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CYCLICITY OF A CLASS OF POLYNOMIAL NILPOTENT

CENTER SINGULARITIES

ISAAC A. GARCÍA1 AND DOUGLAS S. SHAFER2

Abstract. In this work we extend techniques based on computational algebra

for bounding the cyclicity of nondegenerate centers to nilpotent centers in a
natural class of polynomial systems, those of the form ẋ = y + P2m+1(x, y),

ẏ = Q2m+1(x, y), where P2m+1 and Q2m+1 are homogeneous polynomials of

degree 2m+1 in x and y. We use the method to obtain an upper bound (which
is sharp in this case) on the cyclicity of all centers in the cubic family and all

centers in a broad subclass in the quintic family.

1. Introduction

An isolated singularity x0 of an analytic system ẋ = f(x) of ordinary differential
equations on the plane is said to be monodromic if nearby trajectories rotate about
it in the precise sense that for some (hence every) sufficiently short line segment Σ
with one endpoint at the singularity a first return map P from Σ to itself is defined
by the induced local flow. When the linear part df(x0) is nonzero the map P is
analytic (see, for example, §3.1 of [15] and Lemma 5 below), from which we easily
deduce that the singularity is a focus or a center. The cyclicity of the singularity is
the maximum number of limit cycles that can be made to bifurcate from it under
small perturbation of relevant parameters in f .

If the singularity is nondegenerate or simple, meaning that det df(x0) 6= 0, then
x0 is monodromic if and only if the eigenvalues of df(x0) have nonzero imaginary
part. By the Poincaré-Lyapunov Theorem it is a center if and only if it admits a
local analytic (or merely formal) first integral of a particular form. In the case that
the system is polynomial, parametrized by the coefficients of f , this characterization
of centers leads naturally to a collection polynomials in the coefficients called the
focus quantities whose simultaneous vanishing picks out those systems for which the
singularity is a center. The set of systems with centers thus corresponds to an affine
variety VC , the center variety, in the space of admissible coefficients. The focus
quantities are much easier to work with than the Lyapunov quantities that arise
from the first return map P. They can be computed efficiently and algorithmically,
and are related to the Lyapunov quantities in such a way that, exploiting techniques
of computational algebra, they can in some cases be used to bound the cyclicity of
centers.

The goal of this paper is to extend this approach to the study of the cyclicity of
centers in the nilpotent case, that is, when df(x0) has both eigenvalues zero but is
not itself zero. The family of systems for which we succeed are those of the form
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ẋ = y + P2m+1(x, y), ẏ = Q2m+1(x, y), where P2m+1 and Q2m+1 are homogeneous
polynomials of degree 2m+1 in x and y (or which, a priori, are allowed to be zero).
Perturbations are restricted to the original class of nilpotent systems. To the best
of our knowledge this is the first systematic method for obtaining an upper bound
on the cyclicity of all elements of a broad class of nilpotent centers at once.

By an affine change of coordinates and a time rescaling an analytic system with
a nilpotent singularity can be placed in the form

(1) ẋ = y +R(x, y), ẏ = S(x, y),

where R and S are analytic functions near the origin without constant or linear
terms. For technical reasons that are explained in Section 2 when R and S are
polynomial functions we restrict to the case that y factors out of R. To study the
first return map P we convert to generalized polar coordinates using the generalized
trigonometric functions of Lyapunov (Section 3). We show that when R and S are
polynomial functions that are parametrized by their coefficients, in some cases the
Lyapunov quantities, the coefficients in a power series expansion of the displacement
map P(r) − r about r = 0, are polynomials in the parameters, as is always true
in the case of a nondegenerate center, but in other cases they are not (Proposition
7). Also in contrast with the nondegenerate case, it is not true in general that
nilpotent centers are characterized by existence of an analytic first integral, and
in general there is no analogue for nilpotent systems of the focus quantities that
always exist in the nondegenerate case. A broad class of nilpotent systems that
do possess these properties are families (1) for which R and S are homogeneous
polynomials of the same odd degree, and it is these that are the primary object of
study in this paper. In analogy with the nondegenerate case we derive a connection
between the focus quantities and the generalized Lyapunov quantities that exist
for these systems (Theorem 16) and show how the focus quantities can be used
to obtain an upper bound on the cyclicity of centers (Theorem 20). Building on
the work of Andreev, Romanovski, Sadovskii, and Tsikalyuk we use this theory
to give a sharp upper bound on the cyclicity of centers of (1) when R and S are
homogeneous polynomials of degree three (Section 6) and a global upper bound
(which is attained by some centers) in degree five (Section 7).

2. Monodromic nilpotent singularities

The following theorem of Andreev characterizes analytic systems (1) for which
the origin is monodromic.

Theorem 1 ([5]). For an analytic system of the form (1) with an isolated singu-
larity at the origin let y = F (x) be the unique solution of y+R(x, y) = 0 such that
F (0) = F ′(0) = 0 and let

f(x) = S(x, F (x)) and ϕ(x) = (∂R/∂x+ ∂S/∂y)(x, F (x)).

Let a 6= 0 and α ≥ 2 be such that f(x) = axα + · · · .
When ϕ is not identically zero let b 6= 0 and β ≥ 1 be such that ϕ(x) = bxβ + · · · .
Then the origin of (1) is monodromic if and only if α = 2n− 1 is an odd integer,
a < 0, and one of the following conditions holds:

(i) ϕ(x) ≡ 0
(ii) β ≥ n

(iii) β = n− 1 and b2 + 4an < 0.
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Remark 2. We will see that for monodromic nilpotent singularities the important
distinction is between case (iii) on the one hand and cases (i) and (ii) on the other.
For economy of expression, in what follows when we write “β ≥ n” we will mean
“either ϕ ≡ 0 or ϕ 6≡ 0 and β ≥ n,” thereby combining cases (i) and (ii) in Theorem
1.

Definition 3. The Andreev number n of a monodromic singular point at the origin
of system (1) is the integer n ≥ 2 given in Theorem 1.

Suppose a system of the form (1) is given and F (x), f(x), and ϕ(x) are the
functions defined for this system as in Theorem 1. A standard form for (1) in
which the functions f and ϕ appear naturally is obtained by means of the analytic
change of variables

(2) x = u, y = v + F (u),

which transforms system (1) into

(3) u̇ = v + v R̃(u, v), v̇ = f(u) + v ϕ(u) + v2 S̃(u, v),

where R̃(0, 0) = 0 and the functions f and ϕ in (3) are precisely those as for (1)
and play for (3) the roles of the functions specified in Theorem 1. However, if
the original system (1) is polynomial but y does not factor out of R(x, y) then the
transformation y = v + F (u) in (2) is analytic but not, in general, polynomial, so
the new system (3) retains the polynomial character of the problem only if y does
factor out of the original R(x, y). But in that case F (x) ≡ 0 and no transformation
has been made: (2) is the identity and so (3) is exactly the same as what we
started with, (1). For this reason when we consider general polynomial systems (as
in Proposition 7 below) we will restrict to the case that y factors out of R(x, y). In
the case of the systems with homogeneous nonlinearities that we treat in Sections
5 and following we will find that in fact it is no restriction at all.

The form (1) is traditional for nilpotent singularities, but in the case that the
singularity is monodromic it can be useful to make in (3) the coordinate change

(4) u = ξx, v = −ξy

for ξ ∈ R \ {0}, so as to introduce a minus sign in the first equation in (3), yielding

(5)
ẋ = −y + y R̂(x, y)

ẏ = f̂(x) + y ϕ̂(x) + y2 Ŝ(x, y)

where R̂(0, 0) = 0,

f̂(x) = −ξ−1f(ξx) = −aξα−1xα + · · ·

and ϕ̂ ≡ 0 when ϕ ≡ 0, while for ϕ 6≡ 0,

ϕ̂(x) = ϕ(ξx) = bξβxβ + · · · .

(The Andreev number is unchanged and the functions f̂ and ϕ̂ play the roles of
the functions f and ϕ of Theorem 1.) This transformation to (5) insures that
the generalized Lyapunov quantities that will be defined below properly indicate
the stability of the singularity at the origin: asymptotically stable when the first
nonzero quantity is negative and unstable when it is positive. For (3) the opposite
is true.
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A further restriction in the polynomial families that we consider (besides the
condition that y factor out of R(x, y)) and a convenient choice of ξ will be described
in the next section.

3. The displacement map of a nilpotent monodromic singularity

To investigate the displacement map on a small line segment with endpoint at the
origin for system (5) we shall use what are now called the generalized trigonometric
functions, defined for the first time by Lyapunov in [12]. For any positive integer n
these functions are the unique solution x(θ) = Cs θ and y(θ) = Sn θ of the Cauchy
problem

(6)
dx

dθ
= −y, dy

dθ
= x2n−1, x(0) = 1, y(0) = 0.

The following proposition lists some properties of these functions. A proof can
be found in [12]. Recall that a polynomial P ∈ C[x, y] is a (1, n)-quasihomogeneous
polynomial of weighted degree w if P (µx, µn y) = µw P (x, y) for all µ ∈ R.

