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Abstract 

The mechanisms of stomatal sensitivity to CO2 are yet to be fully understood. The role 

of photosynthetic and non-photosynthetic factors in stomatal responses to CO2 was 

investigated in wild-type barley (Hordeum vulgare var. Graphic) and in a mutant 

(G132) with decreased photochemical and Rubisco capacities. The CO2 and DCMU 

responses of stomatal conductance (gs), gas exchange, chlorophyll fluorescence and 

levels of ATP, with a putative transcript for stomatal opening were analysed. G132 had 

greater gs than the wild-type, despite lower photosynthesis rates and higher intercellular 

CO2 concentrations (Ci). The mutant had Rubisco-limited photosynthesis at very high 

CO2 levels, and higher ATP contents than the wild-type. Stomatal sensitivity to CO2

under red light was lower in G132 than in the wild-type, both in photosynthesizing and 

DCMU-inhibited leaves. Under constant Ci and red light, stomatal sensitivity to DCMU 

inhibition was higher in G132. The levels of a SLAH3-like slow anion channel 

transcript, involved in stomatal closure, decreased sharply in G132. The results suggest 

that stomatal responses to CO2 depend partly on the balance of photosynthetic electron 

transport to carbon assimilation capacities, but are partially regulated by the CO2

signalling network. High gs can improve the adaptation to climate change in well-

watered conditions.

Key words: CO2, Hordeum vulgare, photosynthetic electron transport, signalling, 

SLAH3, stomatal conductance 

Abbreviations: A, rate of CO2 assimilation; Ac, rate of CO2 assimilation limited by 

Rubisco; Aj, rate of CO2 assimilation limited by RuBP regeneration; Ca ambient CO2

concentration; Ci, intercellular CO2 concentration in leaves; DCMU, 3-(3,4-

dichlorophenyl)-1,1-dimethylurea; Fv/Fm, maximum quantum efficiency of PSII 

photochemistry; Fq’/Fm’, PSII operating efficiency; ΦNPQ, quantum yield of  non-

photochemical quenching; gs, stomatal conductance; J, potential rate of photosynthetic 

electron transport; PSII, photosystem II; qL, fraction of PSII centres which are in the 

open state; qRT-PCR, quantitative real-time polymerase chain reaction; RuBP, 

Ribulose-1, 5-bisphosphate; Rubisco, Ribulose-1, 5-bisphosphate 

carboxylase/oxygenase; SBPase, sedoheptulose-1, 7-bisphosphatase; Vcmax, maximum 

rate of Rubisco-catalyzed carboxylation; WT, wild-type. 
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1. Introduction

Stomata provide plants with a key mechanism for regulating water loss and CO2

uptake, and constantly adapt to a changing environment. Diverse factors control 

stomatal opening and closure ([1-5] and earlier references therein [6, 7]). Stomatal 

conductance and the CO2 assimilation rate are often correlated in such a way that the 

ratio of intercellular (Ci) to ambient (Ca) CO2 concentrations is almost constant [8, 9], 

although it may be modified by certain environmental factors [8]. By altering Ci while 

Ca was held constant, and by altering Ca while Ci was held constant, the stomata were 

shown to respond to Ci and to be insensitive to Ca [10]. Ci alone is unable to regulate the 

correlation between CO2 assimilation and gs [11], and the underlying mechanism is still 

unclear. It has been hypothesized that the Ci response of gs is controlled by the balance 

between electron transport capacity and Ribulose-1, 5-bisphosphate carboxylase 

oxygenase (Rubisco) carboxylation [8], either in the guard cells or in the mesophyll. 

