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Abstract 

Maximum longevity (ML) varies significantly across animal species, but the underlying 

molecular mechanisms remain poorly understood. Recent studies and omics approaches 

suggest that phenotypic traits of ML could to converge in the mammalian target of rapamycin 

(mTOR) signalling pathway. The present study is a comparative approach using heart tissue 

from 8 mammalian species with a ML ranging from 3.5 to 46 years. Gene expression, protein 

content, and concentration of regulatory metabolites of the mTOR complex 1 (mTORC1) were 

measured using droplet digital PCR, western blot and mass spectrometry, respectively. Our 

results demonstrate 1) the existence of differences species-specific in gene expression and 

protein content of mTORC1; 2) that the achievement of a longevity phenotype requires 

decreased and inhibited mTORC1; 3) decreased content of mTORC1 activators in long-lived 

animals, and 4) independence of phylogeny relationships on these changes.  Altogether, our 

findings support mTORC1 down-regulation to achieve a longevous phenotype. 
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Introduction  

Maximum longevity (ML) is a species-specific trait that differ more than 5000-fold among 

animal species, and more than 100-fold among mammals (Ma and Gladyshev 2017). The ML of 

animal species is an optimised intrinsic feature genetically determined and regulated and 

accomplished by slowing the rate of aging (Jones et al. 2014). As during evolution speciation 

has demanded specific mutations directed to favour species adaptations (Ma et al. 2015), the 

molecular substrates determining ML are thought to be also conserved. 

The discovery of the molecular bases of mammalian ML usually take advantage of the use of 

long-lived animal models (Barja 1998; Perez-Campo et al. 1998; Pamplona et al. 2002; Selman 

et al. 2009; Wu et al. 2013; Fushan et al. 2015; Ma and Gladyshev 2017; Sahm et al. 2018), the 

performance of comparative studies across animal species differing in ML (Barja 1998; Perez-

Campo et al. 1998; Pamplona et al. 2002; Jové et al. 2013; Naudí et al. 2013; Ma et al. 2015; 

Ma et al. 2016; Bozek et al. 2017; Mota-Martorell et al. 2019), and the induction of genetic 

manipulations as well as pharmacological and nutritional interventions designed to achieve a 

longevity extension (Pamplona and Barja 2006; Pamplona and Barja 2011; Longo et al. 2015)   

Among the phenotypic features associated with long-lived animal species can be mentioned 

lower generation of endogenous damage, highly resistant macromolecular components 

concerning nucleotides, proteins and lipids, and specific transcriptomics and metabolomics 

profiles, among others (Pamplona and Barja 2007; Pamplona and Barja 2011; Naudí et al. 

2013; Ma and Gladyshev 2017; Lewis et al. 2018; Tyshkovskiy et al. 2019). Notably, several of 

these features seem to converge to and could be supported by specific cell signalling pathways 

and, in particular, by the mechanistic target of rapamycin (mTOR) pathway. 

mTOR, member of an evolutionary conserved group of serine/threonine kinases from the PIKK 

(phosphatidylinositol-3 kinases (PI3K)-related kinase) family, is present as two distinct 

complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) (Valvezan and 

Manning 2019). mTORC1 is sensitive to rapamycin and plays a central role in the mTOR 

signalling network monitoring and integrating a broad diversity of extra- and intracellular 

signals and controlling cell physiology. Thus, mTORC1 trough a wide range of downstream 

pathways such as mRNA translation, biosynthesis pathways, mitochondrial function, 

autophagy, endoplasmic reticulum stress, and stress responses, among others, can regulate 

cell metabolism, growth, and proliferation, and to modulate complex physiological processes 

such as aging and longevity (Kapahi et al. 2010; Antikainen et al. 2017; Weichhart 2018; 

Papadopoli et al. 2019; Valvezan and Manning 2019). In this line, inhibition of the mTOR 

pathway results in longevity extension in several animal models (from yeast to mice) (Kapahi et 

al. 2010; Lushchak et al. 2017; Weichhart 2018; Papadopoli et al. 2019); whereas activation of 

mTOR pathway results in longevity shortening derived from the aging process itself and the 

generation of pathological conditions such as cancer, diabetes, and neurodegenerative 

diseases (Kapahi et al. 2010; Johnson et al. 2013; Papadopoli et al. 2019). 

