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SOME REMARKS ON GLOBAL ANALYTIC PLANAR VECTOR

FIELDS POSSESSING AN INVARIANT ANALYTIC SET

ISAAC A. GARCÍA

Abstract. We study the problem of determining the canonical form that a

planar analytic vector field in all the real plane can have in order to possess

a given invariant analytic set. We determine some conditions that guarantee
that the only solution to this inverse problem is the trivial one.

1. Introduction

Vector fields appears in many areas of applied mathematics and physics. In
many cases, the knowledge and structure of some of their invariant sets is crucial
to understand the behavior of their associated flow. In this work we study the
following inverse problem: to determine the real analytic planar vector fields X =
P (x, y)∂x + Q(x, y)∂y possessing a given invariant analytic set {F (x, y) = 0} ⊂
R2. Here P,Q, F ∈ O(R2), the ring of real global analytic functions on all R2.
Clearly, the set of all such vector fields X form a linear space and its elements
are characterized by the fact that X (F )|F=0 = 0 or equivalently because X|F=0 is
orthogonal to∇F |F=0 at every regular point on the curve {F = 0}, that is except at
sing(F ), the set of singular points of the curve. Here, sing(F ) = {F = 0} ∩ crit(F )
where crit(F ) = {∇F = 0} is the set of critical points of F .

A widely studied related problem is to determine the structure that a com-
plex polynomial differential system must have in order to have a given set of
complex invariant algebraic curves. This algebraic case corresponding to when
P,Q, F ∈ C[x, y], the ring of complex polynomials. There we can use Hilbert’s
Nullstellensatz (see for example [6]) and other tools of the complex algebraic ge-
ometry that allow to give a solution of the inverse problem in that context under
some generic assumptions, see [4], [5] and references therein. Obviously, the linear
subspace consisting of those vector fields having the form

(1) A∇F⊥ + FY

where A is an arbitrary polynomial,∇F⊥ = −(∂yF )∂x+(∂xF )∂y is the Hamiltonian
vector field associated to the Hamiltonian function F and Y an arbitrary polynomial
vector field, corresponds with the trivial solutions to this inverse problem. In [5]
an interesting analysis of the non-trivial solutions is made. Examples of non-trivial
solutions may be vector fields of the form AF2∇F⊥1 +BF1∇F⊥2 +FY with arbitrary
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2 I. A. GARCÍA

functions A and B and vector field Y corresponding to a reducible F = F1F2. In
any event it is important to find under what additional conditions imposed on the
curve {F = 0} only the trivial solutions (1) can appear. An example of that kind
of conditions is when ∂xF and ∂yF have no common factors and the curve {F = 0}
is smooth, that is, sing(F ) = ∅, see [4] for a proof.

In this work we establish some cases for which the trivial solutions (1) are still
the only allowed vector fields possessing the invariant set {F = 0} in the real global
analytic category O(R2) instead that the complex polynomial one C[x, y]. The
paper is organized as follows. In Section 2 we briefly review some of the ideas
from real analytic geometry needed to follow some parts of the proofs. Section 3
is dedicated to state a prove the main results, namely Theorem 5 and Theorem 7.
In the final Section 4 we point out what kind of structures should be analyzed to
study the same problem in higher dimension.

2. Some background on real analytic geometry

Let Z(I) denotes the zero set of the ideal I of a ring R of real functions or
germs of n variables and I(S) the ideal of those elements of R that are identically

zero on the set S ⊂ Rn. The real radical of I is defined as R
√
I = {f ∈ R :

f2m +
∑k

j=1 f
2
j ∈ I, for some m, k ∈ N, fj ∈ R}. Additionally, I is a real ideal if

condition
∑k

j=1 f
2
j ∈ I implies that fj ∈ I for all fj ∈ R with 1 ≤ j ≤ k. Notice

that R
√
I is the smallest real ideal of R that contains I.

An important question is to know under what conditions

(2) I(Z(I)) =
R
√
I

and, moreover when

(3) I(Z(I)) = I if and only if I is real.

It is said that an ideal I has the zero property if I(Z(I)) = I. Clearly, if I has the
zero property then it is real, but what about the converse?

