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Abstract

Let F = (f, g) :R2 →R2 be a polynomial map such that det(DF(x, y)) is nowhere zero and F(0, 0) =
(0, 0). In this work we give a new sufficient condition for the injectivity of F . We also state a conjecture 
when det(DF(x, y)) = constant �= 0 and F(0, 0) = (0, 0) equivalent to the Jacobian conjecture.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction and statement of the main result

Let F = (f, g) : R2 → R2 be a smooth map such that the determinant of the Jacobian matrix 
det(DF) is nowhere zero. By the Inverse Theorem such a map F is a local diffeomorphism. 
However this map is not always an injective map. But with some additional conditions it holds 
that F is a global diffeomorphism, see for instance [11,16,24].

The Jacobian conjecture, stated by Keller [22] in 1939, states that when F is a polynomial 
map and det(DF(x, y)) = constant �= 0, then F is injective. Many authors have work in this 
conjecture, see for instance the surveys [2], and [15] on the Jacobian conjecture and related 
problems, but for the moment this conjecture remains open.
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In the seventies a related conjecture circulated in the mathematical community under the name 
real Jacobian conjecture and which says: when F is a polynomial map and det(DF(x, y)) is 
nowhere zero, then F is injective. However in 1994 Pinchuk [23] gave a counterexample to this 
conjecture providing a non injective polynomial map with nonvanishing Jacobian determinant. 
Nevertheless with additional conditions the conjecture holds, for instance in [3,5] it was shown 
that the conjecture is true if the degree of f is at most 4. In [4] the following result provides a 
sufficient condition for the validity of the real Jacobian conjecture.

Theorem 1. Let F = (f, g) : R2 → R2 be a polynomial map such that det(DF) is nowhere 
zero and F(0, 0) = (0, 0). If the higher homogeneous terms of the polynomials ffx + ggx and 
ffy + ggy do not have real linear factors in common, then F is injective.

Theorem 1 improves a preliminary result in [6] which said: if degf = degg and that the 
homogeneous terms of higher degree of f and g do not have real linear factors in common, then 
F is injective. A similar result to this also works for the real Jacobian conjecture in Rn see [9]. 
Moreover in [10], and based in the structure of polynomial maps, another sufficient condition 
was given in order that the real Jacobian conjecture in Rn holds.

Our main result is the following one.

Theorem 2. Let F = (f, g) : R2 → R2 be a polynomial map such that det(DF(x, y)) is nowhere 
zero and F(0, 0) = (0, 0). If the differential equation y′(x) = −(ffx + ggx)/(ffy + ggy) does 
not have any Puiseux solution at infinity except y = ±ix, then F is injective.

This result is proved using the qualitative theory of ordinary differential equations, following 
ideas started by Gavrilov [17] and Sabatini [25], while the approach of the previous studies (with 
the exceptions of Theorem 1 [4] and its preliminary version in [6]) are based in the structure of 
the polynomial maps. See the definition of Puiseux solution in the proof of Theorem 2. Moreover 
we state the following conjecture.

Conjecture 3. Let F = (f, g) be a polynomial map with det(DF(x, y)) = constant �= 0 and 
F(0, 0) = (0, 0). Then the following statements are equivalent.

(a) The differential equation y′(x) = −(ffx + ggx)/(ffy + ggy) does not have any Puiseux 
solution at infinity except y = ±ix.

(b) F is a global diffeomorphism of the plane onto itself.

In section 2 we summarize some preliminary results that we shall use in the proof of Theo-
rem 2 given in section 3.

2. Preliminary results

A singular point p of a vector field defined in R2 is a center if p has a neighborhood U
such that U \ {p} is filled of periodic orbits. The period annulus of the center p is the maximal 
neighborhood P of p such that all the orbits contained in P \ {p} are periodic. A center is global
if its period annulus is the whole R2.
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Gavrilov [17] and Sabatini [25] gave the following result connecting the global invertibility 
of a local invertible map with the globality of the period annulus of an associated differential 
system.