In mammals, mTORC1 is composed by mTOR and its associated proteins Raptor (regulatory 

associated protein of TOR), mLst8 (mammalian lethal with SEC13 protein 8), PRAS40 (Proline-

rich AKT1 substrate of 40 kDa), and Deptor (DEP domain-containing mTOR-interacting protein) 

(Valvezan and Manning 2019). Importantly, Raptor and PRAS40 are present exclusively in 
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mTORC1. Whereas mTOR, Raptor, and mLST8 are core components, DEPTOR and PRAS40 are 

inhibitory subunits. In addition, FK506 binding protein (FKBP12) is a regulatory subunit of the 

mTORC1 activity and sensitive to rapamycin. Among extra- and intracellular signals that 

regulate mTORC1 activity can be mentioned growth factors, hormones, glucose, ATP, oxygen, 

metabolic intermediates, and amino acids (Valvezan and Manning 2019). Among amino acids, 

arginine, leucine, and methionine cycle metabolites play a relevant role as activators of 

mTORC1 through their interaction with several and diverse intracellular mediators (Valvezan 

and Manning 2019). 

Despite the evolutionary conservation of the mTORC1, we unknown if differences exist among 

mammalian species, and if they are related to longevity. In order to examine the molecular 

traits associated with the mammalian longevity we used droplet digital PCR (ddPCR) and 

western blot methods to define the steady-state levels of gene expression and protein content 

of the mTORC1, and targeted metabolomics to measure the concentration of its activators. 

Heart tissue of eight mammalian species showing more than one order of magnitude of 

difference in ML —from 3.5 years in mice to 46 years in horses, was analysed. The selected 

subunits were: i) mTOR, Raptor, and PRAS40 as exclusive components of the mTORC1; ii) 

FKBP12 as regulatory subunit of the mTORC1 activity; and iii) arginine, leucine, methionine and 

its related metabolites as activators of the mTORC1 activity. We have found a specific 

modulation of the mTORC1 in long-lived animals that might contribute to an extended 

longevity phenotype.  
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Results 

In order to determine whether heart mTORC1 gene expression and protein content differed 

among mammals, multivariate statistics were applied. Non-supervised principal component 

analysis (PCA) revealed the existence of a species-specific protein and gene profile of the 

mTORC1 (Figure 1A), capable to explain up to 61.8% of sample variability. A hierarchical 

clustering of the samples represented by a heat map revealed specific mTORC1 patterns for 

rodents (mouse, rat, gerbil and guinea pig) (Figure 1B). Furthermore, this global pattern found 

in rodents was different from that found in non-rodents (rabbit, pig, cow and horse) (Figure 

1C). These results were confirmed by performing a supervised analysis, such as partial least 

squares discriminant analysis (PLS-DA) (Figure 1D). Cross-validation values of PLS-DA model 

(Figure 1E) showed that heart gene expression and protein amount of mTORC1 is a good 

model to define the animal species obtaining an accuracy value and R2 of 0.6 using only 5 

components. The discriminating power between groups of the different measured features 

was ranked by applying a variable importance projection (VIP) score (Figure 1F). After selecting 

those features with VIP score > 1.5 as significant, the mtor gene expression and FKBP12 

protein content were found to be the top-ranked features.  

The gene expression and protein content of mTORC1 were also correlated with animal ML 

(Figure 2). Specifically, long-lived animals have increased mtor expression, but decreased 

raptor (Figure 2A). Lesser protein content of mTOR and Raptor was also found in long-lived 

animals, but increased PRAS40 (Figure 2B). Furthermore, gene and protein content of Raptor 

was positively correlated (Supplementary figure 1). Regarding protein phosphorylation, 

increased mTORSer2448 and decreased PRAS40Thr246 was found in long-lived animals (Figure 2B). 

