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A B S T R A C T   

Although one of the main aims of using renewable energy sources in building applications is to reduce the 
environmental impact caused by the high global energy demand of buildings, it can also produce other positive 
effects, known as co-benefits. Thermal energy storage technologies are often used in building applications, either 
integrated into the renewable system or independently, for energy savings or energy efficiency reasons. This paper 
demonstrates that it is possible to identify the co-benefits of the use of thermal energy storage in buildings by 
cross-sectorizing the renewable energy and thermal energy storage sectors. To this end, this article first reviews 
the literature on the co-benefits of renewable energy for building applications, followed by an evaluation on how 
these co-benefits can be attributed to thermal energy storage in buildings. As a result of a keywords analysis, the 
main co-benefits of thermal energy storage were identified related to environmental, health, economic, cost, and 
policies aspects.   

1. Introduction 

Any action in buildings may have substantial value beyond the direct 
impact looked for; that is, any action has multiple impacts, which can 
affect the economy, society, or end user [1]. These impacts are related to 
health (better indoor conditions, energy poverty alleviation, better ambient 
air quality, reduction of the heat island effect), environment (reduced local 
air pollution, reduced sewage production), resource management (including 
water and energy), social well-being (increase productivity for women, fuel 
poverty alleviation, decrease in energy expenditure), microeconomic effects 
(increase productivity in non-residential buildings), macroeconomic effects 
(creation of jobs), and energy security. 

These impacts that are not related to the direct objective of study are 
known as co-benefits. According to the IPCC AR6 [2], co-benefit is “a 
positive effect that a policy or measure aimed at one objective has 
another objective, thereby increasing the total benefit to society on the 
environment”. Another definition of co-benefit related to climate states 
that “climate co-benefits are beneficial outcomes from action that are 
not directly related to climate change mitigation” [3]. 

Moreover, the term co-benefits refers to simultaneously meeting 
several interests or objectives resulting from a political intervention, 
private sector investment or a mix thereof [4]. 

Thermal energy storage (TES) in buildings is a technology used for 

energy savings, energy conservation, and energy efficiency [5]. TES is the 
technology to overcome any mismatch between energy generation and 
energy use (in time, temperature, power, or location) [6]. TES can be 
used to convert an intermittent energy source, such as solar energy, in 
meeting the demand profile. For instance, TES can be used for free- 
cooling in buildings, or to increase the thermal inertia of the building 
(by integrating TES materials, such as phase change materials, into the 
building materials or into the building structure) [7]. 

Highlighting co-benefits of TES technologies, such as with any other 
technology, contributes to social acceptance of such technologies [3]. 
Since literature agrees [8] that one of the main barriers for TES imple-
mentation is the lack of knowledge about these systems, dissemination 
of their co-benefits, especially those related to health and environment, 
can help in the knowledge deployment. Moreover, literature states that 
local climate actions would potentially occur faster and at a higher level 
if they generate co-benefits, such as environmental, public health, or eco-
nomic development benefits, on top of energy efficiency and cost savings, 
although usually the last two are already powerful motivators [9]. 

The literature highlights the advantages of using TES in buildings (i. 
e., increasing efficiency and reliability of energy systems, better economic 
feasibility, reducing investment and costs, reducing pollution, reducing CO2 
emissions) [6,10,11], but these advantages have never been identified as 
co-benefits. Therefore, this paper aims at filling up this literature gap by 
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evaluating the potential co-benefits of TES in buildings. To this end, this 
article first reviews the literature on the co-benefits of renewable energy 
for building applications, and then evaluates how these co-benefits can 
be attributed to thermal energy storage in buildings. 

2. Methodology 

This section describes the methodology adopted (Fig. 1) to prepare 
the bibliographic and bibliometric analysis presented in the following 
sections. In this study, the Scopus database was used as a reference, since 
it includes a large number of papers referring to technological topics 
compared to other databases such as Web of Science [12]. Databases 
such as Google Scholar or ResearchGate were excluded due to their low 
reliability of bibliometric results [13]. Moreover, the data on world 
population was obtained from the United Nations 2019 Revision of 
World Population Prospects [8]. 

This study was carried out with the following query: 
(TITLE-ABS-KEY ( "renewable energ*" ) AND TITLE-ABS-KEY ( "co- 

benefit*" OR "cobenefit*")) AND ( EXCLUDE ( PUBYEAR,2022) ) 
In order to obtain a clear picture of research topics, similar keywords 

were groups using a thesaurus file into the VOSViewer software. 
Moreover, this avoids having a dispersion of keywords with low rele-
vance and highlights the macro-area of research. 