Theorem 4. Let F = (f, g) be a real polynomial map with nowhere zero Jacobian determinant 
such that F(0, 0) = (0, 0). Then the following statements are equivalent.

(a) The origin is a global center for the polynomial vector field X = (−ffy − ggy,ffx + ggx

)
in R2.

(b) F is a global diffeomorphism of the plane R2 onto itself.

Let X be a planar polynomial vector field of degree n and S2 = {y = (y1, y2, y3) ∈ R3 :
y2

1 +y2
2 +y2

3 = 1} (the Poincaré sphere). The Poincaré compactification of X , denoted by p(X ), 
is an induced vector field on S2 defined as follows. For more details see Chapter 5 of [14].

Denote by TyS2 the tangent space to S2 at the point y. Assume that X is defined in the 
plane T(0,0,1)S2 ≡ R2. Consider the central projection f : T(0,0,1)S2 → S2. This map defines 
two copies of X on S2, one in the open northern hemisphere H+ and the other in the open 
southern hemisphere H−. Denote by X ′ the vector field Df ◦ X defined on S2 except on its 
equator S1 = {y ∈ S2 : y3 = 0}. Clearly S1 is identified with the infinity of R2. In order to extend 
X ′ to a vector field on S2 (including S1) it is necessary that X satisfies suitable conditions. In 
the case that X is a planar polynomial vector field of degree n then p(X ) is the only analytic 
extension of yn−1

3 X ′ to S2. On S2 \ S1 = H+ ∪ H− there are two symmetric copies of X , one 
in H+ and other in H−, and knowing the behavior of p(X ) around S1, we know the behavior of 
X at infinity. The Poincaré compactification has the property that S1 is invariant under the flow 
of p(X ).

The singular points of X are called the finite singular points of X or of p(X ), while the 
singular points of p(X ) contained in S1, i.e. at infinity, are called the infinite singular points of 
X or of p(X ). It is known that the infinity singular points appear in pairs diametrically opposed.

Given a polynomial p : R2 → R, we denote by pk the homogeneous term of degree k of p.
Let q be an infinite singular point and let h be a hyperbolic sector of q . We say that h is 

degenerated if its two separatrices are contained in the equator of S2 (i.e. in S1), otherwise h is 
called non-degenerated.

The next result is the Poincaré–Hopf Theorem for the Poincaré compactification of a polyno-
mial vector field. See for instance Theorem 6.30 of [14] for a proof.

Theorem 5. Let X be a polynomial vector field. If p(X ) defined on the Poincaré sphere S2 has 
finitely many singular points, then the sum of their topological indices is two.

3. Proof of Theorem 2

Assume that F = (f, g) is a polynomial map such that det(DF(x, y)) is nowhere zero and 
F(0, 0) = (0, 0).

Consider the function H :R2 → R defined by

H(x,y) = f (x, y)2 + g(x, y)2 (1)

and its associated Hamiltonian vector field X = (P, Q) given by
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ẋ = P = −Hy = −2ffy − 2ggy, ẏ = Q = Hx = 2ffx + 2ggx, (2)

whose first integral is the function H . First we prove that each finite singular point of X is a 
center, and consequently has topological index 1, see for more details chapter 6 of [14]. Indeed, 
(a, b) ∈ R2 is a singular point of X if and only if

(
fx(a, b) gx(a, b)

fy(a, b) gy(a, b)

)(
f (a, b)

g(a, b)

)
=

(
0
0

)
,

which implies that f (a, b) = g(a, b) = 0, because det(DF(x, y)) never vanishes. Moreover 
there exists a neighborhood U of (a, b) in which the map F is injective. Taking into account 
that the Hamiltonian H is positive in all the points of U except at (a, b) where H(a, b) = 0. 
This proves that (a, b) is an isolated minimum of H . Therefore the orbits of X in U \ {(a, b)}
are closed, consequently the singular point (a, b) is a center. Hence, from Theorem 4, in order to 
prove Theorem 2 it is enough to show that (0, 0) is a global center of the vector field X . First we 
recall the following corollary from the main result proved in [4].