Interestingly, the protein content of mTOR and PRAS40 is inversely correlated with their 

degree of phosphorylation (Supplementary figure 1). 

Because the relevance of regulatory factors such as FKBP12, as well as specific metabolites like 

arginine, leucine and methionine cycle metabolites in determining mTORC1 activity, we have 

analysed the gene expression and protein content of FKBP12, as well as the content of the 

different metabolites using mass spectrometry and evaluated their relationship with ML and 

mTORC1 core components (Figure 3). Thus, two well-known positive activators of mTOR, 

arginine and methionine, as well as two methionine-related metabolites, such as SAM and 

homocysteine, were found to be negatively correlated with animal ML (Figure 4A, B). Gene 

expression of fkbp1a and protein content of FKBP12 were also negatively correlated with 

animal ML (Figure 4C). Therefore, the greater the ML of a mammalian species, the lower is its 

tissue concentration of regulatory metabolites of mTORC1. In addition, methionine 

metabolites were associated with mTOR, PRAS40 and Raptor (Figure 3). Accordingly, 

methionine and SAM were positively associated to Raptor and PRAS40Thr246, but negatively to 

PRAS40Thr246; SAM was also negatively correlated with mTORSer2448; whereas that homocysteine 

was only positively correlated with PRAS40Thr246 (Figure 5). Arginine was positively correlated 

with PRAS40Thr246 and FKBP12, but negatively with PRAS40 (Figure 6A). Finally, the regulatory 

factor FKBP12 showed a positive correlation with mTOR and RAPTOR, whereas the correlation 

was negative for phosphorylated mTOR (Figure 6B). 
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Animal species are evolutionary related, raising the possibility that data from closely related 

species may be not necessarily statistically independent from one another. Therefore, to 

correct for phylogeny we performed a phylogenetically generalised least squares regression 

(PGLS) following the phylogenetic tree constructed in Figure 6A. First of all, we have measured 

the amount of phylogenetic signal of each trait (Pagel’s λ). Basically, it indicates the degree up 

to which a specific trait is influenced by phylogeny, indicating whether the changes in those 

traits across different species might be due to phylogenetic relationships (λ=1) or not (λ=0). 

After correcting for phylogenetic relationships, the expression of mtor (p=0.032, R2=0.1), rptor 

(p<0.001, R2=0.4) and fkbp1a (p=0.001, R2=0.3), mTORSer2448 (p=0.05, R2=0.48) PRAS40Thr246 

(p=0.038, R2=0.5) and methionine (p=0.003, R2=0.83) remained to be correlated with 

mammalian longevity (Figure 6B).  Among them, mTORSer2448 and PRAS40Thr246 appeared to 

individually explain 48% of the animal ML variability.
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Discussion 

Longevity-associated mTORC1 profile  

We have found that animal species have a unique species-specific mTORC1 profile, which is 

associated to animal longevity. Furthermore, our model revealed that mTORC1 accounts for 

60% of inter-species variation, being gene expression and protein phosphorylation the highest 

longevity predictors. In agreement, previous studies had already described a unique gene 

expression profile (Caron et al. 2015; Fushan et al. 2015; Ma et al. 2016; Muntané et al. 2018), 

metabolome (Ma et al. 2015) and lipidome (Jové et al. 2013; Mota-Martorell et al. 2019) for 

long-lived species. Since mTORC1 is known to be a master regulator of the cellular metabolism, 

modulating both mRNA translation and lipid metabolism (Caron et al. 2015), these findings 

support the idea of the existence of important genetic adaptations in nutrient-sensing 

metabolic pathways, such as mTOR, in the evolution of longevity (Singh et al. 2019). 