Proposition 4 ([12]). For a fixed positive integer n let (x, y) = (Cs θ,Sn θ) be the
solution of the Cauchy problem (6). The following statements hold.

(a) The functions Cs θ and Sn θ are Tn-periodic with Tn = 2

√
π

n

Γ
(

1
2n

)
Γ
(
n+1
2n

) , where

Γ(·) denotes the Euler Gamma function.
(b) The fundamental relation: Cs2n θ + n Sn2 θ = 1.
(c) For φ = (−1)n+1(θ + Tn/2) and P (x, y) a (1, n)-quasihomogeneous polynomial

of weighted degree w

Csφ = −Cs θ, Snφ = (−1)n Sn θ,

and

P (Csφ, Snφ) = (−1)w P (Cs θ,Sn θ).

We define in the punctured real plane R2 \ {(0, 0)} the change to generalized
polar coordinates, (x, y) 7→ (r, θ), defined by

(7) x = r Cs θ, y = rn Sn θ.

Lemma 5. An analytic monodromic system (5) with associated Andreev number
n is transformed in generalized polar coordinates (7) to an ordinary differential
equation

(8)
dr

dθ
= F(r, θ)

where F(r, θ) is analytic in a neighborhood of r = 0, is Tn-periodic in θ, and
F(0, θ) ≡ 0.

Proof. For convenience later we view (5) as arising from (1) by successive transfor-
mations (2), then (4). First we observe that (5) may be written in a unique way
as

(9) ẋ = P (x, y) =
∑
i≥n

pi(x, y), ẏ = Q(x, y) =
∑

i≥2n−1

qi(x, y),
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where pi and qi are (1, n)-quasihomogeneous polynomials of weighted degree i. It
is clear that (recall that β ≥ n includes the case ϕ ≡ 0)

(10) pn(x, y) = −y, q2n−1(x, y) =

{
−aξ2n−2x2n−1 if β ≥ n
−aξ2n−2x2n−1 + bξn−1xn−1y if β = n− 1.

Performing the polar blow-up (x, y) 7→ (r, θ) given by (7), using Proposition 4(b)
it is not difficult to establish that

ṙ =
x2n−1ẋ+ yẏ

r2n−1
, θ̇ =

xẏ − nyẋ
rn+1

.

Defining p̃i(θ) := pi(Csθ,Snθ) and q̃i(θ) := qi(Csθ,Snθ), system (9) becomes

ṙ =
x2n−1P (x, y) + yQ(x, y)

r2n−1

=
r2n−1 Cs2n−1 θ

∑
i≥n r

ip̃i(θ) + rn Sn θ
∑
i≥2n−1 r

iq̃i(θ)

r2n−1
,

= Cs2n−1 θ
∑
i≥n

rip̃i(θ) + r Sn θ
∑

i≥2n−1

ri−nq̃i(θ)

= [Cs2n−1 θ p̃n(θ) + Sn θ q̃2n−1(θ)]rn + · · · ,

θ̇ =
xQ(x, y)− nyP (x, y)

rn+1

=
rCs θ

∑
i≥2n−1 r

iq̃i(θ)− nrn Sn θ
∑
i≥n r

ip̃i(θ)

rn+1

= Cs θ
∑

i≥2n−1

ri−nq̃i(θ) − n Sn θ
∑
i≥n

ri−1p̃i(θ)

= [Cs θ q̃2n−1(θ)− nSn θ p̃n(θ)]rn−1 + · · · .

Applying (10), when β = n− 1 system (5) has the form

(11)
ṙ = [−Cs2n−1 θ Sn θ(1 + aξ2n−2) + bξn−1 Csn−1 θ Sn2 θ]rn + · · ·

θ̇ = [(−aξ2n−2 Cs2n θ + nSn2 θ) + bξn−1 Csn θ Sn θ]rn−1 + · · · ,

yielding

(12)
dr

dθ
=

[−Cs2n−1 θ Sn θ(1 + aξ2n−2) + bξn−1 Csn−1 θ Sn2 θ]r + · · ·
[(−aξ2n−2 Cs2n θ + nSn2 θ) + bξn−1 Csn θ Sn θ] + · · ·

which for |r| sufficiently small is well-defined, since the coefficient of r0 in the
denominator is a quadratic in Csn θ and Sn θ with discriminant ξ2n−2(b2 +4an) < 0
(by the monodromy condition) and Cs θ and Sn θ do not vanish simultaneously
(Proposition 4(b)). When β ≥ n system (5) has the same form (11) but with
the terms containing the parameter b absent, so that dr/dθ is as in (12) but with
the terms containing the parameter b absent, and for |r| sufficiently small is well-
defined since a < 0 by the monodromy condition and Cs θ and Sn θ do not vanish
simultaneously. The statements in the lemma clearly follow. �

In direct analogy with the procedure used in the case of a nondegenerate mon-
odromic singularity (as described for example in [15, §3.1]) we define for (5) the
Poincaré first return map on a sufficiently short segment Σ = {(r, θ) : 0 ≤ r ≤
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r∗, θ = 0} by P(h) = Ψ(Tn;h), where Ψ(θ;h) is the unique solution of the differ-
ential equation (8) that satisfies Ψ(0;h) = h. P is an analytic diffeomorphism de-
fined in a neighborhood of h = 0. Periodic orbits near the origin correspond to fixed
points of P(h) and to zeros of the corresponding difference map d(h) = P(h)− h.

Definition 6. The generalized Poincaré-Lyapunov quantities for a monodromic
singular point at the origin of system (1) are the coefficients vi when the displace-
ment map d(h) is expanded in a power series d(h) =

∑
i≥1 vih

i.

Writing Ψ(θ;h) =
∑
i≥1 Ψi(θ)h

i, v1 = Ψ1(Tn)− 1 and vi = Ψi(Tn) for i ≥ 2.
Exactly as in the nondegenerate case the values of the generalized Poincaré-

Lyapunov quantities vi can be determined in a recursive way, although many com-
putations are involved. Write the function F of (8) as F(r, θ) =

∑
i≥1 Fi(θ)ri,

where the functions Fi(θ) are Tn-periodic. Differentiating the series Ψ(θ;h) =∑
i≥1 Ψi(θ)h

i with respect to θ and inserting into (8) yields

Ψ′1(θ)h+ Ψ′2(θ)h2 + · · · = F2(θ)[Ψ1(θ)h+ Ψ2(θ)h2 + · · · ]2 + · · ·
so that equating coefficients of like powers of h we obtain

(13)

Ψ′1(θ) = 0

Ψ′2(θ) = F2(θ)Ψ2
1(θ)

Ψ′3(θ) = 2F2(θ)Ψ1(θ)Ψ2(θ) + F3(θ)Ψ3
1(θ)

...

with the initial conditions Ψ1(0) = 1, Ψi(0) = 0 for i ≥ 2 arising from the initial
condition Ψ(0;h) = h.

Proposition 7. Consider a family of systems of the form (5) where R̂, Ŝ, f̂ , and

ϕ̂ are polynomial functions, R̂(0, 0) = 0, f̂(x) = a2n−1x
2n−1 + · · · , and ϕ̂(x) ≡ 0 or

ϕ̂(x) = bβx
β + · · · , and every member of the family has a monodromic singularity

at the origin.
Let the family be parametrized by the set of admissible coefficients. Then the

Poincaré-Lyapunov quantities vi are polynomials in the parameters if and only if
1. a2n−1 is a fixed (positive) constant, not a parameter, which without loss of gen-

erality can be assumed to be 1; and
2. if ϕ̂(x) 6≡ 0 and β = n− 1 then bβ is a fixed constant, not a parameter.

Proof. Let λ denote the vector parameter composed of all the coefficients in (5).
For the proof it is convenient to regard (5) as arising from (3) by means of the

transformation (4), so that the notation in the proof of Lemma 5 applies. Then
display (12) and the discussion that surrounds it show that for a polynomial family
as described in the proposition, in generalized polar coordinates

(14)
dr

dθ
=
H1r +H2r

2 + · · ·
J0 + J1r + · · ·

=

(
H1

J0

)
r +

(
H2J0 −H1J1

J2
0

)
r2 + · · ·

where each Hi and Ji is a polynomial in λ, Cs θ, and Sn θ, and in particular (in-
cluding ϕ̂ ≡ 0 in the case β ≥ n)

J0 =

{
−aξ2n−2 Cs2n θ + n Sn2 θ if β ≥ n
−aξ2n−2 Cs2n θ + n Sn2 θ + bξn−1 Csn θ Sn θ if β = n− 1.



CYCLICITY OF NILPOTENT CENTERS 7

If β ≥ n (including the case ϕ̂ ≡ 0) then J0 contains the coefficient a2n−1 =
−aξ2n−2, hence a parameter element occurs in the denominators in the coefficients
of powers of r in (14) unless a2n−1 is a fixed constant, but not otherwise. The choice

ξ = (−a)
1

2n−2 6= 0 makes a2n−1 = 1, thereby eliminating a2n−1 and additionally
(by Proposition 4(b)) reducing J0 to the constant function 1. Note however that
this choice depends on a2n−1 and simply moves the parameter elsewhere in the
Hi and Ji in a non-polynomial fashion if a2n−1 is not fixed. Thus each Fi is a
polynomial in λ precisely when a2n−1 is fixed, hence from (13) each Ψi depends on
λ in a polynomial way. Since v1(λ) = Ψ1(Tn;λ)− 1 and vi(λ) = Ψi(Tn;λ) for i ≥ 2
we deduce that all the Poincaré-Lyapunov quantities vi(λ) lie in R[λ].