The Nullstellensatz for the ring of real analytic functions germs is well-known
from Risler [11], that is, if R = Op(Rn) is the Noetherian ring of real analytic
functions at p ∈ Rn then (2) and (3) holds.

On the contrary, when we look at rings of real global analytic functions O(Rn)
several difficulties arise such as the ring is neither Noetherian nor unique factor-
ization domain. In particular, there exist real prime ideals in O(Rn) with empty
zero-set. So in the real case prime ideals are too many to describe even irreducible
real algebraic varieties. Despite the difficulties, [12] extended the former local an-
alytic Risler result to the compact global analytic case as follows: if I is a finitely
generated ideal of O(Rn) with Z(I) compact then (2) and (3) holds too.

Still in the global analytic setting but particularizing to the planar case n = 2,
in [2] it is proved that if I is a finitely generated ideal of O(R2) then (2) and (3)
still holds. This will be a key property in the proof of our Theorem 7.

Remark 1. A simple example. Consider the ideal I = 〈(x2 + y2)2〉. Then Z(I) =

{(0, 0)}, I(Z(I)) = R
√
I = 〈x, y〉, I(ZC(I)) =

√
I = 〈x2 + y2〉.
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Remark 2. Every real ideal I of a commutative ring R is radical, see [1]. There
is a simple criteria to decide whether a principal prime ideal of the polynomial ring
R[x, y] is real, see Theorem 4.5.1 in [1]. Thus, if F is an irreducible polynomial
in R[x, y], de ideal 〈F 〉 in the ring R[x, y] is real if and only if the curve {F = 0}
contains at least one regular point.

3. Main results

The C1 function V : R2 → R is said to be an inverse integrating factor of the
analytic vector field X = P (x, y)∂x + Q(x, y)∂y on R2 if V 6≡ 0 and div(X )/V ≡ 0.
The differential 1-form ω/V = (P dy − Q dx)/V is closed, that is, d(ω/V ) = 0.
Moreover, in each simply-connected region of R2\V −1(0), the 1-form ω/V is exact,
hence ω/V = dH.

Given a real vector field X , we will denote by sing(X ) the set of real singular
points of X . These singularities are non-degenerate when the determinant of the
Jacobian matrix of X at that points in non-zero. A point in crit(F ) is called non-
degenerate when the Hessian matrix is non-singular at that point. Moreover F is a
Morse function if it has no degenerate critical points.

Proposition 3. Let XH be a C1 vector field in Rn having a C2 first integral H. If
H is a Morse function then crit(H) ⊂ sing(XH). The reverse inclusion is also true
for the non-degenerate singularities of X with independence of the nature of H.

Proof. XH(H) ≡ 0 since H is first integral of XH . Taking partial derivatives with
respect to all the coordinates in that relation we get

(4) Hess(H)XH = −JacT (XH)∇H
where Hess(H) and Jac(XH) denote the n × n Hessian of H and Jacobian of XH

matrices. If H is Morse then det(Hess(H)(q)) 6= 0 when ∇H(q) = 0 which implies
by (4) that XH(q) = 0 or, in other words, crit(H) ⊂ sing(XH). The reverse inclusion
also follows by (4) at the non-degenerate singularities XH . �

Remark 4. When the first integral H is not square-free it may happens that
crit(H) 6⊂ sing(XH). The simple example H(x, y) = x2 and XH = ∂y with
crit(H) = {x = 0} and sing(XH) = ∅ reveals this kind of behavior.

A singularity of a holomorphic differential 1-form ω in C2 is called algebraically
isolated when it is isolated in C2. A germ of holomorphic function is said to be
irreducible, if it is not a product of two holomorphic functions that are not unities.

Theorem 5. If the analytic vector field XH in R2 has an analytic first integral H
then

(5) XH = V ∇H⊥

holds in R2\crit(H) for some real analytic function V there.

(i) In a neighborhood of an isolated singularity in sing(XH) ⊂ crit(H) where
H vanishes, relation (5) still holds with the function V H analytic.

(ii) If a point in crit(H) is an algebraically isolated singularity of the 1-form
dH associated to the complex extensions of H then in a neighborhood of
that point (5) holds with the function V analytic.
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(iii) If H is a Morse function then (5) holds in all R2 with the function V
analytic.