Decreased mTORC1 content and activity to achieve a longevity phenotype 

The longevity phenotype is achieved by decreasing mTORC1 content and activity. Genetically, 

long-lived animals have decreased rptor but increased mtor. Accordingly, it has been reported 

that nonagenarians’ blood has decreased mRNA content of mtor, akt1s1 and rptor when 

compared with middle-aged controls (Passtoors et al. 2013). Moreover, the offspring of those 

long-lived individuals had also decreased rptor gene expression, arising as a potential 

biomarker of familiar longevity. Protein content of mTOR and Raptor were also decreased in 

long-lived animals, supporting the role of Raptor in longevity. 

mTORC1 is regulated by opposite phosphorylation patterns in mTOR and PRAS40. mTOR 

phosphorylation at serine 2448 has been found to have inhibitory effects in skeletal muscle 

(Figueiredo et al. 2017). Nutrient availability promotes mTOR activation which, in turn, 

activates p70S6K that re-phosphorylates mTOR (at Ser2448) to inhibit its activity. The existence 

of this negative loop explains why in some studies increased Ser2448 is found in starving 

conditions (Chiang and Abraham 2005). However, PRAS40 phosphorylation at Thr246 via Akt 

results on its dissociation from mTORC1, which is then released and active (Nascimento et al. 

2010). Accordingly, we have found increased mTORSer2448 and PRAS40, but decreased 

PRAS40Thr246 in long-lived animals, suggesting that inhibition of the mTORC1 is needed to 

achieve a longevity phenotype. Previous studies had already reported inhibitory changes of 

mTORC1 activators (Ma and Gladyshev 2017) in whales (estimated longevity above 200 years). 

Genetic mutations in mTOR (Wu et al. 2013) or its downstream effector S6K1 (Selman et al. 

2009) increases lifespan in mice, as well as its pharmacological inhibition with rapamycin 

(Singh et al. 2019). 

Achievement of longevity is not only due to changes on the mTORC1 itself, but to its activity 

regulators. Although it might sound controversial, decreased gene expression and protein 

content of the inhibitor FKBP12 was found in long-lived animals. However, since mTORC1 total 

content is decreased, less inhibitors are needed, allowing to save the energy that otherwise 

will be used to synthesize protein. Besides, recent studies have revealed that FKBP12 is 

associated with neurotoxicity (Caraveo et al. 2017), but its disruption enhances mTOR-Raptor 

interactions and memory (Hoeffer et al. 2008). Therefore, these results suggest that 



Pg. 8 out of 30 
 

maintenance of proper mTORC1 stability by decreasing FKBP12 might be a molecular trait of 

animal longevity. 

Decreased concentration of mTORC1 activators, such as arginine and methionine-related 

metabolites, might enhance its down-regulation. Accordingly, arginine content in primate 

fibroblasts has been shown to be negatively correlated with longevity (Ma et al. 2016). 

Besides, lower plasma methionine had already been described in the naked-mole rat (Lewis et 

al. 2018), as well as incresed methionine, SAM and homocysteine in ageing mice liver (Jeon et 

al. 2018). 

mTORC1 and methionine-metabolism: the longevity connexion 

mTORC1 is often described as a master regulator of cellular metabolism, being responsible of 

modulating anabolic and catabolic processes, such as protein turnover. Therefore, a number of 

authors proposed that mTORC1 inhibition during dietary restriction promotes autophagy, 

which clears old and dysfunctional organelle, promoting a lifespan extension (Simonsen et al. 

2008). Supporting this idea, methionine restriction has been found to require autophagy to 

mediate its life span extension effects (Ruckenstuhl et al. 2014; Bárcena et al. 2019). 

Furthermore, a study in worms suggested that SAMTOR detects methionine availability via 

SAM (Gu et al. 2017). Overall, these results support that autophagy induction via mTORC1 

down-regulation or inhibition might be a key mechanism to promote lifespan. 

In our model, we have been able to establish a correlation between the mTORC1-longevity 

associated changes and the methionine metabolism. Specifically, we have found that 

methionine, homocysteine and arginine might influence PRAS40 phosphorylation, whereas 

SAM might influence mTOR phosphorylation. Furthermore, methionine and SAM change with 

Raptor, supporting the idea that it might be a key factor modulating animal longevity. 

However, more studies need to be done to confirm these new insights regarding mTORC1 

modulation in animal longevity (Figure7). mTORC1 activity has also been related to increased 

mitochondrial activity (Schieke et al. 2006; Cunningham et al. 2007), as well as increased de 

novo lipid biosynthesis and protein synthesis (Düvel et al. 2010), that might favour the long-

lived phenotype.  