If β = n− 1 then J0 contains the coefficient bβ = bξn−1 in addition to a2n−1, so
that J0 is parameter-independent if and only if bβ is a fixed constant as well. Again

the choice ξ = (−a)
1

2n−2 eliminates the coefficient a2n−1. The proof is completed
as when β ≥ n. �

Remark 8. The proof of the proposition raises the fine point that the assertion
that the Poincaré-Lyapunov quantities are polynomials in the coefficients requires
precise formulation if it is to be true, even in the nondegenerate case. It is typical, if
not universal, in treatments of the center-focus problem, for example, to first make
an affine change of coordinates to place the singularity in question at the origin and
the linear part of the system at the singularity in standard form, as we have done
for nilpotent singularities to obtain (1) and as is done in the nondegenerate case to
obtain

u̇ = au− bv + · · ·
v̇ = bu+ av + · · · .

The polynomial nature of the system and its degree are preserved. However, the
transformation is parameter-dependent, usually in a complicated way, such that
the coefficients of the transformed system depend on the original coefficients in
a non-polynomial way. Thus a paraphrase of the proposition and the analogous
statement for nondegenerate singularities that “the Poincaré-Lyapunov quantities
are polynomials in the coefficients of the system,” such as was made in the intro-
duction, are to be understood as applying only after a transformation to a standard
form. For individual polynomial systems with numerical coefficients this point is
unimportant, but in the context of families of polynomial systems parametrized by
their coefficients it is relevant.

To compute the Poincaré-Lyapunov quantities we must be able to compute prim-
itives

Ip,q(θ) =

∫ θ

0

Snp σ Csq σ dσ

of the generalized trigonometric functions. We will see in §5.1 below how this
can (at least sometimes) be avoided. However, in anticipation of occasions when
computing them might be useful we state and extend a result of Lyapunov along
these lines.

Lemma 9 ([12]). Let Sn θ and Cs θ be solutions of (6) and let p and q be non-
negative integers. Then

(i) I1,q = −Csq+1 θ
q+1 + 1

q+1 ;
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(ii) Ip,2n−1 = Snp+1 θ
p+1 ;

(iii) Ip,q = − Snp−1 θCsq+1 θ
(p−1)n+q+1 + p−1

(p−1)n+q+1Ip−2,q;

(iv) Ip,q = nSnp+1θCsq−2n+1 θ
(p−1)n+q+1 + q−2n+1

(p−1)n+q+1Ip,q−2n;

(v) If Tn is the period of the generalized trigonometric functions then∫ Tn

0

Snp σ Csq σ dσ =

{
0 if either p or q is odd

2

n
p+1
2

Γ( p+1
2 )Γ( q+1

2n )
Γ( p+1

2 + q+1
2n )

if p and q are even.

Lemma 9 does not give the functions I0,q(θ) when 1 ≤ q ≤ 2n − 2. We provide
them when n = 2 in the following lemma.

Lemma 10. Let Sn θ and Cs θ be solutions of (6) for n = 2. Then

(i) I0,1(θ) = π−2 arcsin(Cs2 θ)

2
√

2
;

(ii)

I0,2(θ) = i
√

2
[
E(i arcsinh(1)| − 1)− E(i arcsinh(Csθ)| − 1)

− F (i arcsinh(1)| − 1) + F (i arcsinh(Csθ)| − 1)
]

where i2 = −1 and F (φ|m) and E(φ|m) denote the elliptic integrals of the
first and second kind, respectively.

Proof. We want to find a function fq(θ) such that f ′q(θ) = Csqθ and fq(0) = 0 for
q = 1, 2, where the prime means differentiation with respect to θ. Since n = 2, we
define the parametrization x(θ) = Cs θ and y(θ) = Sn θ so that x′ = −y, y′ = x3.
Assuming that fq has the form fq(θ) = gq(Cs θ,Sn θ), by the chain rule

f ′q(θ) =
∂gq
∂x

(x(θ), y(θ))x′(θ) +
∂gq
∂y

(x(θ), y(θ))y′(θ)

= −y(θ)
∂gq
∂x

(x(θ), y(θ)) + x3(θ)
∂gq
∂y

(x(θ), y(θ)).

Therefore we are looking for a function gq(x, y) that solves the partial differential
equation

−y ∂gq
∂x

+ x3 ∂gq
∂y

= xq

for q = 1, 2. The general solution is given by

g1(x, y) = − 1√
2

arcsin

(
x2√
H(x, y)

)
+ ξ(H(x, y)),

g2(x, y) = −i
√

2H(x, y)1/4
[
E(i arcsinh(xH(x, y)−1/4)| − 1)

− F (i arcsinh(xH(x, y)−1/4)| − 1)
]

+ ξ(H(x, y)),

where ξ is an arbitrary function and H(x, y) = x4 + 2y2. Since H(x(θ), y(θ)) = 1
and we are looking for a specific gq satisfying gq(1, 0) = 1 we obtain finally the
expressions of I0,q(θ) = gq(Cs θ,Sn θ) given in the statement. �

When n = 2 we have the following quadratures. The proof is easy using integra-
tion by parts.

Lemma 11. Let p, q ∈ N and define Jp,q(θ) =
∫ θ

0
σ SnpσCsqσ dσ and Ĵp(θ) =∫ θ

0
Snp σ arcsin(Cs2 σ) dσ. Then the following holds when n = 2:
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(i) Jp,q(θ) = θIp,q(θ)−
∫ θ

0
Ip,q(σ) dσ;

(ii) Ĵp(θ) = Ip,0(θ) arcsin(Cs2 θ) +
√

2
∫ θ

0
Csσ Ip,0(σ) dσ.

We emphasize that a discrete symmetry for equation (8) is inherited by the
symmetries of the generalized trigonometric functions as described in Proposition
4(c). More concretely, (8) is invariant under the change

(15) (r, θ) 7→
(
−r, (−1)n+1 [θ + Tn/2]

)
.

The symmetry (15) imposes restrictions between the Andreev number n of (5) with
a focus at the origin and the order at the origin r of its associated displacement
map d(h;λ) = vr(λ)hr + O(hr+1), with vr 6≡ 0. The concrete constraint is that n
and r must have the same parity so that they are simultaneously either even or odd.
Another straightforward consequence of the discrete symmetry is that if equation
(8) has a periodic orbit different from r = 0, then it has two periodic orbits (one
in the upper half cylinder and one in the lower half cylinder). More precisely, if
r(θ;h, λ) is a solution of (8) with initial condition r(0;h, λ) = h > 0 of equation
(8), then the function θ 7→ −r((−1)n+1 [θ + Tn/2] ;−h, λ) is also a solution of (8).
In short, the zeros of the displacement map d(h;λ) appear in pairs of opposite sign,
except for the trivial one h = 0.

4. The Poincaré-Lyapunov quantities and cyclicity of centers

Let E be a subset of RM , λ∗ an element of E, and consider a family of the form
(1), parametrized by λ ∈ E, that is analytic in x, y, and λ on an open neighborhood
of ((0, 0), λ∗) in R2×E and is such that the origin is monodromic for every element
of the family. Then the displacement map, regarded as a function d(h;λ) of h
and the parameter λ, is analytic for |h| and ‖λ− λ∗‖ sufficiently small, hence can
be expressed as d(h;λ) =

∑
i≥1 vi(λ)hi, where the generalized Poincaré-Lyapunov

quantities, now regarded as functions vi(λ) of λ, are analytic on a neighborhood of
λ∗. In the general analytic case we identify each vi(λ) with the element of the ring
Gλ∗ of germs of analytic functions at λ∗ that it represents. When the elements of
the family (1) are polynomial systems we assume that y factors from R (so that (1)
has the form (3) or (5)) and that (1) is parametrized by its coefficients. When the
hypotheses of Proposition 7 are satisfied then the vi are polynomials in λ. Since
Gλ∗ and R[λ] are noetherian, either way the ideal B generated by the vi, which we
refer to as the Bautin ideal of the family (1), is finitely generated.

If for some λ∗ ∈ E the singularity at the origin is a focus then there exists an
index r such that v1(λ∗) = · · · = vr−1(λ∗) = 0 but vr(λ

∗) 6= 0. On a neighborhood
of λ∗ in parameter space vr(λ) 6= 0 so that it can be factored from all higher order
terms and the displacement map expressed as

d(h;λ) =

r−1∑
i=1

vi(λ)hi + vr(λ)[1 + ψ(h, λ)]hr,

where ψ(h, λ) is analytic and satisfies ψ(0, λ) = 0, from which it follows that the
cyclicity of the origin with respect to perturbation within the family (1) is at most
r − 1 (for example see [15, Cor 6.1.2]), although this estimate can sometimes be
greatly improved, for example in the case of systems of the form (16) using Theorem
16. If vi(λ

∗) = 0 for all i ∈ N then an upper bound on the cyclicity of the center
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at the origin can be expressed in terms of the cardinality of the so-called minimal
basis of the Bautin ideal.