Corollary 6. Let F = (f, g) : R2 → R2 be a polynomial map such that det(DF) is nowhere zero 
and F(0, 0) = (0, 0). Then F is injective if and only if the vector field X = (−2ffy − 2ggy,

2ffx + 2ggx

)
has no infinite singular points or each of them is formed by two degenerated 

hyperbolic sectors.

By this corollary if F is not injective, then X has infinite singular points and each of them 
is not formed by two degenerated hyperbolic sectors. In this case the vector field X has some 
separatrices not contained in the equator of S2 (i.e. in S1) and since all the finite singular points 
are centers, these separatrices must go from one infinite singular point to another infinite singular 
point. We can see this behavior in the phase portrait of the counterexample to the real conjecture 
given by Pinchuk, see [1]. In this example the Jacobian det(DF) is nowhere zero but not constant.

Now we consider the Bendixon compactification of system (2), for more details on this com-
pactification see for instance chapter 5 of [14]. We do the change of variables

u = x

x2 + y2 , v = y

x2 + y2 . (3)

Hence the infinity of system (2) is transformed into the origin of the system

u̇ = 1

(u2 + v2)d
P̃ (u, v), v̇ = 1

(u2 + v2)d
Q̃(u, v), (4)

where d = max{degP, degQ} and P̃ = P(x(u, v), y(u, v)) and Q̃ = Q(x(u, v), y(u, v)) whose 
terms of lowest order are of degree at least d + 2. Introducing the change of time scale

dt

dτ
= (u2 + v2)d , (5)

system (4) becomes

u′ = du = P̃ (u, v), v′ = dv = Q̃(u, v). (6)

dτ dτ
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Since the lowest homogeneous parts of P̃ and Q̃ have minimum degree d + 2 it is clear that the 
origin is a singular point of system (6).

More precisely, system (2) after the change of variables (3) becomes

u̇ = 2
[
f̃ ((u2 − v2)f̃v − 2uvf̃u) + g̃

(
(u2 − v2)g̃v − 2uvg̃u

)]
,

v̇ = 2
[
f̃ (2uvf̃v + (u2 − v2)f̃u) + g̃

(
2uvg̃v + (u2 − v2)g̃u

)]
,

(7)

where

f̃ = f

(
u

u2 + v2 ,
v

u2 + v2

)
and g̃ = g

(
u

u2 + v2 ,
v

u2 + v2

)
.

System (7) is not well-defined at the origin but doing the change of time (5) we get the system

u′ = (u2 + v2)d u̇, v′ = (u2 + v2)d v̇, (8)

which is well-defined at the origin. Moreover as the terms of lowest order of u′ and v′ after the 
scaling of time have minimum degree d + 2, the origin of system (8) is a degenerate singular 
point. The first integral (1) is transformed to

H(x,y) = f 2
(

u

u2 + v2 ,
v

u2 + v2

)
+ g2

(
u

u2 + v2 ,
v

u2 + v2

)
. (9)

This first integral is not well-defined at the origin of system (8), hence we cannot deduce the 
analytic integrability of system (8) around the origin. Indeed, system (8) has the polynomial 
inverse integrating factor V = (u2 + v2)2, but also from its existence we cannot deduce the 
local integrability at the origin of system (8) because V (0, 0) = 0, see [19]. In fact for proving 
Theorem 2 it would be sufficient to prove the monodromy of the degenerate singular point located 
at the origin of system (8) and the existence of a center at this point. The degenerate center 
problem is a hard open problem, see for instance [18] and references therein. Hence the origin of 
system (8) only has two possibilities, either is a monodromic point and consequently is a center 
(recall that cannot be a focus because system (8) is the transformation of a Hamiltonian system), 
or is not monodromic and then has homoclinic orbits with defined tangent that enter or escape 
from the origin.