Alternatively, the redox state of the photosynthetic electron transport components [12] 

may regulate this response. An increase in electron transport capacity and associated 

products, such as ATP, NADPH or Ribulose-1, 5-bisphosphate relative to Rubisco 

capacity [13, 14], or the greater reduction in plastoquinone and upstream electron 

transport components [12], would increase gs. Photosynthetic electron transport could 

provide the ATP required for H+ pumping and cation uptake at the guard-cell plasma 

membrane [15]. Alternatively, a yet unknown signalling pathway could link the redox 

state of the electron transport chain to stomatal movements [12]. In contrast with this 

hypothesis, transgenic plants with low aldolase [16], fructose-1,6-bisphosphatase [17], 

glyceraldehyde-3-phosphate dehydrogenase [18], Rubisco or cytochrome b6f content 

[19-22], in which CO2 assimilation is inhibited but gs is similar to the wild-type (WT), 

suggest that stomatal conductance is not directly determined by the photosynthetic 

process [19, 22]. Nevertheless, in sedoheptulose-1, 7-bisphosphatase (SBPase) antisense 

mutant plants, in which the regenerative capacity of the Calvin-Benson cycle decreased 

with no effects on carboxylation efficiency, the closing response of the stomata to 

increasing Ci was decreased relative to the WT [23]. This mutation could result in 

increased levels of chloroplastic ATP. Prior work with transgenic plants with strong 

reductions in Rubisco activity and photosynthetic capacity [19, 22] was performed in 

growth chambers at elevated CO2 concentrations (800 or 953 µmol mol-1), which can 
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affect stomatal sensitivity to CO2 [24-26]. Similarly, studies on the contribution of 

photosynthesis to the red light response of stomatal conductance involved plants with 

antisense reductions in the cytochrome b6f complex [19] grown under very low light 

intensity (25 µmol m-2 s-1), which alters the relative stoichiometries of the thylakoid 

protein complexes [27]. In turn, antisense SBPase plants grown in normal air under 

glasshouse conditions had only a small difference with the WT in conductance response 

to increasing Ci [23]. These earlier results prompted us to study the effects of 

photosynthesis on stomatal CO2 responses in an ambient CO2 concentration, under both 

growth chamber and glasshouse lighting. We compared the WT with a barley mutant 

with lower photosynthesis, but distinctly higher stomatal conductance. Stomatal 

movements were measured under red light, which shares characteristics of 

photosynthesis in its action spectrum in the red region, while blue light is perceived by 

phototropins and induces stomatal opening by a different mechanism [19]. 

The Photosystem II electron transport inhibitors 3-(3,4-dichlorophenyl)-1,1-

dimethylurea (DCMU) [9, 14, 15] and cyanazine (2-chloro-[l-cyano-l-

methylethylamino]-6- ethylamino-S-triazine) [9] and the carotenoid synthesis inhibitor 

norflurazon [28, 29] have been used to examine the dependence of stomatal 

conductance on photosynthesis. These compounds decreased gs and enhanced its 

response to rising CO2 in Gossypium hirsutum [9], and brought gs down to nearly zero 

in Xanthium strumarium when photosynthetic electron transport was completely 

blocked all over the leaf [14]. These results suggest that stomata respond to changing 

CO2 concentrations through a mechanism that depends on photosynthetic electron 

transport. However, in the absence of electron transport the stomata retain a response to 

Ci [14, 28, 29], pointing to a second mechanism that does not depend on photochemical 

reactions. Indeed, stomatal guard cells can directly sense Ci [10, 29]. The existence of 

an additional photosynthesis-unrelated pathway contributing to CO2-induced stomatal 

movements is evidenced by work with mutants lacking components of the CO2

signalling network in guard cells: carbonic anhydrases such as βCA1 and βCA4 in 

Arabidopsis [28], the HT1 (HIGH LEAF TEMPERATURE 1) protein kinase [30, 31], 

the S-type anion channels SLAC1 [5, 31, 32] and SLAH3 [33], the OST1 and CPK 

family protein kinases [33, 34] involved in activating these anion channels, GCA2 

(growth controlled by abscisic acid 2) and the ABCB14 malate transporter [35]. Altered 

stomatal sensitivity to CO2 in mutants with reduced photosynthetic capacity, but normal 
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or high conductance, could be due to changes in the components of the CO2 signal 

transduction pathway in guard cells. 