Definition 12. The minimal basis of a finitely generated ideal I with respect
to an ordered basis B = {f1, f2, f3, . . . } is the basis MI defined by the following
procedure:
(a) initially set MI = {fp}, where fp is the first non-zero element of B;
(b) sequentially check successive elements fj , starting with j = p+ 1, adjoining fj

to MI if and only if fj /∈ 〈MI〉, the ideal generated by MI .

In the case of the Bautin ideal B = 〈vi : i ∈ N〉 it is understood that the
ordering of the vi is that given by the numerical order of their indices. Imitating
the collapsing of the displacement map that was done in the case of foci, in terms
of the minimal basis {vi1 , . . . , vik} of the Bautin ideal the displacement can be
expressed in the form

d(h;λ) = vi1(λ)[1 + ψ1(h, λ)]hi1 + · · ·+ vik(λ)[1 + ψk(h, λ)]hik ,

from which the following cyclicity bound theorem can be derived by a repeated
application of a Rolle’s Theorem kind of argument. (See, for example, [15], in
which these results are Lemma 6.1.6 and Theorem 6.1.7, respectively.)

Theorem 13. Suppose that the minimal basis of the Bautin ideal B = 〈vi : i ∈ N〉
in Gλ∗ or R[λ] is MB = {vi1 , . . . , vir} and that λ∗ ∈ E is such that vi(λ

∗) = 0 for
all i ∈ N. Then for the system in family (1) that corresponds to parameter value
λ = λ∗ the cyclicity of the center at the origin, with respect to perturbation within
the family (1), is at most r − 1.

5. Homogeneous nilpotents

We now specialize to systems of the form

(16) ẋ = y + P2m+1(x, y), ẏ = Q2m+1(x, y),

where P2m+1 and Q2m+1 are homogeneous polynomials of degree 2m+ 1 in x and
y or are identically zero. An application of Theorem 1 shows that the singularity
of (16) at the origin is monodromic if and only if Q2m+1(1, 0) < 0. Suppose that
this is so. Letting r = P2m+1(1, 0) and s = Q2m+1(1, 0) < 0 the linear change of
coordinates

x = u− r(−s)−1/2v, y = (−s)1/2v

and time-rescaling t = (−s)−1/2τ (correcting a misprint in the transformation in
[6]) transforms (16) into a polynomial system of the same form as (16) but with
P2m+1(1, 0) = 0 and Q2m+1(1, 0) = −1. In particular, in contrast with general
polynomial systems as described in Section 2 in the paragraph that follows Defini-
tion 3, in the case of systems of the form (16) with a monodromic singularity at
the origin it is no loss of generality to assume from the outset that y factors out
of P2m+1 and that Q2m+1(1, 0) = −1 (although the new coefficients depend on the
origin coefficient s = Q2m+1(1, 0) in a non-polynomial way). (See also [6] and the
additional developments in [1, 2]). We take as the parameter λ the coefficients of
the polynomials P2m+1 and Q2m+1 after these transformations have been done (see
Remark 8). We let X denote the vector field associated to (16),

X (x, y) = (y + P2m+1(x, y)) ∂
∂x +Q2m+1(x, y) ∂∂y .
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In the language of Theorem 1, since y factors out of P2m+1, F (x) ≡ 0 so that
f(x) = Q2m+1(x, 0) = −x2m+1, hence α = 2m + 1 = 2n − 1 and n = m + 1;
ϕ(x) is either identically zero, if the coefficient of x2my in Q2m+1 is zero, or is
ϕ(x) = bx2m if the coefficient b of x2my in Q2m+1 is nonzero, and in the latter case
β = 2m ≥ m + 1 = n. This confirms that the origin is a monodromic singularity
and may be used to readily verify that the two conditions in Proposition 7 are met,
hence the generalized Poincaré-Lyapunov quantities are polynomials in λ. However,
as discussed at the end of Section 2, the absence of a minus sign in the linear part
of the ẋ equation in (16) means that if for λ = λ∗ the origin is a focus then the
negative of the first non-zero Poincaré-Lyapunov quantity indicates its stability.

It is known ([3, 6]) that there exists a formal series

(17) W (x, y) = (m+ 1)y2 +
∑
k≥1

W2(km+1)(x, y),

where Wj is an homogeneous polynomial of degree j, whose derivative along the
trajectories of system (16) has the form

(18) X (W ) = x2(m+1)
∑
k≥1

fk x
2km =

∑
k≥1

fkx
K(k),

where K(k) := 2(k + 1)m + 2 and fk ∈ Q[λ]. The formal series W is uniquely
determined once the values of W2(km+1)(0, 1) are fixed; we take W2(km+1)(0, 1) = 0.
Although not mentioned in [6] it is also true that W2(m+1)(1, 0) = 1, which will be
important later.

A property of system (16) that is of fundamental importance is that the origin is
a center for λ = λ∗ if and only if fk(λ∗) = 0 for all k ≥ 1 ([3,6]). On the other hand
if f1(λ∗) = · · · = fj−1(λ∗) = 0 but fj(λ

∗) 6= 0 then the origin is called a jth-order
focus for system (16) with λ = λ∗.

Theorem 14. The origin is a nilpotent center of the polynomial system (16) if and
only if there is a local analytic first integral H(x, y) which can be selected to have
the expansion H(x, y) = y2 + · · · .

Proof. The preceding discussion tells us that the origin is a nilpotent center of the
polynomial system (16) if and only if there is a formal first integral W (x, y) given
by (17). From the results obtained by Mattei and Moussu in [13] the existence of
a formal first integral implies the existence of a local analytic first integral around
any isolated singularity of an analytic planar vector field. Therefore the theorem
follows. �

Remark 15. In [1] this procedure is extended to nilpotent singularities that are
more general than (16). Even in the particular case of systems (16) they make
small changes in the formal power series W (x, y). For example in [1] they use
W (x, y) = 1

2y
2 +

∑
k≥1W2(km+1)(x, y) with W2(m+1)(1, 0) = 1

2(1+m) . Additionally

they use the conditions W2(km+1)(1, 0) = 0 to obtain the uniqueness of W .

5.1. Relation between vk and fk. The following theorem describes the rela-
tionship between the generalized Lyapunov quantities and the focus quantities for
family (16). Its proof is analogous (with small technical differences) to that of
Theorem 6.2.3 in [15] for nondegenerate monodromic singularities.

Theorem 16. Let vk be the generalized Poincaré-Lyapunov quantities (Definition
6) for the polynomial system (16) of degree 2m+ 1 with regard to the monodromic
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nilpotent singularity at the origin and let fk denote the polynomials defined by (18).
Let Ik = 〈f1, . . . , fk〉 in R[λ]. Then there exist positive real numbers wk such that:

(i) v1 = v2 = · · · = vm = 0 and vm+1 = w1f1

(ii) for k ∈ N with k ≥ 1:
v(2k−1)m+j ∈ Ik for j = 2, 3, . . . , 2m and v(2k+1)m+1 − wk+1fk+1 ∈ Ik.

Proof. Without loss of generality we may assume in the proof that the change of
coordinates and time rescaling discussed at the beginning of Section 5 introduced
a minus sign in the linear part of the ẋ equation in (16).

The idea of the proof is to compare the value of the displacement map d(h;λ)
with the change in W in one turn about the singularity at the origin, starting from
the point (x, y) = (h, 0). The change in W , as a function of h and λ, will be
denoted ∆W (h;λ). It is computed by integrating its derivative X (W ) along the
solution of (16) that satisfies the initial condition (x, y) = (h, 0); we denote that
solution (x(t;h, λ), y(t;h, λ)). Recall that X (W ) naturally generates the quantities
fk according to (18). Since the series defining W is only formal we truncate it at a
sufficiently large N = 2(κm + 1), but for simplicity of expression we will suppress
any reference to N in the notation.

Fix an initial point (h, 0) on the positive x-axis. In one turn about the singularity
at the origin time increases by some amount τ = τ(h) and (applying (18) for the
second equality) the change in W , truncated at power N = 2(κm+ 1), is

∆W (h;λ) =

∫ τ(h)

0

d
dt (W (x(t;h, λ), y(t;h, λ))) dt

=

∫ τ(h)

0

κ∑
k=1

fk(λ)xK(k)(t;h, λ) dt.

Now change the variable of integration from t to the generalized polar angle θ for
the generalized polar coordinates (7) with n the Andreev number n = m + 1 for

(16). This is permissible since, because β ≥ n, by the expression for θ̇ in the proof
of Lemma 5 and our choice of the initial rescaling (see the comments in the second
full sentence following (14))

dθ

dt
= rn−1(1 + rΘ(θ, r)) = rn−1

1 +
∑
j≥1

uj(θ)r
j

 .