3. State-of-the-art of renewable energy co-benefits 

3.1. Bibliometric analysis 

The present study was conducted in May 2022; therefore, the time 
frame was established in the query, considering all historical publica-
tions on the subject up to 2021. 

Fig. 2a shows that around 70 % of publications on the topic are ar-
ticles/papers and the other 30 % are reviews, conference papers, with a 
small number of books chapters. Moreover, when analyzing the number 
of publications by countries, Fig. 2b indicates that the United States is 
the country with more publications, having published more than twice 
compared to the next two countries in line United Kingdom and China. 

The trends in the number of publications are shown in Fig. 3. The 
figure indicates that renewable energy co-benefits started to be 
mentioned in research papers in 2006, with continuous interest in the 
peer-reviewed literature until today. The trends of paper published by 
the main countries that are interested in the studies of co-benefits in 
renewable energy is presented in Fig. 3b. The figure shows that United 
States is one of the countries that started to publish on the topic and that 
today has the highest research output followed by United Kingdom. 

The authors with more publications that are related to the co-benefits 
of renewable energy are listed in Table 1. In this case it is interesting to 
notice that there is only one scholar from United States and that the first 
author publishing in the topic is B. Limmeechokchaiai, from Thammasat 
University located in Thailand. The first paper from this author was 
published in 2012 on the assessment of Thailand energy policies on 
renewable electricity generation and energy efficiency in industries and 
buildings evaluating also the CO2 emissions from power generation 
expansion plans [14]. The most cited paper was then published in 2013 
on the analysis of the mitigation measures in Thailand with emission 
trading and carbon capture and storage (CCS) using a computable 
general equilibrium (CGE) model (AIM/CGE) [15]. From the co-authors 
of this paper is worth to mention R. Shrestha, and T. Masui which is also 
in list of top authors. In particular R. Shrestha is author of one of the first 
paper published on the topic in 2010 on the co-benefits of CO2 emissions 
reduction in Thailand [16]. From the authors listed in the table the most 
cited papers was published by Dai, H. in 2016 on the economic and 

Fig. 1. Methodology followed in the bibliometric analysis.  
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environmental impact assessment of large-scale renewable energy 
development in China [17]. B.K. Sovacook is also author of highly cited 
papers including a study on energy justice of low-carbon transition in 
Europe [18] and a study on the o-benefits of electric vehicles and 

vehicle-to-grid [19]. The main journals that contain publications related 
to co-benefits of renewables are indicated in Fig. 4 and details listed in 
Table 2, where the most targeted journal in this case is Energy Policy. 
From the bibliometric data is possible to notice that most of journals are 
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Fig. 2. Distribution of documents by (a) type of documents (b) country/region of publication and in the orange bars publications per million inhabitants.  

(a) 

(b) 

0

5

10

15

20

25

30

202120202019201820172016201520142013201220112010200920082006

N
um

be
ro

fp
ub

lic
a�

on
s

Years

0

2

4

6

8

10

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

N
um

be
ro

fp
ub

lic
a�

on
s

Years
United States United Kingdom China Australia
Germany Japan Italy Canada
Thailand Austria

Fig. 3. Trends in the number of publications in the area of study (a) worldwide (b) per country.  
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classified as Q1 and only few of them are full open access. Nevertheless, 
almost half of documents published in the topic are available in hybrid 
gold, bronze, or green in open access. 

3.2. Keyword analysis 

The data extracted from the Scopus database were implemented in a 
bibliographic mapping (Fig. 5). This figure shows the relationships 
among the keywords extracted from each document. The size of the 
bubbles represents the occurrence of the keywords and the colours 
represent groupings in clusters. Given the high number of keywords 

found, and that the main objective of the paper is not to analyse the 
relationship between the keywords of renewable energy but to identify 
its co-benefits, the figure is not analysed in detail. However, it is inter-
esting to highlight that the keyword “co-benefit” contains a total of 49 
occurrences, which places it outside the top 10 % keywords with the 
highest number of occurrences, which exemplifies that the study of co- 
benefits represents a large gap in the scientific literature. 

To identify that relationship, all keywords related to one specific area 
were joined using the thesaurus technique to be able to analyse the 
relation between the co-benefit areas (e.g., environment, health, policy). 
200 of the 231 keywords presented in Fig. 5 were grouped into 100 main 
keywords groups (Fig. 6). This main groups were: those related to the 
energy sector; to health impact; to carbon dioxide (emissions, carbon 
sequestration); to air pollution and air quality; to the environmental impact 
management and protection; economic aspects such as cost and green 
economy; biomass including bioenergy and biofuels; buildings; waste 
management and waste treatments; and finally, policy related keywords. 
The results after such grouping are shown in Fig. 7. 