Proof. The first part of the proposition is trivial since, for XH = P∂x+Q∂y satisfy-
ing XH(H) = P∂xH+Q∂yH = 0 in all R2 one has XH⊥∇H almost everywhere with
the unique exception of those points in crit(H). Moreover, by (5) the analyticity
of V in R2\crit(H) is clear.

The proof of statement (i) follows some ideas from the work [7]. We first translate
the isolated singularity of XH = P∂x +Q∂y to the origin, hence P (0, 0) = Q(0, 0) =
0. We consider the complex extensions of the 1-form ω = Pdy − Qdx and the
function H (without changing its name) which are holomorphic in a neighborhood
of the origin of C2. From Lemma 6 in [7] there exists a holomorphic function F
and a holomorphic 1-form ω0 such that ω = Fω0 in a neighborhood of the origin
such that, if the origin is a singularity of ω0 then it is algebraically isolated. Indeed,
that lemma is based on the factorization into irreducible factors of the holomorphic
functions P and Q near the origin obtaining that ω = Fω0 where F is given by
the product (taken maximal multiplicities) of all the non-unit irreducible factors
which are common to P and Q and using the standard argument (see [8]) that the
local zero-set of different (up to units) irreducible holomorphic functions vanishing
at the origin is just the origin.

Since H is first integral of ω, it is also first integral of ω0 and since the origin is
either a regular point or an algebraically isolated singularity of ω0, by De Rham’s
division lemma [9] there is a holomorphic function G in a neighborhood of the origin
such that

(6) dH = Gω0,

hence

(7) ω = RdH

where R = F/G is a meromorphic function. There is no loss of generality in
assuming that H(0, 0) = 0 (just adding a convenient constant to H) and that
dH(0, 0) = 0 since otherwise statement (i) is trivial because V itself is analytic.
Since H is holomorphic and vanishes at the origin it admits a unique, up to units,
factorization in different irreducible factors

(8) H = H0

n∏
j=1

H
mj

j

where H0 is a holomorphic unit, each Hj is an irreducible holomorphic function
with Hj(0, 0) = 0 for all 1 ≤ j ≤ n, and the multiplicities mj are positive integers.

We want to analyze the poles of R, or equivalently the zeros of G which are by
(6) the singularities of dH, except may be the origin. Computing dH from (8) we

obtain that dH = ĤΩ where the function Ĥ is Ĥ =
∏n

j=1 H
mj−1
j and the 1-form

Ω =
∑n

j=0 H
∗
j dHj where H∗j =

∏
i 6=j Hi.

We see that {dH = 0} ⊂ {H = 0} in a sufficiently small neighborhood of the
origin since Ω vanishes only at the origin because there is no, up to unit, common
irreducible factor for all the 1-forms dHj (j = 0, . . . , n). Therefore {dH = 0} =
{0} ∪

{
∪mj≥2{Hj = 0}

}
with vanishing multiplicity mj − 1 on each {Hj = 0},
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and since a holomorphic function of several variables cannot vanish at isolated
points by Hartog’s extension theorem (actually the complex version of Weierstrass
Preparation Theorem also implies this fact) we obtain the factorization of G given

by G = G0

∏
mj≥2 H

mj−1
j with G0 some holomorphic unit. This implies that the

function RH is holomorphic.

Condition (7) can be written in vectorial form as XH = R∇H⊥ in a neighbor-
hood of the origin of C2, where here XH denotes the complex extension vector field.
Finally we notice that the restriction R|R2 is a real-valued function because ω|R2

and H|R2 are also real-valued by definition. We can therefore conclude that the
function V of the statement (ii) of the theorem is just V = R|R2 and this proves
(i).

Under the assumptions of statement (ii) the origin is an algebraically isolated
singularity of dH which implies by (6) that G(0, 0) 6= 0 since G cannot have isolated
zeros. Therefore V = R|R2 is real analytic at the origin and statement (ii) is proved.