Writing, as before, Ψ(θ;h, λ) =
∑
i≥1 Ψi(θ;λ)hi for the solution of (8) that meets

the initial condition Ψ(0;h, λ) = h,

dt =
dθ(∑

k≥1 Ψk(θ;λ)hk
)n−1

(
1 +

∑
j≥1 uj(θ)

(∑
k≥1 Ψk(θ;λ)hk

)j)
=

dθ

hn−1
(

1 +
∑
k≥2 Ψk(θ;λ)hk−1

)n−1
(

1 +
∑
j≥1 uj(θ)

(∑
k≥1 Ψk(θ;λ)hk

)j)
= h1−n

[
1 +

∑
j≥1

ũj(θ;λ)hj
]
dθ,
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since by (13) and the initial condition following it Ψ1(θ;λ) ≡ 1. Using x(t(θ);h, λ) =
r(θ;h, λ)Cs θ = Cs θ

∑
i≥1 Ψi(θ;λ)hi and writing just T for Tn = Tm+1 we have

∆W (h;λ) = h1−n
κ∑
k=1

∫ T

0

CsK(k)θ
[∑
i≥1

Ψi(θ;λ)hi
]K(k)[

1 +
∑
j≥1

ũj(θ;λ)hj
]
dθ

 fk(λ)

= h1−n
κ∑
k=1

∫ T

0

CsK(k)θ
[
hK(k) +

∑
j≥2

ûj(θ;λ)hK(k)+j
]
dθ

 fk(λ)

= h1−n
κ∑
k=1

[
wkh

K(k) + fk,1(λ)hK(k)+1 + fk,2(λ)hK(k)+2 + · · ·
]
fk(λ)

where

wk =

∫ T

0

CsK(k)(θ) dθ.

Observe that wk > 0 since K(k) is even and that wk does not depend on λ.
For any value of h > 0 let ζ be the positive real number defined by

ζ = u(h) = W (h, 0) =

κ∑
k=1

W2(km+1)(h, 0)

= h2(m+1) + V2(2m+1)h
2(2m+1) + · · ·+ V2(κm+1)h

2(κm+1).

Since we restrict to h > 0, on a sufficiently short h-interval ζ = u(h) has an inverse

h = g(ζ). By Taylor’s Theorem, for any ε sufficiently close to 0 there exists ζ̃

between ζ and ζ + ε such that g(ζ + ε) = g(ζ) + g′(ζ)ε + 1
2!g
′′(ζ̃)ε2. Let h̃ = g(ζ̃).

Then

g′(ζ) =
1

u′(g(ζ))
=

1

h2m+1

[
1

2(m+ 1)
+ · · ·

]
and

g′′(ζ̃) = − u′′(g(ζ))

[u′(g(ζ))]3
= − 1

h̃4m+3

[
2m+ 1

4(m+ 1)2
+ · · ·

]
so that for ε = ∆W

∆h = g(ζ + ε)− g(ζ)

=
1

h2m+1

[
1

2(m+ 1)
+ · · ·

]
∆W

− 1

h̃4m+3

[
2m+ 1

8(m+ 1)2
+ · · ·

]
∆W 2.

Since Ψ1(h;λ) ≡ 1, v1(λ) = Ψ(Tn;λ) ≡ 0, so d(h;λ) = P(h;λ)−h = v2(λ)h2 + · · ·
whence P(h;λ) = h+ v2(λ)h2 + · · · . Thus since h̃ lies between h and P(h;λ) it is
of order h, so substituting the expression for ∆W from above into this expression
for ∆h and absorbing the fraction 1/(2m+ 1) into the positive constants wk yields

∆h =

κ∑
k=1

[
wkfk(λ)hα(k) + fk(λ)[f̃k,1h

α(k)+1 + f̃k,2h
α(k)+2 + · · · ]

]
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where α(k) := K(k)− 2m− n = 2(km+ 1)− n = (2k − 1)m+ 1. More explicitly

∆h = w1f1(λ)hm+1 + f1(λ)[f̃1,1h
m+2 + f̃1,2h

m+3 + · · · ]

+ w2f2(λ)h3m+1 + f2(λ)[f̃2,1h
3m+2 + f̃2,2h

3m+3 + · · · ]

+ w3f3(λ)h5m+1 + f3(λ)[f̃3,1h
5m+2 + f̃3,2h

5m+3 + · · · ]
+ · · ·

+ wκfκ(λ)h(2κ−1)m+1 + fκ(λ)[f̃κ,1h
(2κ−1)m+2 + f̃κ,2h

(2κ−1)m+3 + · · · ].

Comparing this expression to ∆h = d(h;λ) =
∑
k≥1 vk(λ)hk and choosing κ = k

we obtain the conclusion of the theorem for any pre-assigned value of k ∈ N. �

5.2. The cyclicity bound. An immediate consequence of Theorem 16 is the equal-
ity of ideals

(19) B = 〈vk : k ∈ N〉 = 〈v(2k−1)m+1 : k ∈ N〉 = 〈fk : k ∈ N〉
in R[λ] and of the corresponding ideals in the ring Gλ∗ of germs of analytic functions
at λ∗, all of which we have already termed the Bautin ideal. This in turn clearly
implies the following result.

Theorem 17. Let vk be the generalized Poincaré-Lyapunov quantities for the
singularity of (16) at the origin and fk be the focus quantities for (16) gener-
ated according to (18). Suppose {vk1 , . . . , vkr} and {fj1 , . . . , fjs} are the mini-
mal bases (Definition 12) for the Bautin ideal B in (19) with respect to the or-
dered bases {vm+1, v3m+1, . . .} and {f1, f2, . . .}, respectively. Then r = s and
kq = (2jq − 1)m+ 1.

Then finally we obtain a cyclicity bound result solely in terms of the focus
quantities.

Theorem 18. Let fk be the focus quantities for (16) generated according to (18)
and let 〈fj1 , . . . , fjs〉 be the minimal basis of the ideal 〈f1, f2, . . .〉 with respect to the
ordered basis {f1, f2, . . .}. Suppose that for parameter value λ = λ∗ the singularity
of (16) at the origin is a center. Then its cyclicity with respect to perturbation in
(16) is at most s− 1.

Proof. Combine Theorems 13 and 17. �

In order to implement Theorem 18 we must have a computationally feasible
method for obtaining the minimal basis MB of the Bautin ideal B = 〈fk : k ∈ N〉
(cf. (19)). Suppose the center problem for (16) has already been solved. This means
that we know k1, . . . , kr such that

(20) V(f1, f2, f3, . . .) = V(fk1 , . . . , fkr ),

where for an ideal I in a polynomial ring k[x1, . . . , xN ] over a field k, V(I) denotes
the affine variety of I in the affine space kN (or k′N , for any field k′ that contains
k, depending on the context),

V(I) = {(x1, . . . , xn) ∈ kn : f(x1, . . . , xn) = 0 for all f ∈ I}.
The equality (20) of the varieties of the ideals does not imply the equality of the
ideals themselves. In fact, since the varieties lie in R2(2m+1) and R is not alge-
braically closed, (20) does not even imply the equality

√
B =

√
〈fk1 , . . . , fkr 〉 of

their radicals. To obtain a connection between the ideals B and 〈fk1 , . . . , fkr 〉 and



CYCLICITY OF NILPOTENT CENTERS 15

thereby a means of computing the minimal basis MB of B we seek to move the
problem to the complex setting. We describe two approaches to doing so.

Approach I. The first idea is to observe that the family (16) makes sense as a
polynomial system on C2 with indeterminate coefficients, the parameters, lying in
either R or C. The step-by-step construction of the formal series (17) such that
(18) holds, finding W2(km+1) sequentially, is identical whether x and y are viewed
as either real or complex, and produces the same sequence of polynomials fk, that
in fact lie in Q[λ]. The series W is unique and is a formal first integral for system
(16) corresponding to λ = λ∗ ∈ E if and only if fk(λ∗) = 0 for all k, whether the
parameter space E is R2(2m+1) as formerly or is C2(2m+1), although in the complex
setting there is no geometric picture of a singularity surrounded by ovals when this
is the case.

The solution (20) of the real center problem means that, interpreting the polyno-
mials fk as polynomial functions fk(λ), if for some parameter value λ∗ ∈ R2(2m+1),
fk1(λ∗) = · · · = fkr (λ∗) = 0, then fk(λ∗) = 0 for all k ∈ N. This does not nec-
essarily yield the same implication when E = C2(2m+1). It is possible for ideals I
and J in Q[λ] or R[λ] that V(I) = V(J) in RM but V(I) 6= V(J) in CM . Thus
to continue this line of reasoning we must determine whether or not equality (20),
known to hold in R2(2m+1), also holds in C2(2m+1). The method for doing so is
to check whether the condition fk1(λ∗) = · · · = fkr (λ∗) = 0 implies existence of a
formal series W such that XW ≡ 0, using only analytic (not geometric) arguments
that are valid in C2.

Suppose (20) does hold in C2(2m+1) and additionally that the ideal 〈fk1 , . . . , fkr 〉
is radical (which is true in all of Q[λ], R[λ], and C[λ] or is false in all of them
([9])). Then because in the complex setting, as a consequence of the Strong Hilbert

Nullstellensatz, V(I) = V(J) if and only if
√
I =

√
J (for example, Proposition

3.1.16 of [15]),

B ⊂
√
B =

√
〈fk1 , . . . , fkr 〉 = 〈fk1 , . . . , fkr 〉,

so that

B = 〈f1, f2, . . .〉 = 〈fk1 , . . . , fkr 〉.