Assessing inter-species issues 

Comparative studies across species with different lifespan are a powerful source of 

information to identify mechanisms linked to extended longevity (Ma et al. 2015; Ma et al. 

2016; Bozek et al. 2017). However, those kinds of studies come up with several problems that 

need to be faced. First, the evolutionary relationships doesn’t allow for independence of the 

data (Cooper et al. 2016). Therefore, we don’t know if a specific trait correlates to longevity 

differences, or alternatively, whether these differences arise because the similarity of the data. 

To overcome this limitation, we have carried out statistical analyses accounting for theses 

phylogenetic relationships. In this way, we’ve found that phylogeny has greater influence on 

protein content and activity compared to gene expression, suggesting that gene content is an 

intrinsic property of long-lived animals. 
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The second problem that needs to be assessed is technical, due to the presence of SNPs 

inducing amino acid variations. Although the mTOR pathway is highly conserved across living 

organisms (Fontana et al. 2010), the small variations in protein structure could decrease 

antibody recognition. To overcome these methodological issues, we used degenerated primers 

capable to recognise sequences with SNPs. Globally, the protein data was supported by the 

gene analyses. However, the correlation of the mTOR gene and protein content still followed 

opposite trends. Cellular abundance of proteins have been demonstrated to be predominantly 

controlled at the level of translation (Schwanhäusser et al. 2011). Therefore, those differences 

might be due to technical issues or by different translation regulation.  

Conclusions 

Altogether, the obtained results support the given role of the mTORC1 in regulating 

mammalian longevity.  Specially, we’ve provided insight of the influence of gene expression, 

total protein content as well as the importance of modulating the basal levels of mTORC1 

activation. Indeed, we suggest that maintaining decreased and inhibited mTORC1 is essential 

to achieve a long-lived phenotype. Thereby, the mechanisms that regulate mTOR activity 

might prompt new insights regarding mammalian longevity. 
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Material and Methods  

Animals 

Mammalian species included in the study were male adult specimens with an age representing 

their 15-30% of their ML. The recorded values for ML (in years) were: mouse (Mus musculus), 

3.5; rat (Rattus norvegicus), 4.5; gerbil (Meriones unguiculatus), 6.3 guinea pig (Cavia 

porcellus), 8; rabbit (Oryctolagus cunniculus), 13; pig (Sus scrofa), 27; cow (Bos taurus), 30; and 

horse (Equus caballus), 46. Rodents and rabbits were obtained from rodent husbandries and 

sacrificed by decapitation, whereas sheep, pigs, cow and horses were obtained from abattoirs. 

The animal care protocols were approved by the Animal Experimentation Ethics committee of 

the University of Lleida. Heart ventricles from 5-7 animals were removed and immediately 

frozen in liquid nitrogen and transferred to -80°C until analyses. 

Protein content determination 

Protein content was measured performing Western Blot analyses as previously described 

(Martínez-Cisuelo et al. 2016). Immunodetection was performed using antibodies against 

mTOR (2972, Cell signalling), mTORSer2448 (2971, Cell signalling), PRAS40 (ab151718, Abcam), 

PRAS40Thr246 (ab134084, Abcam), RAPTOR (ab189158) and FKBP12 (ab2981, Abcam). 

Secondary antibodies were anti-mouse (NA931 GE, Healthcare) and anti-rabbit (31460, Pierce). 

Densitometry values were referred to total protein content (for phosphorylated proteins) and 

its respective coomassie staining (Supplementary figure 2). 