We prove now part (iii). By geometric arguments it follows that if a point in
crit(H) is isolated and corresponds with either a local extremum or a saddle then
that point belongs to sing(XH) (it is either center or saddle respectively) of the
vector field XH possessing the first integral H, hence the structure XH = V∇H⊥
still holds at that point. A different argument is given in the proof of Proposition
3. Recall that a non-degenerate singular point is always isolated and either a local
extremum or a saddle. The fact that crit(H) ⊂ sing(XH) implies that (5) holds in
all R2 and we only need to study the regularity of the function V on crit(H).

To this end, we let the function H : C2 → C be the holomorphic complex
extension in a neighbourhood of (0, 0) ∈ C2 and (0, 0) is, without loss of gener-
ality, a non-degenerate (Morse) critical point of H. Then, from Morse lemma for
holomorphic functions (see for example [13]), H is locally holomorphically con-
jugated to H(0, 0) + z2 + w2, that is, there is a neighbourhood U ⊂ C2 of the
origin and a holomorphic invertible map ϕ : U → C2 such that ϕ(0, 0) = (0, 0)

and Ĥ(z, w) = H ◦ ϕ−1(z, w) = H(0, 0) + z2 + w2. Therefore dH has an isolated

singularity at the origin since dĤ = 2(zdz + wdw) also has it. Now we can use (ii)
to prove (iii). �

Remark 6. Let p ∈ crit(H) and assume without loss of generality that H(p) = 0.
Let the complex extensions of H be square-free, that is, in its local factorization in a
neighborhood in C2 of p into irreducible factors no non-unit factor has a multiplicity
larger than one. In other words, the multiplicities mj = 1 for all 1 ≤ j ≤ n. Then
p is an algebraically isolated singularity of dH. In particular statement (ii) of
Theorem 5 holds in a neighborhood of p and consequently p ∈ sing(XH).

Consider a closed real analytic subset C of an open subset Ω ⊂ Rn. A real
analytic function on C is a function that is a locally restriction of real analytic
functions on open subsets of Ω. It is well known that every analytic function on C
extends to Ω when C is coherent, see [3].

Theorem 7. Let X be an analytic vector field in R2 having a coherent analytic
invariant curve {F = 0} with F a Morse function such that the principal ideal 〈F 〉
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in the ring O(R2) is real. Then there are two analytic vector fields XF and Y in
R2 such that

(9) X = XF + FY

where F is a first integral of XF if and only if the function f : {F = 0} → R
defined by X|F=0 = f ∇F⊥|F=0 is analytic. In particular the decomposition (9)
holds provided {F = 0} is a smooth curve.

Proof. Due to the invariance of the curve {F = 0} we know that X⊥∇F at every
point on the curve {F = 0} except, perhaps, at sing(F ). Therefore f is well de-
fined except may be at sing(F ) and moreover, by the analyticity of X and F , the
function f is analytic at {F = 0}\crit(F ), the regular points of the curve. Recall
that crit(F ) ⊂ sing(XF ) when F is Morse by Proposition 3 which implies that f
is also well defined at crit(F ) in that case, indeed it may takes arbitrary values on
crit(F ).

We will prove the first part of the theorem. First we prove the necessity which
is indeed independent of the nature of the ideal 〈F 〉. Assume that there are two
analytic vector fields XF and Y in R3 such that (9) holds. Since XF = V ∇F⊥
for certain analytic function V by statements (iii) of Theorem 5, evaluating (9)
on F = 0 yields X|F=0 = V |F=0∇F⊥|F=0. Therefore, defining f = V |F=0 the
conclusion of the first part of the theorem holds.

Recall that the curve F−1(0) is a closed set in R2 because it is the inverse im-
age by a continuous function of a closed set. Conversely, to prove the sufficiency
we assume now that the function f defined on F−1(0) by X|F=0 = f ∇F⊥|F=0 is
real analytic. Since F−1(0) is coherent it follows that f has an analytic extension

to R2, that is, there is a function f̂ : R2 → R with f̂ ∈ O(R2) and f̂ |F=0 = f .