Thus if {fk1 , . . . , fkr} is not itself the minimal basis MB of B it can be easily used
to compute MB.

In the next subsection we describe a procedure for obtaining an upper bound
on the cyclicity of centers at the origin for systems corresponding to a restricted
portion of the center variety when the ideal 〈fk1 , . . . , fkr 〉 is not radical.

Approach II. If (20) does not hold in C2(2m+1) then a second approach is to
complexify family (16) and solve the problem of the existence of a first integral for
the larger family on C2.

By introducing the complex variable X = x + iy, differentiating with respect
to t, and applying (16) we obtain the complex form of (16). Adjoining to the
complex form its complex conjugate, then replacing every occurrence of X̄ by Y
and regarding Y as a new dependent variable, we obtain the system
(21)

Ẋ = i
2 (Y −X) + P2m+1

(
1
2 (X + Y ), i2 (Y −X)

)
+ iQ2m+1

(
1
2 (X + Y ), i2 (Y −X)

)
Ẏ = i

2 (Y −X) + P2m+1

(
1
2 (X + Y ), i2 (Y −X)

)
− iQ2m+1

(
1
2 (X + Y ), i2 (Y −X)

)
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on C2, the complexification of (16). It has complex coefficients and is parametrized
by the original real parameters λ ∈ E = R2(2m+1). Writing it in the form

(22) Ẋ = i
2 (Y −X)+

∑
j+k=2m+1

ajkX
jY k, Ẏ = i

2 (Y −X)+
∑

j+k=2m+1

bjkX
jY k

its coefficients satisfy bkj = ājk. When (21) is interpreted as a family of differential
equations on R4 the plane Π : Y = X̄ is invariant and (21) restricted to Π is
precisely (16). In analogy to the formal series W of (17) we pose a formal series

(23) U(X,Y ) = −(X − Y )2 +
∑
k≥1

U2(km+1)(X,Y ),

where Uj is a homogeneous polynomial of degree j with Uj(0, 1) = 0, such that

(24) Z(U) = (X + Y )2(m+1)
∑
k≥1

gk (X + Y )2km,

where Z is the vector field associated with (21). (We remark that instead of impos-
ing (24) we can also use a form like Z(U) = X2(m+1)

∑
k≥1 gkX

2km, although (24)

is more natural. We also note that if in (23) and (24) we replace Y by X̄ then we
reduce to the original real situation and gk reduces to fk.) We then seek to charac-
terize the systems for which all the polynomials gk vanish, so that U is a formal first
integral for the complexification (21), or more generally to solve the same problem
for the more general family (22), without the condition that bkj = ājk, letting Z
in (24) be the vector field associated with (22). Specifically we compute the gk
until gr+1 ∈

√
〈g1, . . . , gr〉, indicating that perhaps V(g1, g2, . . .) = V(g1, . . . , gr),

then by purely analytic means attempt to prove that if gk(λ∗) = 0 for 1 ≤ k ≤ r
then ZU ≡ 0. If the ideal 〈g1, . . . , gr〉 is radical then as in Approach I we obtain
〈g1, g2, . . . , 〉 = 〈g1, . . . , gr〉, which when we impose the condition bkj = ājk yields
the corresponding equality of ideals generated by the focus quantities, and finish as
in Approach I.

The case that the ideal 〈g1, . . . , gr〉 is not radical can be treated as in following
subsection.

5.3. The case of a nonradical ideal. Let us go back to Approach I and suppose
that the ideal 〈fk1 , . . . , fkr 〉 is not radical. In this case we use the following result
from [10] based on the idea in Proposition 1 of [11]. For a subset S of an affine space
kn, I(S) is the ideal in k[x1, . . . , xn] consisting of all f for which f(x1, . . . , xn) = 0
for all (x1, . . . , xn) ∈ S.

Proposition 19. Suppose I = 〈g1, . . . , gr〉, R, and N are ideals in C[x1, . . . , xn],
R radical, such that I = R ∩N . Let

W = V(I) = V(R) ∪V(N).

Then for any f ∈ I(W ) and any x∗ ∈ Cn \V(N) there exist a neighborhood U∗ of
x∗ in Cn and rational functions h1, . . . , hr on U∗ such that

f = h1g1 + · · ·+ hrgr on U∗.

Proof. By the Strong Hilbert Nullstellensatz and the hypotheses on I and R, if

f ∈ I(W ) = I(V(I)) =
√
I =
√
R ∩N = R ∩

√
N
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then f ∈ R. Thus for any element h ∈ N , hf ∈ R (since f ∈ R) and hf ∈ N (since

h ∈ N), so hf ∈ I. Hence there exist f̃1, . . . , f̃r ∈ C[x1, . . . , xn] such that

(25) hf = f̃1g1 + · · ·+ f̃rgr.

For any x∗ /∈ V(N) choose a neighborhood U∗ of x∗ in Cn and an h ∈ N such that

h 6= 0 on U∗. For this choice of h, hj = f̃j/h is well defined on U∗ for the f̃j that
exist for h as in (25) so that

f = h1g1 + · · ·+ hrgr

is valid on U∗. �

Using this proposition we can obtain an upper bound on the cyclicity of the
center at the origin for systems (16) in what is typically a large subset of the center
variety.

Theorem 20. Let fk be the focus quantities for (16) generated according to (18)
and let {fj1 , . . . , fjs} be such that it is the minimal basis of 〈f1, f2, . . . , fjs〉 and

that VC = V(B) = V(fj1 , . . . , fjs) as varieties in C2(2m+1). Suppose a primary
decomposition of 〈fj1 , . . . , fjs〉 can be written R ∩ N where R is the intersection
of the ideals in the decomposition that are prime and N is the intersection of the
remaining ideals in the decomposition. Then for any system of family (16) corre-
sponding to λ∗ ∈ VC \ V(N), the cyclicity of the center at the origin is at most
s− 1.

Proof. The Strong Hilbert Nullstellensatz and the hypothesis that (20) holds in
C2(2m+1) yield

B ⊂
√
B = I(V(B)) = I(V(fj1 , . . . , fjs),

so that for any focus quantity fk and any λ∗ ∈ C2(2m+1) \V(N), by Proposition 19
there exists a neighborhood U∗ of λ∗ in C2(2m+1) and rational functions h1, . . . , hs
such that, as analytic functions from U∗ to C,

fk = h1fk1 + · · ·+ hsfks

is valid on U∗. This means that working with the germs at λ∗ of the analytic
functions involved, using Theorem 16 to express the vi(λ) in terms of the fi(λ), and
applying the same estimates as in Lemma 6.1.6 of [15] to justify the rearrangement
of the series, we obtain

d(h;λ) =
∑
i≥1

vi(λ)hi =

s∑
q=1

fkq (λ)[1 + ψq(h, λ)]h(2kq−1)m+1

on a set of the form U1 = {(h, λ) : |h| < ε2, |λ − λ∗| < ε2}. Then by the kind of
argument mentioned just above Theorem 13 (formalized, for instance, in Proposi-
tion 6.1.2 of [15]) there are at most s − 1 small positive zeros of d(h;λ) for any λ
sufficiently close to λ∗. But then the cyclicity of the center at the origin for any
system corresponding to λ ∈ VC \V(N) is at most s− 1. �
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6. The cubic case

We now apply Theorem 18 to the cubic case m = 1 of (16), that is, the family

(26)
ẋ = y + P3(x, y) = y +Ax2y +Bxy2 + Cy3

ẏ = Q3(x, y) = −x3 + Px2y +Kxy2 + Ly3.

In 1953 Andreev ([4]) showed that the origin is a center for (26) if and only if the
three polynomials

(27) h1 = P, h2 = B + 3L, h3 = (A+K)L

all vanish. Moreover these three polynomials form a Gröbner basis for the ideal they
generate. By means of a computer algebra system such as Maple or Mathematica
we find that up to a positive multiplicative constant the first three focus quantities
are

f1 = P

f2 = 3B + 9L− 3AP − 4KP

f3 = −60AB − 66BK − 120AL− 138KL+ 30A2P − 45CP

+ 61AKP + 23K2P + 25BP 2 + 50LP 2

Letting f̃k0 denote the reduction of fk0 modulo the ideal generated by the previous
fk (i.e., the remainder of fk0 upon division by a Gröbner basis of that ideal) yields

f̃2 = B + 3L, f̃3 = (A+K)L,

hence by (27) the center variety VC for (26) is V(f1, f2, . . .) = V(f1, f̃2, f̃3), which
is clearly the union of the two irreducible components

V(J1), J1 = 〈P,A+K,B + 3L〉
V(J2), J2 = 〈P,B,L〉.

Theorem 21. A sharp upper bound for the cyclicity of any center at the origin in
family (26) is two.

Proof. Following Approach I of the previous subsection we view (26) as a system
on C2 and the parameter λ = (A,B,C, P,K,L) as lying in C6. If λ∗ ∈ V(J1) the
system is hamiltonian with hamiltonian function

W (x, y) = 2y2 + x4 + 2Ax2y2 + 4
3Bxy

3 + Cy4.