Gene expression 

Heart RNA was extracted using RNeasy Fibrous Tissue Mini Kit (Qiagen, Germany) and retro-

transcribed to cDNA using the High-Capacity cDNA Reverse Transcription kit (Applied 

Biosystems, USA). Degenerate primers were designed to amplify conserved regions among 

mammalian sequences and using the software PriFi (Fredslund et al. 2005). DNA amplification 

was performed by droplet digital PCR (ddPCR) on the basis of EvaGreen ddPCR Supermix 

(BioRad, Barcelona). The results from more than 12.000 droplets were accepted and 

normalised to an appropriate housekeeping (ndufa9). Values are reported as cDNA gene units 

per cDNA housekeeping units. All equipment and reagents were purchased from Bio-Rad 

(Barcelona, Spain).  

Targeted metabolomics 

Sample processing 

Plasma metabolites extraction was performed based on the methodology previously 

described (Method 1, Cabré et al. 2016). Briefly, 10 µL of plasma were added to 30 µL of cold 

methanol containing 1 μg/mL of Phe-13C as internal standard and 1 μM butylhydroxytoluene as 

antioxidant. Then, samples were incubated at room temperature for 15 min and centrifuged at 

12000 g for 3 min. Finally, the supernatant was filtrated through a 0.22-μm organic diameter 

filter (Sigma, CLS8169) and 200 µL were transferred to Agilent vials with glass inserts for 

further analysis. 
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Sulphur-containing metabolites were extracted on the bases of the methodology previously 

described (Method 2, Liu et al. 2017). Briefly, 2 µL of 5% DTT were added to 10 µL of plasma. 

The resulting solution was vortexed for 1 min and allowed to stand at room temperature for 

10 min. For protein precipitation, 40 µL of 0.1% formic acid plus 0.05% trifluoroacetic acid in 

acetonitrile containing 1 µg/mL of Phe-13C as internal standard was added to the sample, and 

the solution was vortexed for 2 min. Then, samples were incubated at room temperature for 

15 min and centrifuged at 12000 g for 3 min. Finally, the supernatant was filtrated through a 

0.22-μm organic diameter filter (Sigma, CLS8169) and 200 µL were transferred to Agilent vials 

with glass inserts for further analysis. 

Analysis conditions 

The individual conditions for the detection and quantification of heart metabolites are listed in 

Table 1. 

For non-sulphur-containing metabolites, 2 µL of extracted sample was injected based on the 

method described (Method 1, Cabré et al. 2016). Chromatographic separation was achieved on 

a reversed-phase column (Zorbax SB-Aq 1.8 µm 2.1×50mm; Agilent Technologies) equipped 

with a precolumn (Zorba-SB-C8 Rapid Resolution Cartridge 2.1×30mm 3.5 µm; Agilent 

Technologies) with a column temperature of 60°C. The flow rate was 0.6mL/min during a 19 

min. Solvent A was composed of water containing 0.2% acetic acid and solvent B was 

composed of methanol 0.2% acetic acid. The gradient started at 2% B and increased to 98% B 

in 13 minutes and held at 98% B for 6 minutes. Post-time was established in 5 minutes. 

Electrospray ionization was performed in both positive and negative ion mode (depending on 

the target metabolite) using N2 at a pressure of 50 psi for the nebulizer with a flow of 12 L/min 

and a temperature of 325°C, respectively.  

For sulphur-containing metabolites, 10 µL of extracted sample was injected based on the 

method described (Method 2, Liu et al. 2017). Chromatographic separation was achieved on a 

reversed-phase Supelcosil LC-CN column (Supelco of 4.6 x 250 mm and 5 µL particle size. 

Sigma) with a column temperature of 30°C. The flow rate was 0.5mL/min during a 10 min at 

10%B. Solvent A was composed of water containing 0.1% formic acid and solvent B was 

composed of acetonitrile 0.1% formic acid. Electrospray ionization was performed in both 

positive and negative ion mode (depending on the target metabolite) using N2 at a pressure of 

50 psi for the nebulizer with a flow of 12 L/min and a temperature of 325°C, respectively. 

Data was collected using the MassHunter Data Analysis Software (Agilent Technologies). Peak 

determination and peak area integration were carried out with MassHunter Quantitative 

Analyses (Agilent Technologies. San Jose. CA. USA). 

