest value for the GA-MF. As can be
seen, both the JPR and CBS heuristics gave the worst makespan
values. This is because they treat each job individually and

attempt to optimize them without taking the global workload
requirements into account. Thus, it is possible that the best
possible allocation for a job at the moment when it is evaluated
may use resources that could improve further job allocations.
This problem can be solved by evaluating the full set of jobs in
the workload, as METL, HILL, GA-MA and GA-MF do. Note
that this is not enough, since Hill Climbing obtains, in average, as
good results as CBS and JPR. The figure shows that the results
obtained by METL, GA-MA and GA-MF correspond to the best
makespan. Evaluating the results obtained in detail, GA-MA and

Table 2 Settings of GA-MF key parameters

Parameter Value

Num. Iterations 120
Population Size 80
Mutation Frequency 50
α parameter 0.6
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Figure 6 α value evaluation: Makespan and Flowtime.
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GA-MF have better values than METL, although these are not so
significant over this timescale.

The next experimental study was devoted to the flowtime value.
The results obtained are shown in Figure 8. As can be seen, the
differences between the heuristics and the GA-based meta-
heuristics for the flowtime parameter are greater, with HILL, GA-
MA and GA-MF giving the best results, especially GA-MF.
Although GA-MA and GA-MF obtained similar makespan results,
observe how GA-MF is able to find a different job allocation
reducing the flowtime dramatically, and thus improving the QoS.

Moreover, since the real workloads are composed of thousands
of jobs, we conducted a preliminary study to evaluate how both
GA-based meta-heuristics perform in a stressed situation with 25
different workloads, each composed of 2000 jobs. The GA
parameters and the number of jobs treated as the entry set were
the same as those used in the previous experiment.

Figure 9 shows the results for the makespan metric. As can be
observed, both GA-MA and GA-MF obtained the lowest make-
span. In this experiment, the differences with the METL heuristic
are significant, because GA-MA and GA-MF are able to reduce
the makespan for each job package, thus producing a global
optimization for the workload.

Figure 10 shows that GA-MA and GA-MF obtained similar
results for the flowtime, and this is because a reduced package
size does not produce significant benefits with large workloads.
Therefore, the job packages have to be larger to take advantage of
the capabilities of GA-MF.

We observed that algorithms GA-MA and GA-MF have the
best performance in all the experiments, which demonstrate the
soundness of choosing such algorithms to solve the multi-cluster
scheduling problem. The experiments also show that the more
complex the problem (in number of jobs), the larger the
performance difference with the other methods.

6. Conclusions

The simultaneous optimization of certain metrics is a difficult
task especially when there is an intrinsic correlation between
them. However, it is essential to incorporate multi-criteria
optimization to improve the performance and adapt the schedul-
ing techniques to the multiple realities inherent in multi-cluster
environments. In this paper, the authors present a novel approach
based on a GA-based scheduling meta-heuristic for large-scale
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Figure 8 Flowtime results for 30 different workloads composed
of 20 jobs.
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multi-cluster environments applying co-allocation when neces-
sary. The GA-Makespan&Flowtime (GA-MF) meta-heuristic is
based on a multi-criteria objective function to minimize both the
makespan and the flowtime metrics. The meta-heuristics pro-
posed consider the computational heterogeneity and inter-cluster
link contention, addressing the queue as a set of work packages.

The experimental study, based on real traces from the HPC2N
workloads, tries to determine the effectiveness compared with our
previous GA-MA meta-heuristic and classic heuristics from the
literature. The results show that, by using meta-heuristic GA-MF,
we can obtain the best flowtime related to the QoS parameter,
while also reducing the makespan.

In future work, we aim to reduce the complexity of GA-MF
and consider large numbers of jobs together. We also will address
the study of new optimization criteria, such as utilization, energy
consumption, etc.

Our GA proposal is based on a fitness function obtained by a
simulation process; for this reason based on the research done by
Nazzal et al (2012), we are investigating the introduction of new
genetic operators that by using an indifference-zone ranking and
selection procedure under common random numbers enables the
solution convergence to be speeded up.
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