The first aim of this work was to further investigate whether the CO2 response of gs

is controlled by the balance between electron transport capacity and carboxylation by 

Rubisco. Our approach was to compare with the barley WT a sodium azide mutant 

(G132) with low photosynthesis rates, but high stomatal conductance. The experiments 

were carried out both in growth chamber and glasshouse to identify environment-

independent responses. The photosynthetic and non-photosynthetic controls of gs were 

distinguished by inhibiting electron transport with DCMU, and by assessing the CO2

response of gs in photosynthesizing and DCMU-poisoned leaves of the mutant and the 

WT. The second aim of our research was to appraise the role of the guard cell CO2

signalling network on the altered gs responses to CO2 in G132. With this purpose, we 

screened a differential expression of genes for components of that network. 
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2. Material and Methods

2.1. Plant material and growing conditions 

Barley (Hordeum vulgare L.) pure pedigree seed of the Graphic variety (WT) and 

homozygous, sodium azide mutagenized seeds of the line G132 were obtained from Dr 

J. L. Molina-Cano’s mutant collection at IRTA. An initial characterization of the mutant 

has been reported [36] and the study of the exome capture of the mutant compared with 

the WT is currently in progress. Preliminary gas exchange measurements revealed that 

G132 had lower photosynthesis and higher gs than the WT. Seeds of G132 and WT 

were surface sterilized with hypochlorite and sown in 5 L pots with 1.2 kg of peat: 

perlite (4:1) substrate, with a density of four plants per pot after emergence. Four g of 

KNO3 and 4 g of KH2PO4 were added to each pot. The peat provided a sufficient supply 

of other nutrients. Water was supplied during growth to maintain pot field capacity. The 

plants were grown in a controlled environment chamber or a glasshouse. Chamber 

conditions were as follows: ambient CO2, 450 µmol m-2 s-1 irradiance at the top of the 

canopy, 16:8 h light:dark photoperiod, 20:15 ºC light:dark temperatures, and 60±5 % 

relative humidity. The glasshouse had partial temperature control to achieve c. 20:15 ºC 

day:night temperatures, supplementary illumination to extend the photoperiod to 16 h 

with a minimum of 400 µmol m-2 s-1 irradiance, and 60±10 % relative humidity. All 

measurements were performed on the youngest fully expanded leaf, at the 

developmental stages of 3-4 leaves or 5-7 leaves (13-14 or 15-17 stages of the Zadoks 

scale [37]), with WT being more developed than G132. 

2.2. Chlorophyll fluorescence and gas exchange

The chlorophyll fluorescence quenching analysis followed the procedure described 

by Pérez et al. [38]. Leaf sections were kept in the dark for 20 min with leaf clips, after 

which dark-adapted state fluorescence parameters were measured. Fo was recorded and 

a saturating flash of light (~8000 µmol m-2 s-1) was applied for 0.8 s to determine Fm. 

Fo and Fm, respectively, represent the minimal and maximal fluorescence in the dark-

adapted state, and Fv/Fm [(Fm–Fo)/Fm] represents the maximum quantum efficiency. 

Light-adapted leaves were illuminated with the red actinic light source of the 

fluorometer to obtain an irradiance of 1000 µmol m-2 s-1. Saturating light pulses were 
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given every 20 s until steady-state chlorophyll fluorescence parameter values were 

obtained, the fluorescence values being recorded immediately before (F’, steady-state 

fluorescence) and after (Fm’, maximal fluorescence in the light) each pulse. Then, the 

leaf was covered with a black cloth, the actinic light was switched off, and an infrared 

light was switched on for 3 s to quickly reoxidize the Photosystem II (PSII) centres and 

measure Fo’, the minimal fluorescence with a non-photochemical quenching (NPQ) 

similar to that found in the steady-state under light. The equipment determines Fq’/Fm’ 

[(Fm’–F’)/Fm’], which is the PSII operating efficiency (also termed ΦPSII). The fraction 

of PSII centres in the open state, qL, equates to (Fq’/Fv’)(Fo’/F’). The quantum yield of 

non-photochemcial quenching, ΦNPQ, is 1–(Fq’/Fm’)–ΦNO, where ΦNO, the quantum 

yield of basal, non-radiative decays is 1/[NPQ+1+qL(Fm/Fo–1)] and NPQ is (Fm/Fm’)–

1. Chlorophyll fluorescence was measured in five replicate leaves (from different 

plants) of each genotype at the stage of 3 (G132)-4 (WT) leaves from glasshouse-grown 

plants. 