Metabolite quantification 

Metabolite quantification was performed by constructing standard curves for each 

metabolites. Expected plasma concentration for each metabolite was based on the Human 

Metabolome Database (HMDB, http://www.hmdb.ca). Standard curves were constructed by 

plotting the peak area ratio against the final metabolite concentration.  

 

http://www.hmdb.ca/
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Equipment 

The analysis was performed through liquid chromatography coupled to a hybrid mass 

spectrometer with electrospray ionization and a triple quadrupole mass spectrometer. The 

liquid chromatography system was an ultra-performance liquid chromatography model 1290 

coupled to ESI-TQ MQ/MS model 6420 both from Agilent Technologies (Barcelona, Spain). 

Statistics 

Multivariate statistics was performed using Metaboanalyst software. Pearson correlation and 

Pearson partial correlation were performed using IBM SPSS Statistics (v21.0.0). Linear models 

and phylogenetic generalised least squares regression (PGLS) were constructed using RStudio 

(v1.1.453). The phylogenetic tree was constructed using taxa names in TimeTree 

(www.timetree.org). Functions used were included in the package caper. Data was log-

transformed and mean-centred prior statistical analyses in order to accomplish the 

assumptions of linearity.  

http://www.timetree.org/
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Figure legends  

Figure 1. Multivariate statistics reveals a species-specific gene expression and protein 

content of mTORC1. A) Principal component analyses (PCA) representation of mTORC1. X: 

Principal component 1 (PC1); Y: Principal component 2 (PC2); Z: Principal component 3 (PC3). 

B) Hierarchical clustering of individual animal samples according to mTORC1 gene expression 

and protein content. C) Hierarchical clustering of animal species according to average mTORC1 

gene expression and protein content. D) Partial least squares discriminant analysis (PLS-DA) 

representation of mTORC1. X: Component 1 (C1); Y: Component 2 (C2); Z: Component 3 (C3). 

E) Cross validation (CV) analyses (10-fold CV method) of the PLS-DA model. F) Variable 

importance projection (VIP) scores indicating the elements which contribute the most to 

define the first component of a PLS-DA.  

Figure 2. mTORC1 gene expression (A) and protein content and phosphorylation (B) are 

linearly correlated with mammalian ML. Pearson correlation was performed between gene 

expression or protein content and maximum longevity (ML). Linear regression was applied 

when significant relationships were found. R2(mtor)=0.1; R2(rptor)=0.4  ; R2(mTOR)<0.1; 

R2(Raptor)=0.14; R2(PRAS40)=0.22; R2(mTORSer2448)=0.27; R2(PRAS40Thr246)=0.40. Minimum 

signification level was set at p<0.05. Gene expression and protein content were log-

transformed to accomplish the assumptions of normality. 

Figure 3. Pearson correlation matrix of mTORC1 subunits gene expression and protein 

content and phoshprylation. Pearson r-value for pairwise comparisons is reported. Non-

significant correlations are left in blank. Minimum signification level was set at p<0.05. 

Metabolite concentration, gene expression and protein content were log-transformed to 

accomplish the assumptions of normality. 

Figure 4. Metabolite concentration (A, B), gene expression and protein content (C) of 

mTORC1 regulators are linearly correlated with mammalian ML. Pearson correlation was 

performed between metabolite concentration, gene expression or protein content and 

maximum longevity (ML). Linear regression was applied when significant relationships were 

found. R2(Methionine)=0.42; R2(SAM)=0.38; R2(Homocysteine)=0.24; R2(Arginine)=0.16; 

R2(fkbp1a)=0.33; R2(FKBP12)<0.1; Minimum signification level was set at p<0.05. Metabolite 

concentration, gene expression and protein content were log-transformed to accomplish the 

assumptions of normality. 

Figure 5. Relationships between mTORC1 and methionine-related metabolites in heart tissue 

from mammalian species. Pearson correlation was performed. Pearson r values are reported 

in Figure 3. Linear regression (LR) model was performed when significant relationships were 

found. Minimum signification level was set at p<0.05. Metabolite concentration, gene 

expression and protein content were log-transformed to accomplish the assumptions of 

normality. 