If λ∗ ∈ V(J2) then the corresponding system is invariant under the involution
(x, y, t) → (−x, y,−t), which in the real case implies time-reversibility. With this
hint we will show that there exists a formal first integral of the form (17) in which
each homogeneous polynomial W2j contains no term with an odd power of x (but
see Remark 22). To this end write W2j =

∑
r+s=2j arsx

rys (a0,2j = 0) and

(28) XW =

(∑
j≥2

[W2j ]x

)
(y + P3) +

(
4y +

∑
j≥2

[W2j ]y

)
Q3.

The terms of degree four in (28) are

(W4)xy + 4yQ3(x, y) = (4a40 − 4)x3y + 3a31x
2y2 + (2a22 + 4K)xy3 + a13y

4

so that equating the coefficients to zero gives W4(x, y) = x4 − 2Kx2y2, which is as
claimed.



CYCLICITY OF NILPOTENT CENTERS 19

By (28) the terms of order 2j in XW are

(29) (W2j)xy + (W2j−2)xP3 + (W2j−2)yQ3.

Given that W2j−2 has been found and has no terms with an odd power of x, the
parts of (29) arising from W2j−2 yield only terms in which the power of x is odd,
since (W2j−2)x contains only odd powers of x and P3 only even powers of x, and
(W2j−2)y contains only even powers of x and Q3 only odd powers of x. Thus
equating the coefficients of (29) to zero yields, since a0,2j = 0, 2j equations of the
form

a2j−s,s + us = 0, 0 ≤ s ≤ 2j − 1

where us = 0 if s is odd and us is an expression in the coefficients of W2j−2 if s is
even. Thus by mathematical induction W2j exists as claimed for all j ∈ N, j ≥ 2.

Thus V(f1, f2, . . .) = V(f1, f̃2, f̃3) in C6, hence
√
〈f1, f2, . . .〉 =

√
〈f1, f̃2, f̃3〉.

Using a symbolic manipulator we may verify that 〈f1, f̃2, f̃3〉 is a radical ideal. (For
example, use the IsRadical command in Maple or the primdecGTZ or primdecSY

routines in the primdec.lib library of Singular, which shows that each ideal

in the primary decomposition of 〈f1, f̃2, f̃3〉 is actually prime, so that 〈f1, f̃2, f̃3〉
is an intersection of prime ideals, hence is radical.) As explained in the previous
subsection we conclude that

B = 〈f1, f2, .f3, . . .〉 = 〈f1, f̃2, f̃3〉.

Since {f1, f̃2, f̃3} is obviously the minimal basis MB of B with respect to the ordered

basis {f1, f̃2, f̃3, f̃4, . . . }, we conclude by Theorem 18 that any center at the origin
in family (26) has cyclicity at most two.

But it was proved independently in [6] and [14] that two limit cycles can be made
to bifurcate from a third order focus at the origin in family (26) (see also Remark 23
below). Starting with a center, we can make an arbitrarily small perturbation in A
or K so that f1 and f2 are still zero but f3 6= 0, so that the singularity has become
a third order fine focus. Then by the theorem of Andreev-Sadovskii-Tsikalyuk and
Romanovski we can make an arbitrarily small perturbation to produce two small
cycles from the focus. In all, we can produce two small cycles from the center by
the successive perturbations, so the upper bound of two is sharp. �

Remark 22. Assuming the analytic system (1) has a center at the origin, in [7] it
is proved that

(i) if (1) is invariant with respect to the involution (x, y, t) 7→ (x,−y,−t) it has
a local analytic first integral of the form y2 + · · · , and

(ii) if (1) has a formal (analytic) first integral then it has a formal (analytic) first
integral of the form y2 + · · · .

We present a simpler proof of (i). If (1) is invariant by (x, y, t) 7→ (x,−y,−t), then
it is

(30) ẋ = y(1 +A(x, y2)), ẏ = B(x, y2).

The analytic mapping (u, z) = H(x, y) = (x, y2) yields from (30)

u̇ = y(1 +A(u, z)), ż = 2yB(u, z).

But by the Flowbox Theorem the scaled system

(31) u̇ = 1 +A(u, z), ż = 2B(u, z)
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admits a first integral of the form Ω(u, z) = z+ · · · on a neighborhood of the origin,
from which we obtain without difficulty that U = Ω ◦H is an analytic first integral
of the form y2 + · · · for (1) on a neighborhood of the origin.

On the other hand, it is also proved in [7] that the system ẋ = y + x2, ẏ = −x3,
which is invariant under the involution (x, y, t) 7→ (−x, y,−t), has a nilpotent center
at the origin but admits no analytic or formal first integral in a neighborhood of
the origin.

Remark 23. Here is a proof that two small cycles can be made to bifurcate from
any center at the origin for a member of family (26) using ideas developed in this
paper. Let λ∗ ∈ V(J1) ∪ V(J2). It was established in the proof of Theorem
21 that the minimal basis of the Bautin ideal with respect to the ordered basis

{f1, f̃2, f̃3, f̃4, . . . } is MB = {f1, f̃2, f̃3}. By Theorem 17 {v2, v4, v6} is the minimal
basis of B with respect to the basis {v1, v2, . . . }, which implies (e.g., Lemma 6.1.6
of [15]) that

d(h;λ) =

3∑
j=1

v2j(λ)[1 + ψj(h, λ)]h2j

where each ψj analytic and satisfies ψj(0;λ∗) = 0. By Theorem 16 we can write

d(h;λ) =

3∑
j=1

f̃j(λ)[1 + ψ̃j(h, λ)]h2j

where each ψ̃j analytic and satisfies ψ̃j(0;λ∗) = 0. It is clear that no matter which
of the two components V(J1) and V(J2) of VC that λ∗ lies in, we can successively
perturb λ from λ∗ to λ1, to λ2, to λ3, all arbitrarily close to λ∗, so as to successively

change f̃3, then f̃2, then f1 from 0 to a non-zero quantity of either sign so that by
the standard argument we obtain d(h;λ3) with exactly two positive zeros in any
preassigned interval 0 < h < h1.

7. The quintic case

We consider the quintic case m = 2 of (16) given by the family

(32)
ẋ = y + P5(x, y) = y +Ax4y +Bx3y2 + Cx2y3 +Dxy4 + Ey5

ẏ = Q5(x, y) = −x5 +Qx4y +Kx3y2 + Lx2y3 +Mxy4 +Ny5.

Using a computer algebra system such as Maple or Mathematica we find that up
to a positive multiplicative constant the first few focus quantities gj ∈ C[λ] using
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Approach II are

g1(λ) = Q

g2(λ) = 10B + 10L− 10AQ− 7KQ

g3(λ) = −5040AB + 1080D − 2620BK − 3600AL− 1900KL+ 5400N + 2520A2Q

− 1710CQ+ 2674AKQ+ 511K2Q− 3636MQ+ 1134BQ2 + 756LQ2

g4(λ) = 6486480A2B − 1719900BC − 2106000AD + 5381580ABK − 1208520DK

+ 990750BK2 + 3678480A2L− 1326780CL+ 3152460AKL+ 578190K2L

− 2915640BM − 2129400LM − 8171280AN − 4863240KN + 1223040Q

− 2162160A3Q+ 1730820B2Q+ 3367260ACQ− 1223040EQ+ 1834560KQ

− 2820972A2KQ+ 1681986CKQ− 885192AK2Q− 78771K3Q

+ 2446080iLQ+ 2777684BLQ+ 850304L2Q− 3669120MQ+ 5836584AMQ

+ 2605404KMQ− 7338240iNQ− 1467648iQ2 − 2366364ABQ2

+ 905736DQ2 − 739794BKQ2 − 1275560ALQ2 − 417692KLQ2

+ 4065672NQ2 − 226512CQ3 − 339768MQ3.

The expressions for gk for k ≥ 5 are huge so we will not display any of them (see
the appendix of [6] for Mathematica code for their computation). Next we reduce
gk modulo the ideal 〈gj : j < k〉, i.e., compute its remainder g̃k with respect to a
Gröbner basis of that ideal with respect to a convenient monomial order, obtaining
up to positive multiplicative constants

(33)

g1 = Q

g̃2 = B + L

g̃3 = 3D + 4AL+ 2KL+ 15N

g̃4 = −3DK + 2CL+ 4LM + 12AN − 9KN

g̃5 = −DM + 2CN −MN

g̃6 = −L2(D + 5N).

Remark 24. We have also checked that working on the reals instead of com-

plexifying gives exactly the same result in the sense that we get f̃j = g̃j for all
j = 1, . . . , 6.

Let B6 = 〈g1, g̃2, g̃3, g̃4, g̃5, g̃6〉. Using the routine minAssChar in the primdec.LIB
library of Singular we find that the primary decomposition of

√
B6 is J1∩J2 where

J1 = 〈B,D,L,N,Q〉
J2 = 〈Q, 2A+K,B + L,C + 2M,D + 5N〉.