Gas exchange was measured in the central segment of leaves using a 1.7 cm2-

window leaf chamber connected to an infrared gas analyser (PLC6 [rice] and CIRAS-2, 

respectively, PP Systems, Amesbury, MA, USA). The air flow rate was 300 ml min-1, 

leaf temperature was kept at 20 ºC using the Peltier system in the leaf chamber, 

irradiance was set at 1000 µmol m-2 s-1 provided by red supplemented with white LEDs, 

with a 0.95±0.12 kPa vapour pressure deficit. The gas exchange-CO2 response curves 

were recorded by decreasing CO2 concentration in five steps from 390 to 60 µmol mol-1

(c. 10 min), followed by an increase from 390 to 1800 µmol mol-1 (c. 15 min) in six 

steps. At each step, as soon as the chamber’s CO2 concentration was stable, but not 

necessarily steady-state (c. 2 min), the gas exchange parameters were recorded [39]). 

The photosynthesis-Ci responses were used to determine the maximum rate of Rubisco-

catalyzed carboxylation (Vcmax), the potential rate of photosynthetic electron transport 

(J) and the limitations of photosynthesis by Rubisco, Ribulose-1, 5-bisphosphate 

(RuBP) regeneration or Triose-phosphate utilization, according to Farquhar et al. [40]. 

This model was fitted with the LeafWeb utility [41]. These short-term CO2 responses 

were measured in five youngest fully expanded replicate leaves of each genotype at the 

stages of 3 (G132)-4 (WT) leaves from both a growth chamber and a glasshouse, and of 

5 (G132)-7 (WT) leaves from a glasshouse. Measurements are presented for glasshouse 

plants at the earlier stage of development; similar results were obtained in other 

recordings. 
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The long-term responses of gs and other gas exchange parameters to CO2

concentration were recorded for 40-50 min by first equilibrating the leaves in 1000 

µmol m-2 s-1 irradiance and 390 µmol mol-1 CO2 for 20 min, and then increasing or 

decreasing CO2, respectively, to 1800 or 40 µmol mol-1 in a single step. For the 

quantitative comparisons of the genotypes, we calculated the stomatal responses as 

ratios of final to initial gs for the recording time, and determined the response kinetics 

with functions of best fit and derivatives with respect to time, as detailed in section 2.7. 

To distinguish the stomatal responses to CO2 from those induced by blue light [42], 

these long-term measurements were carried out under red light illumination, obtained 

by interposing a long pass optical filter between the lamp and the leaf chamber window. 

Measurements were replicated in five leaves per genotype from both a growth chamber 

and a glasshouse experiment, at the same growth stages as for short-term responses to 

CO2. 

2.3.  Gas exchange of DCMU-treated leaves

To assess the effects of DCMU on gs and photosynthesis, the youngest fully 

expanded leaves (six replicate leaves per genotype) from glasshouse-grown plants at the 

5-leaf stage (Zadoks scale 15) for both genotypes were detached and cut under water 

with a sharp scalpel, and then the cut base was placed in water containing 1.5 % ethanol 

(for adequate comparison with the subsequent DCMU treatment; see below). The 

central section of the leaf was inserted into the gas exchange leaf chamber (1.7 cm2) for 

equilibration for 30 min at 400 µmol mol-1 CO2 and 1000 µmol m-2 s-1 red irradiance. 

The leaf base was then rapidly transferred into 100 µM DCMU in ethanol [15] (or into 

1.5 % ethanol for the controls); we found that 1.5 % was the minimum ethanol 

concentration required to dissolve DCMU. Preliminary measurements indicated that 

photosynthesis reached the CO2 compensation point in less than 90 min; thus, gas 

exchange data were recorded for c. 2 h. Although previous experiments indicated that 

the response to DCMU was similar when Ci was allowed to vary during leaf 

incubations, the initial Ci value was kept approximately constant by decreasing Ca to 

ensure that DCMU responses were not the result of increases in Ci. Subsequently, CO2

concentration was lowered to 50 µmol mol-1 and recordings continued for 90 min, 

following which CO2 was increased to 800 µmol mol-1 and measurements continued for 
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100 min. The magnitudes and rates of stomatal responses were determined as described 

in section 2.2. 