Fig. 7 shows a first cluster in green where carbon dioxide-related 
keywords are linked to biomass and waste management groups; other 
keywords also included in this cluster are climate change, landfill, nu-
clear energy, and electricity. Another cluster in light blue relates those 
keywords group in air pollution very strongly with those related to 
health impact; other keywords appearing in this cluster are fossil fuels, 
coal, and employment. The third cluster in red relates those keywords 
included in policy with other keywords such as renewable energy, envi-
ronmental impact, sustainability, water, biodiversity, and conservation; 
and more interestingly in social aspects. Other renewable energy key-
words (such as solar energy, photovoltaics) are linked in the cluster in 
purple with keywords co-benefits, climate change mitigation, and 

Table 1 
Authors with more publications in the field of study.  

Author Institution Country Number documents search Number documents total h-Index total 

Limmeechokchai, B. Thammasat University Thailand  6  132  19 
Almeida, M. Universidade do Minho Portugal  3  76  18 
Armstrong, A. Energy Lancaster United Kingdom  3  41  19 
Becchio, C. Politecnico di Torino Italy  3  53  17 
Dai, H. Peking University China  3  86  32 
Ferreira, M. Universidade do Minho Portugal  3  16  12 
Holloway, T University of Wisconsin-Madison United States  3  73  31 
Masui, T. National Institute for Environmental Studies of Japan Japan  3  176  47 
Shrestha, R Asian Institute of Technology Thailand Thailand  3  92  25 
Sovacool, B.K. Aarhus Universitet Denmark  3  508  74  

0 2 4 6 8 10 12 14

Energy Policy

Renewable And Sustainable Energy Reviews

Environmental Science And Technology

Journal Of Cleaner Produc�on

Applied Energy

Climate Policy

Clima�c Change

Energies

Energy

Global Environmental Change

Number of publica�ons

Jo
ur
na
l

Fig. 4. Journals where the documents are published.  

Table 2 
The journals most used and their impact.  

Journal Number 
documents 
search 

Total h- 
Index 
(2022) 

Category Open 
Access 

Energy Policy  13  6.142 Q1 Hybrid 
Renewable and 

Sustainable Energy 
Reviews  

10  14.982 Q1 Hybrid 

Environmental Science 
and Technology  

7  9.028 Q1 No 

Journal of Cleaner 
Production  

5  9.297 Q1 Hybrid 

Applied Energy  4  9.746 Q1 Hybrid 
Climate Policy  3  5.085 Q1 Yes 
Climatic Change  3  4.743 Q2 Hybrid 
Energies  3  3.004 Q2 Yes 
Energy  3  7.147 Q1 Hybrid 
Global Environmental 

Change  
3  9.523 Q1 Hybrid  
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developing countries. Finally, the cluster in yellow groups keywords 
such as energy sector and economic aspects with renewable energy 
sources, energy efficiency, emission reduction, and building. 

4. Cross-sectorisation to thermal energy storage 

This section presents the cross-sectorisation to thermal energy stor-
age of the renewable energy co-benefits presented in Section 3. 

Environmental co-benefits 
Reduction of indoors and outdoors air pollution is an identified co- 

benefit of local climate actions in the area of transportation (vehicle 
efficiency), energy efficiency (green buildings), and the use of renew-
able energy in cities [9,21,22]. This co-benefit is also related to TES as 
indicated, for example, by Xie et al. [23] who demonstrated that TES has 
great potential in improving the energy efficiency of electric vehicles (i. 
e., cars, buses), specially low- and medium-temperature phase change 
materials (PCM) technology. On the other hand, electric vehicle effi-
ciency is highly improved with a correct thermal management using TES 
technologies [24]. 

If green buildings are understood as a building that includes sus-
tainable and energy efficient concepts and technologies, reduction of 
indoors and outdoors air pollution are co-benefits of TES systems 
demonstrated widely in the literature. For example, Palanisamy et al. 
[25] studied the use of a TES module in an air conditioning system to 
improve indoor air quality. Wang et al. [26] used a TES module in a 
biomass boiler to reduce the number of boiler cycles and, therefore, 
reduce indoors air pollution. 

Using renewable energies instead of fossil fuels would reduce the air 
pollution remarkably. The literature shows that adding TES in renewable 
energy systems increases its energy efficiency, therefore contributing 
again to this co-benefit. Examples of this are the increase of efficiency of 
photovoltaic panels when adding TES [27], the use of TES in low- 
temperature thermal solar systems [28], or the hybridization of a 
solar/geothermal system using TES [29]. 