Then we can consider the analytic vector field XF = f̂ ∇F⊥ in R2 and the equality
X|F=0 = XF |F=0 holds. Let us define X = P∂x +Q∂y and XF = P̂ ∂x + Q̂∂y. Then

P − P̂ and Q− Q̂ belong to the ideal I(Z(I)) where I = 〈F 〉 in the ring O(R2). In

consequence P − P̂ and Q− Q̂ are in I from the results of [2] since I is real. Hence

there are two functions A and B in O(R2) such that P − P̂ = AF and Q−Q̂ = BF .
Equivalently, the vector field Y = A∂x + B∂y satisfies X − XF = FY finishing the
proof of the first part of the theorem.

Finally, in the particular case that {F = 0} is a smooth curve, that is ∇F |F=0 6=
0, the function f : {F = 0} → R satisfying the equality X|F=0 = f ∇F⊥|F=0 is
unique and can always be obtained from the above equality. Moreover in this case
{F = 0} is a real analytic manifold and therefore it is coherent. �

Remark 8. Notice that associated to any global analytic invariant curve {F = 0}
of any analytic vector field X in R2 with real ideal 〈F 〉 in the ring O(R2) there is
always associated a cofactor K ∈ O(R2) satisfying X (F ) = KF in all R2. This is
an easy consequence of the fact that X (F )|F=0 = 0, hence X (F ) ∈ I(Z(F )) = 〈F 〉.
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4. Remarks on the higher dimensional case

The cross product can be generalized to n dimensions by defining an operation
which takes n − 1 vectors in Rn and produces a vector in Rn that is orthogonal
to each one. Given the vectors Zj ∈ Rn, with j = 1, . . . , n − 1, we define Z =
Z1 × · · · × Zn−1 ∈ Rn to be the unique vector such that, for any Z∗ ∈ Rn, one has
the scalar product 〈Z∗,Z〉 = det{Z1, . . . ,Zn−1,Z∗}. An important consequence
is that if the set {Z1, . . . ,Zn−1} is linearly independent then Z 6= 0 and Z⊥Zj to
each j.

In our context, given a function H ∈ O(Rn) the vector fields∇H×Z1×· · ·×Zn−2

where {Z1, . . . ,Zn−2} is an arbitrary set of analytic linearly independent vector
fields, are orthogonal to ∇F on Rn and they have therefore the first integral H.
In particular, the vector fields ∇H × Z1 × · · · × Zn−2 + FY, with Y an arbitrary
analytic vector field, have the invariant analytic set {F = 0} ⊂ Rn.

Let us take a first look at the inverse problem in the simplest case of dimension
n = 3. If the analytic vector field XH in R3 has an analytic first integral H then
XH(H) ≡ 0 in R3, hence XH is a vector field orthogonal to ∇H in R3\crit(H).
Therefore there is an analytic vector field Z such that

(10) XH = Z ×∇H

holds in R3\crit(H). Taking coordinates and letting Z = A∂x + B∂y + C∂z we
obtain XH = (C∂yF −B∂zF )∂x + (−C∂xF + A∂zF )∂y + (B∂xF −A∂yF )∂z.

If we let XH = P∂x + Q∂y + R∂z then

(11)

 0 −∂zF ∂yF
∂zF 0 −∂xF
−∂yF ∂xF 0

 A
B
C

 =

 P
Q
R

 .

Notice that the associated matrix of this linear system has determinant equal to
zero and, using the condition XH(H) = 0, it is straightforward to check that the
extended matrix has rank less than 3. Hence for a given XH there are an infinitely
many compatible vector fields Z. In summary, in a neighborhood of a point off the
set crit(H) there are infinitely many analytic vector fields Z satisfying (10). It is
interesting to study when Z can be taken analytic in a neighborhood of any point
in crit(H), in which case clearly crit(H) ⊂ sing(XH) is a necessary condition

Remark 9. Notice that the vector field XH given by (10) admits a finite-dimensional
Poisson structure XH = J ∇H of dimension 3 and rank r ≤ 2 with Hamiltonian H
and structure matrix

J =

 0 C −B
−C 0 A
B −A 0


provided the entries of J solve the partial differential equation given by the Jacobi
identity C∂xB−B∂xC +A∂yC−C∂yA+B∂zA−A∂zB = 0. See for instance [10].
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