Now we consider the differential equation associate to system (8) given by

dv

du
=

f̃
(

2uvf̃v + (u2 − v2)f̃u

)
+ g̃

(
2uvg̃v + (u2 − v2)g̃u

)
f̃

(
(u2 − v2)f̃v − 2uvf̃u

)
+ g̃

(
(u2 − v2)g̃v − 2uvg̃u

) . (10)

We know that the solutions v = v(u) with initial condition at the origin are not always a formal 
solution because the classical theorem of the analytic dependence respect to the initial conditions 
and parameters cannot be applied to equation (10) due to the right hand side of (10) is not analytic 
at the origin. However if these solutions exist, then they can always be expanded in Puiseux 
series, see for instance [7,8]. We recall that a Puiseux series at the point u0 ∈ C is power series 
given by
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Fig. 1. The Newton polygon of equation (14).

v(u) =
+∞∑
�=0

b�(u − u0)
�0+�

n0 , (11)

where �0 ∈ Z, n0 ∈ N and b� ∈ C. Hence if we construct these solutions and we only get the 
solutions v = ±iu, this implies that there are not homoclinic orbits with defined tangent that 
enter or escape from the origin of the original system, and consequently the origin is a center. 
The solutions v = ±iu correspond to the invariant curve u2 + v2 = 0 that only contains the 
origin. Hence Theorem 2 is proved.

The techniques to construct formal and Puiseux solutions of the associated differential equa-
tion (10) are described in the works [12,13,20,21]. In the following we present an example of 
application of the main result.

Example. Consider the following map F = (f, g) = (x, y + x + x2 + x4). This map has 
det(DF(x, y)) = 1. Hamiltonian system (2) associate is

ẋ = −2(x + x2 + x4 + y), ẏ = 2x + 2(1 + 2x + 4x3)(x + x2 + x4 + y). (12)

Now we can study the infinity doing the change of variables (3) and getting system (8) or 
studying directly the Puiseux solutions at infinity by the Puiseux series at x0 = ∞, i.e., proposing 
power series of the form

y(x) =
+∞∑
�=0

c� x
�0−�

n0 , (13)

where �0 ∈Z, n0 ∈ N and c� ∈ C. The technique to construct such Puiseux solutions is explained 
in [12,13]. Next we construct the associated differential equation (10) given by

−2(x + x2 + x4 + y)yx = (2x + 2(1 + 2x + 4x3)(x + x2 + x4 + y)). (14)

The Newton polygon is presented in Fig. 1. The unique dominant balance near the point x = ∞
giving power asymptotics and its power solution is

(Q2,Q3) : −2(x4 + y)yx = 8x3(x4 + y), y(x) = −x4; (15)

However this leading term does not have a Puiseux series associated.
Now we study Puiseux solutions x = x(y). Hence interchanging the variables x ↔ y we can 

write the system (12) into the associated equation
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(2x + 2(1 + 2x + 4x3)(x + x2 + x4 + y))xy + 2(x + x2 + x4 + y) = 0. (16)

Next we find the Newton polygon for this case and the dominant balances related to the point 
y = ∞. In this case there is also a unique dominant balance of the form

8x3(x4 + y)xy = −2(y + x4),

and its powers solution are

x(j) = b
(j)
0 y1/4, b

(j)
0 = {(−1)1/4}j , j = 1,2,3,4.

However, none of these power solutions related to the point y = ∞ do not have a Puiseux series 
associated.

Consequently the system cannot have any homoclinic orbit with defined tangent that enter or 
escape from the point at infinity and system (12) has a global center. Consequently by Theorem 4
the map F is injective.

We recall that system (8), the system obtained after doing the blow-up (3) has the invariant 
algebraic curve u2 + v2 = 0 that is introduced when doing the blow-up and which only contains 
the point (0, 0) that corresponds to the point at infinity.
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