Another environmental co-benefit of local climate actions is biodi-
versity conservation (habitat conservation) [9,30]; this co-benefit is 
classified in the area of land use and carbon offsets. An example where 
this co-benefit can be transferred to TES is the biodiversity conservation 

achieved when green roofs and green facades are used as passive TES 
technology [31]. 

Water as co-benefit 
Water use efficiency, water reduction and recycling, watershed health, 

and water savings are co-benefits of local climate actions [9]. Managing 
the level of storage in the water damp is a potential source of hydro-
electric power [32]. An example of water management and water use ef-
ficiency is the technology aquifer TES (ATES), where underground water 
is used for heating and/or cooling of buildings among other uses [33]. 

Health co-benefits 
Public health is identified as co-benefit of local climate actions in the 

area of land use [9]. Offshore wind installations also contribute to the 
health and climate benefits of cities [34]. The 2015 Lancet Commission 
concluded that “tackling climate change could be the greatest global 
health opportunity of the 21st century” [35]. Several modelled scenarios 
suggest that the commitment to reduce 80 % of greenhouse gas (GHG) 
emissions by 2050 compared to 1990 brought health as a co-benefit 
[36–38]. Therefore, transferring health co-benefits from renewable en-
ergies to TES are related to the reduction of CO2 and GHG emissions 
[39,40]. 

Economic co-benefits 
Economic growth is a co-benefit of local climate actions in the area of 

energy efficiency (green buildings) and the use of renewable energy in 
cities [9]. New jobs opportunities and establishment of new economy sec-
tors are also co-benefits from investments in renewable energy sector 
[41]. Similarly and according to IRENA [42], a growing business case 
lies ahead for TES technologies, projections show that in the next decade 
investment in the range of US$ 12.8 billion to US$ 27.22 billion is 
foreseen for power and cooling TES applications. 

Policy co-benefits 
Energy security is a co-benefit of local climate actions when inte-

grating renewable energy in cities [9]. Employment is another co-benefit 
of renewable energy integration in both the power and buildings sectors 
[43]. Furthermore, local municipalities besides feeling motivated to 
collaborate with the energy transition of the country, and the economic 
advantages it could bring to the municipality, also look at other co- 
benefits such as enhancing the image of the town and strengthening com-
munity life [10]. Moreover, TES plays a fundamental role in the 

Fig. 5. Keywords co-occurrences bibliographic mapping.  
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implementation of renewable energies and is therefore also an impor-
tant component in energy security [44]. 

5. Conclusions 

The term co-benefit related to renewable energy started to be 
mentioned in research papers only in 2006, with a rising interest liter-
ature. The evaluation of the main keywords related to co-benefits of 
renewable energies assess in this paper, shows that all terms are strongly 
interrelated. For example, climate change mitigation is mostly related to 
renewable energy sources, economic aspects, but also to developing 
countries. On the other hand, all keywords related to policies has a 
strong relation with the energy sector and environmental impact. Key-
words related to the health impact present a strong relation with air 
pollution. And finally, the keyword carbon dioxide has strong relation-
ship with health impact, renewable energies, and sustainability. 

This paper demonstrates that by cross-sectorizing the renewable 
energy and thermal energy storage (TES) sectors it is possible to identify 
the co-benefits of thermal energy storage in buildings. When focusing on 
TES, co-benefits identified in the literature are those related to envi-
ronmental co-benefits, water co-benefits, health related co-benefits, eco-
nomic and cost related co-benefits, and benefits related to policies. The co- 
benefit of TES identified in the literature highlight that TES is a funda-
mental technology in the energy transition not only to increase the 

efficiency of energy systems and allow a better integration of renewables 
but also to provide benefits to health impact, economic growth and energy 
security. Nevertheless, economic investments in the technological 
development of TES together with targeted energy policy is fundamental 
to overcome the actual barriers and enhance the integration of this 
technology in the actual energy system. 
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energy investment and job creation; a cross-sectoral assessment for the Czech 

Republic with reference to EU benchmarks, Renew. Sust. Energ. Rev. 69 (2017) 
360–368, https://doi.org/10.1016/j.rser.2016.11.158. 

[42] IRENA, Innovation Outlook: Thermal Energy Storage, Abu Dabhi, 2020, 2020. 
https://www.irena.org/publications/2020/Nov/Innovation-outlook-Thermal-ene 
rgy-storage. 

[43] C. Wang, W. Zhang, W. Cai, X. Xie, Employment impacts of CDM projects in 
China’s power sector, Energy Policy 59 (2013) 481–491, https://doi.org/10.1016/ 
j.enpol.2013.04.010. 

[44] A. Azzuni, C. Breyer, Energy security and energy storage technologies, in: Energy 
Procedia, 2018, pp. 237–258, https://doi.org/10.1016/j.egypro.2018.11.053. 
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