2.4. Stomatal density and index of leaves

Preliminary recordings indicated that stomatal density was 21 % higher on the 

adaxial than on the abaxial side of the leaves. The stomatal and epidermal cell numbers 

on the adaxial side of similar leaves to those used for gas exchange measurements were 

determined from impressions with nail polish. The stomata were counted in 1.8 mm2

fields of view with a compound microscope using a magnification of 112.5. Ten fields 

of view regularly spaced along leaves in a glasshouse crop and five fields of view from 

the central segment of leaves in a growth chamber crop were counted in five replicate 

leaves per genotype at the growth stages indicated above. The stomatal index was the 

ratio of stoma to pavement cell numbers. Conductance was normalized to the stomatal 

density of the leaves by dividing the steady state gs by the number of stomata per unit 

area; the steady state gs was that attained after 20 min equilibration period at 390 µmol 

mol-1 CO2 and 1000 µmol m-2 s-1 red light irradiance (see section 2.2). This 

approximation was taken as valid for comparative purposes, even though the 

conductance of the whole leaf would overestimate gs for stomata on the adaxial surface. 

2.5.  ATP contents

At mid-morning in the growth stage of 3-4 leaves of plants grown in a controlled 

environment chamber, five replicate samples of the youngest fully expanded leaves per 

genotype, each consisting of five leaves, were harvested; each leaf was cut, immediately 

plunged into liquid nitrogen under illumination and then stored at -80 ºC until analysed. 

Subsamples of 150 mg were ground in a chilled mortar and extracted with 1 M HClO4

with 5 mM EGTA for 30 min on ice, with frequent shaking. After centrifugation at 

13000 g at 4 ºC for 5 min, the supernatant was collected and the precipitate was washed 

with water, centrifuged, and the supernatant was added to the perchloric acid extract. 

The combined extract was then neutralized with 5 M KOH- 1 M triethanolamine pH 

7.0, centrifuged at 13000 g at 4 ºC for 5 min, the supernatant was collected, and the 

precipitate washed with water, centrifuged, and the supernatants were pooled. Extracts 

were not clarified with charcoal, which would remove the adenylates. ATP was 

analysed by the Lowry and Passonneau method [43], with glucose, hexokinase, glucose-
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6-P isomerase, NADP and glucose-6-P dehydrogenase, and measuring NADPH 

formation by the change in absorbance at 340 nm minus 400 nm. ATP recovery was 

determined by comparing the analyses of extracts with and without the addition of 

representative amounts of ATP standard. 

2.6.  Transcript profiling

Microarray processing was performed on the primary leaf RNA extracts from six 

replicates per genotype, using Agilent 56k barley microarray. Each replicate consisted 

of three-five primary leaves from plants grown in a controlled environment chamber 

harvested at the 2-leaf stage (Zadoks scale 12). Probe design, labelling and 

hybridization were performed at the Leibniz Institute of Plant Genetics and Crop Plant 

Research (IPK, Gatersleben, Germany). The arrays were scanned at a 2-micron high 

resolution using the DNA Microarray Scanner G2565CA (Agilent), and statistically 

analysed with GeneSpring (v 12) software (Agilent). The results from the analysis of 

these microarrays will be reported in full elsewhere. The sequence of a transcript 

potentially involved in stomatal aperture, which was differentially expressed (see 

below) in G132 relative to WT, was compared and annotated using the HarvEST, 

GenBank and Mercator tools [44-46]. The results were validated by quantitative real-

time polymerase chain reaction (qRT-PCR). 

Based on the results of the microarrays, the levels of transcript for a protein (SLAH3-

like) putatively involved in the regulation of stomatal aperture were determined by qRT-

PCR in five replicates, each consisting of five youngest fully expanded leaves of each 

genotype, at the stages of 3 (G132)-4 (WT) leaves from controlled environment-growth 

plants and of 5 (G132)-7 (WT) leaves from glasshouse-grown plants. Analyses were 

performed in duplicate. RNA extraction and purification followed the procedure 

described by Morcuende et al. [47]. Primers were designed for a barley SLAH3 slow 

anion channel (GenBank: AK368060, forward CCAACACAAGCAGCAAGACC, 

reverse GAAGCCGTCGAGATGGGAAA). Total RNA was treated with TURBO 

DNase (Ambion) before proceeding with the cDNA synthesis using the SuperScript III 