But in [16] it is proved that the origin is a center if and only if all the generators
of either J1 or J2 vanish, that is, that the center variety is VC = V(J1) ∪V(J2) =
V(
√
B6). It is easy to verify that systems corresponding elements of the irreducible

component V(J1) are invariant under the involution (x, y, t) 7→ (x,−y,−t) and that
systems corresponding elements of the irreducible component V(J2) are hamilton-
ian.

At this point we are stymied in our attempt to apply Theorem 18, since computa-
tions using either of the routines primdecGTZ and primdecSY in the primdec.LIB
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library of Singular, or using some other symbolic manipulator, show that B6

is not a radical ideal, so that we do not know that the obvious minimal basis
MB6 = {g1, g̃2, g̃3, g̃4, g̃5, g̃6} of B6 is a basis of the full Bautin ideal B.

On the other hand, we have verified that

f̃j ∈ 〈f1, f̃2, . . . , f̃6〉 for j = 7, . . . , 11,

making it probable that MB6
is the minimal basis MB of B, hence that an upper

bound on the cyclicity of any center at the origin in family (32) is five. In [6] it is
shown that five small cycles can be made to bifurcate from a sixth order fine focus
in (32). We will demonstrate (Theorem 27) that there are points in each of the two
irreducible components of the center variety such that the corresponding systems
can be approximated arbitrarily closely by systems with a sixth order fine focus.
These facts lead to the following conjecture.

By global upper bound we mean a single number that is an upper bound that
applies to all centers in the family.

Conjecture 25. A sharp global upper bound for the cyclicity of any center at the
origin in family (32) is five.

In any case, using Theorem 20 we can establish a global upper bound on the
cyclicity for a large subset of the center variety. We note that the ideal R3 in the
following theorem satisfies R3 ⊃ J1 so that V(R3) ⊂ V(J1) ⊂ VC .

Theorem 26. Let R3 denote the prime ideal

R3 = 〈B,D,Q,L,N, 2ACK + CK2 − 4A2M +K2M + C2 + 4CM + 4M2〉.
Then for any system in the family (32) corresponding to a parameter value λ lying
in VC \V(R3) the cyclicity of the center at the origin is at most five.

Proof. Using either of the routines primdecGTZ and primdecSY in the primdec.LIB
library of Singular we find that the primary decomposition of B6 is J1∩J2∩J3∩J4

where J3 and J4 are ideals whose radicals are the prime ideals R3 and

R4 = 〈B,D,Q,L,N, 2A+K,C + 2M〉.
Moreover using the intersect command of Singular or some other means we find
that R4 ⊂ R3. Since for any ground field V(I) = V(

√
I) the result is an immediate

consequence of Theorem 20. �

Theorem 27. In each irreducible component V(J1) and V(J2) of the center variety
of family (32) there exist
a. points for which the corresponding system can be approximated arbitrarily closely

by systems with a sixth order fine focus at the origin (hence, which can be made
to bifurcate at least five small cycles), and

b. points which are isolated from the set of points in parameter space corresponding
to systems with a sixth order fine focus at the origin (i.e., cannot be so approxi-
mated).

Proof. Begin with

(A,B,C,D,E,Q,K,L,M,N) = (A, 0, C, 0, E, 0,K, 0,M, 0) ∈ V(J1)

and perturb to

(A+ λ1, λ2, C + λ3, λ4, E + λ5, λ6,K + λ7, λ8,M + λ9, λ10).

Then by straightforward computations using (33)
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• we maintain g1 = 0 iff λ6 = 0
• we maintain g̃2 = 0 iff λ8 = −λ2

• we maintain g̃3 = 0 iff λ10 = (4Aλ2 + 2Kλ2 + 4λ1λ2 − 3λ4 + 2λ2λ7)/15,
• we maintain g̃4 = 0 iff

λ2 =
3λ4(2A+K + 2λ1 + λ7)

8A2 − 2AK − 3K2 − 5C − 10M + p(λ1, λ3, λ7, λ9)

where here and throughout the proof an expression like p(λ1, . . . , λ9) denotes a
polynomial without constant term, and where in the last step we must assume that
A, C, K, and M satisfy the condition

(34) 8A2 − 5C − 3K2 − 2AK − 10M 6= 0

to insure that λ2 is well-defined for λ1, λ3, λ7, and λ9 all sufficiently small.
With these choices g̃5 has the form

g̃5 = λ4
C2 − 4A2M +K2M + 4M2 + 2ACK + CK2 + 4CM + q(λ1, λ3, λ7, λ9)

8A2 − 5C − 3K2 − 2AK − 10M + r(λ1, λ3, λ7, λ9)

and λ4 factors out of g̃6 as well.
Because λ4 factors from g̃6, in order that g̃5 be zero but g̃6 remain nonzero it

must be the case that the numerator in the expression for g̃5 be zero. But for any
choice of A, C, K, and M for which

(35) C2 − 4A2M +K2M + 4M2 + 2ACK + CK2 + 4CM 6= 0,

this is impossible if all of λ1, λ3, λ7, and λ9 are sufficiently small. Thus for any
point in V(J1) for which conditions (34) and (35) hold the corresponding system
has a center but is isolated from the set of systems for which the origin is a sixth
order fine focus.

To obtain an example of a system with a center that can be approximated
arbitrarily closely by a system with a sixth order fine focus at the origin choose
C = M = 0 (so that (35) fails) but A = K 6= 0 (so that (34) holds). For λ1 = λ7 = 0

g̃5 = −2λ4
λ2

3 + 4λ3λ9 + 4λ2
9 + 3A2λ3 − 3A2λ9

−3A2 + 5λ3 + 10λ9

and

g̃6 = −3Aλ4
787320A3λ2

4 + s(λ3, λ9)

27A6 + t(λ3, λ9)
.

The zero set in the numerator of g̃5 in (λ3, λ9)-space is a parabola P through
(0, 0). For λ4 6= 0 but arbitrarily close to zero, choosing (λ3, λ9) on P \ {(0, 0)}
and sufficiently close to (0, 0), g̃5 = 0 but g̃6 is arbitrarily close to −87480λ3

4/A
2 6= 0,

so the corresponding system has a sixth order fine focus.
Turning to V(J2), begin with

(A,B,C,D,E,Q,K,L,M,N) = (A,B,−2M,−5N,E, 0,−2A,−B,M,N)

and perturb to

(A+λ1, B+λ2,−2M+λ3,−5N+λ4, E+λ5, λ6,−2A+λ7,−B+λ8,M+λ9, N+λ10).
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Again using (33), in this case we maintain g1 = g̃2 = g̃3 = g̃4 = 0 iff

λ6 = 0

λ8 = −λ2

λ10 = (−3λ4 + 4Bλ1 + 4λ1λ2 + 2Bλ7 + 2λ2λ7)/15

λ3 =
1

5(B + λ2)
u(λ1, λ3, λ4, λ7, λ9)

and with these choices

g̃5 =
2

75(B + λ2)
(2λ1 + λ7) (−25B2M + 150ABN + 225N2 + v(λ1, λ3, λ4, λ7, λ9))

and

g̃6 =
−1

25(B + λ2)
(2λ1 + λ7)×

(27000B4 − 1212250AB2M + 7273500A2BN + 10910250AN2

+ w(λ1, λ3, λ4, λ7, λ9)).

Certainly if B(−25B2M + 150ABN + 225N2) 6= 0 then the corresponding system
cannot be closely approximated by one with a sixth order focus at the origin. On
the other hand, if M = N = 0 6= B and λ2 = λ4 = λ9 = 0 then

g̃5 =
4B

75
(2λ1 + λ7) (8λ2

1 − 2λ1λ7 − 3λ2
7 + 20Aλ1 + 10λ7)

whose zero set in (λ1, λ7)-space, other than the line 2λ1 + λ7 = 0, is a hyperbola
H through the origin. Any point on H and sufficiently close to but not equal to
the origin gives a system arbitrarily close to the original system and having a sixth
order fine focus at the origin. �

In closing we note that the same techniques apply to subfamilies of the full
families (16) that arise either because some terms are absent or because of relations
between the coefficients. In some cases one can obtain a better result than that for
the full family. In the case of the quintic family (32), for example, although the ideal
generated by the first six focus quantities B6 = 〈g1, g̃2, g̃3, g̃4, g̃5, g̃6〉 in the original
ring R[A,B,C,D,E,Q,K,L,M,N ] is not radical, when we fix L to a constant
value, so that it is no longer a parameter, then the ideal BL6 := 〈g1, g̃2, g̃3, g̃4, g̃5, g̃6〉
is radical in the ring R[A,B,C,D,E,Q,K,M,N ]. The same phenomenon occurs

for the analogous ideals BQ6 , BB6 , BD6 , and BN6 but not for BA6 , BK6 , BC6 , BE6 , and
BM6 . This gives the following result.

Theorem 28. An upper bound on the cyclicity of the center at the origin in any
of the subfamilies of (32) obtained by fixing exactly one of the parameters B, D,
Q, L, or N is five.
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l’École Normale Supérieure 13 (1980) 469–523.
[14] V. G. Romanovski, Cyclicity of the equilibrium state of the center or focus type of a system

(Russian), Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp. 4 (1986) 82–87, 125.
[15] V. G. Romanovski and D.S. Shafer, The center and cyclicity problems: a computational
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