Figure 6. Relationships between the mTORC1 regulators arginine (A) and FKBP12 (B) with 

mTORC1 components and methionine-related metabolites in heart tissue of mammals. 

Pearson correlation was performed. Pearson r values are reported in Figure 3. Linear 

regression (LR) model was performed when significant relationships were found. Minimum 
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signification level was set at p<0.05. Metabolite concentration, gene expression and protein 

content were log-transformed to accomplish the assumptions of normality. 

Figure 7. mTORC1 is correlated with animal ML after correcting for phylogenetic 

relationships. A) Phylogeny used and its modification according to Pagel’s λ, which is a 

coefficient that transforms the phylogeny and adopts values between 0-1 when assuming 

absent (λ=0) or strong (λ=1) phylogenetic signal in the data. B) Linear regression between the 

average metabolite concentration, gene expression or protein content and animal ML (black 

lines) and after correcting for phylogenetic effect (red lines). R2(mtor)=0.1; R2(rptor)=0.4; 

R2(fkbp1a)=0.27; R2(mTORSer2448)=0.48; R2(PRAS40Thr246)=0.5; R2(Methionine)=0.83. Metabolite 

concentration, gene expression and protein content were log-transformed to accomplish the 

assumptions of normality. 

Figure 8. Longevity model of the mTORC1 modulation. Green indicates increased in long-lived 

animals. Red indicates decreased in long-lived animals. 

Supplementary figure 1. Relationships among the mTORC1 core components in heart tissue 
from mammalian species. Pearson correlation was performed. Pearson r values are reported 
in Figure 3. Linear regression (LR) model was performed when significant relationships were 
found. Minimum signification level was set at p<0.05. Gene expression and protein content 
were log-transformed to accomplish the assumptions of normality. 

Supplementary figure 2. Individual mTORC1 protein content and phosphorylation from 

animal’s heart. A) mTOR total protein content, mTORSer2448 and its respective coomassie. B) 

PRAS40 total protein content, PRAS40Thr246 and its respective coomassie. C) RAPTOR protein 

content and its respective coomasie. D) FKBP12 protein content and its respective coomassie. 
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Tables 

Table 1. Analytical traits of the metabolites measured in heart tissue. 

Cpd Name Prec Ion Prod Ion Frag (V) CE (V) CAV (V) Ret Time (min) Ret Window Polarity Extraction Method 

AMINO ACIDS 

Arginine 175.1 70.2 60 20 7 0.32 2 Positive Methanol 1 

Arginine 175.1 60.2 60 15 7 0.32 2 Positive Methanol 1 

Cysteine 122.02 76 64 12 7 6.312 4 Positive DTT 2 

Cysteine 122.02 59 64 24 7 6.312 4 Positive DTT 2 

Leucine 132.1 86 64 8 7 0.591 2 Positive Methanol 1 

Leucine 132.1 69 64 16 7 0.591 2 Positive Methanol 1 

METHIONINE METABOLISM 

Homocysteine 136.18 90.1 135 15 7 7.225 4 Positive DTT 2 

Homocysteine 136.18 56.2 135 15 7 7.225 4 Positive DTT 2 

Methionine 150.05 104 64 4 7 0.48 2 Positive DTT 1 

SAM 399.1 250 112 12 7 0.396 2 Positive DTT 1 

SAM 399.1 136 112 28 7 0.396 2 Positive DTT 1 

ISTD 

PheC13 167.09 120.1 70 8 7 0.87 2 Positive Methanol/DTT 1/2 

PheC13 167.09 77 70 44 7 0.87 2 Positive Methanol/DTT 1/2 

PheC13 167.09 103 70 28 7 0.87 2 Positive Methanol/DTT 1/2 

PheC13 167.09 51.1 70 60 7 0.87 2 Positive Methanol/DTT 1/2 

Fragmentor. collision energy (CE) and cell acceleration voltage (CAV) were given as voltage; retention time (RT) in minutes; and product and precursor ion as m/z. 

Method 1 (see material and methods, Cabré et al. 2016); Method 2 (see material and methods, Liu et al. 2017). 
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