Reverse Transcriptase (Invitrogen) according to the manufacturer’s instructions. The 

qRT-PCR assays were performed in 384-well plates with a sequence detector system 

(ABI PRISM 7900 HT, Applied Biosystems), using Power SYBR Green PCR Master 

Mix (Applied Biosystems), cDNA and gene-specific primers in a total volume of 10 µl. 
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The thermal profile was as follows: 50 ºC for 2 min and 95 ºC for 10 min, followed by 

40 cycles of 95 ºC for 15 s, then 60 ºC for 1 min, and a final temperature increase from 

60 ºC to 95 ºC at 1.9 ºC min-1. For normalization, the genes were used of ubiquitin 

(GenBank: M60175, forward CACCCTCGCCGACTACAA and reverse 

CTTGGGCTTGGTGTACGTCT primers) and actin (GenBank: AY145451, forward 

GGCACACTGGTGTCATGG and reverse CTCCATGTCATCCCAGTT primers). The 

formation with each primer pair of a single PCR product of the expected size was 

assessed by agarose electrophoresis and PCR melting curve data. Relative quantification 

used the comparative Ct (threshold cycle) method (2−∆∆Ct, Schmittgen and Livak, [48]). 

2.7.  Statistical analyses 

The data were subjected to analyses of variance with no blocking (GenStat 6.2). The 

rates of stomatal closure or opening in response to long-term changes in CO2

concentration and to DCMU feeding were compared by fitting the empirical functions 

of best fit among a series of standard curves to the gs kinetics over time. Regressions 

with groups (analysis of parallelism, GenStat 6.2) were analysed to determine whether a 

common regression should be fitted for the two genotypes (implying that there was no 

difference between them), or whether regressions with some or all their parameters 

separated should be selected (indicating that the kinetics differed in elevation or slope). 

To fit the functions, all five or six replicate leaves from each genotype were included 

separately. Stomatal opening and closing rates were estimated as first derivatives of the 

selected functions with respect to time. The microarray data were processed using 

GeneSpring (v.12) software (Agilent). A statistical filter was applied to the data, which 

were subjected to an analysis of variance (P value<0.01) with Benjamini and Hochberg 

correction [49] for false positives (FDR). 
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3. Results

3.1. Functional features of the G132 mutant 

The G132 mutant had a lower PSII maximum (Fv/Fm) and operating (Fq’/Fm’) 

quantum efficiencies than WT (Table 1). Since qL did not significantly vary between 

genotypes, the mutant’s decreased Fq’/Fm’ was due to the lower quantum efficiency of 

open PSII centres. Indeed, the quantum yield of non-photochemical quenching (ΦNPQ) 

increased in G132 relative to WT. ATP is a major product of electron transport in 

chloroplasts and mitochondria; its concentration in whole extracts of young fully 

expanded leaves was significantly higher in the mutant than in WT (Table 1). In 

addition, G132 had low chlorophyll and Rubisco protein contents (data not shown). 

Remarkably, Vcmax limited G132 photosynthesis up to 1800 µmol mol-1 air CO2

concentration, in contrast with the expected J limitation of photosynthesis at high CO2

observed in WT (Fig. 1). Thus, G132 had a surplus electron transport capacity. In the 

youngest fully expanded leaves, at different plant development stages (both growth 

chamber (Fig. 2a) and glasshouse environments (Fig. 2b, c)), photosynthesis rates 

measured in ambient CO2 and high light intensity were lower in G132 than in WT. In 

spite of its inferior photosynthetic performance, G132 had a higher stomatal 

conductance than WT (Fig. 2). 

3.2.  Stomatal density and index of leaves 

In plants grown in a controlled environment chamber, the stomatal density on the 

adaxial central segment of the leaves was found to be higher in G132 than in WT (Fig. 

3a). In glasshouse-grown plants, stomatal density increased from leaf base to apex in 

both genotypes, and was higher in G132 than in WT (Fig. 3b), thus confirming the 

result of the prior experiment. There was no genotypic difference in stomatal index in 

the younger, controlled environment-grown plants (Fig. 3a), but there was a small (13.5 

%) yet significant increase in the stomatal index in G132 compared to WT glasshouse-

grown plants (Fig. 3b). Greater numbers of stomata per unit leaf area, and a similar or 

marginally higher stomatal index in the mutant, imply that stomatal size was smaller in 

G132 than in WT. To verify whether the greater gs of G132 was due solely to the higher 

density of stomata, steady state (after about 20 min) gs with ambient CO2 concentration 

and high irradiance was normalized to stomatal density on the central segment of the 

leaves (see section 2.4). The normalized conductance was similar in both genotypes in 
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plants from the growth chamber (Fig. 3c), but greater in G132 than in WT in plants 

grown in the glasshouse (Fig. 3d) and measured at a later developmental stage. Thus, 

depending on plant age or the growth environment (not obvious from the data), the 

higher gs of G132 is attributable to greater stomatal aperture or even to greater stomatal 

density. 

3.3.  Stomatal responses to CO2 

Stomatal conductance responds in general more slowly to changes in conditions than 

photosynthesis [50]. Therefore, the gas exchange parameters were determined for 40-50 

min following a step increase in the ambient CO2 concentration up to 1800 µmol mol-1

under high intensity red light. Photosynthesis initially increased in WT, mostly in plants 

grown in a controlled environment chamber, and then remained stable (Fig. 4a, b). No 

increase in photosynthesis was observed in G132 during measurements. Whilst there 

were large  genotypic differences in the photosynthesis of the 3rd-4th leaf in growth 

chamber plants, WT had only marginally higher photosynthesis than G132 in the 5th 

(G132)-7th (WT) leaves on glasshouse plants. This difference in the magnitude of the 

change between genotypes was also observed in short-term measurements of 

photosynthesis, and is attributable to plant age, rather than to the growth environment 

(compare Figs. 2a and 2b with Fig. 2c). This result shows a gradual recovery of 

photosynthetic capacity in the mutant. Intercellular CO2 concentration decreased further 

to a steady state in WT than in G132 (Fig. 4c, d), which had higher Ci. In both growth 

conditions, the fractional decrease in gs after 40-50 min in the elevated CO2

concentration was lower in G132 than in WT (Fig. 5a, b). The kinetics of stomatal 

response was also slower in the mutant (Fig. 5c, d). Indeed, the regressions of gs over 

time (gs=A+B·exp(k·time)+C·time) were significantly different for both genotypes (Table 

2), with lower rates of stomatal closure for the mutant (Fig. 5e, f). Therefore, gs

sensitivity to an increase in CO2 was lower in G132 than in WT. When decreasing the 

CO2 concentration from 390 to 50 µmol mol-1, the stomatal conductance of the youngest 

fully expanded leaves changed little in both genotypes during the following 40-50 min 

(data not shown). 
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3.4.  Stomatal and photosynthetic responses to DCMU and CO2

The role of photosynthesis on stomatal aperture was also investigated by feeding 

detached leaves with the PSII inhibitor DCMU. The initial Ci was kept constant (278±6 

and 223±8 µmol mol-1 for G132 and WT, respectively) under bright red light. 

Photosynthesis gradually declined after about 10 min of 100 µM DCMU treatment, 

reaching the CO2 compensation point about 90 min later (Fig. 6a). Stomatal 

conductance increased for 20-30 min – for longer in WT than in G132 – after transfer to 

DCMU, and then decreased gradually. The ratio of final to initial gs was lower in G132 

than in WT (Fig. 6c), with the rate of gs decrease being significantly faster in the former 

(Table 2; Fig. 6e). Subsequently, once photosynthesis had been fully inhibited, CO2

concentration was lowered to 50 µmol mol-1. At this point, stomatal conductance (Fig. 

6b) increased in both genotypes to the same extent and rate (Fig. 6f; Table 2). About 

100 min after the decrease in CO2, this concentration was raised to 800 µmol mol-1, 

causing a rapid drop in gs to very low values in about 90 min (Fig. 6b). The fractional 

decrease in stomatal conductance was slightly, albeit significantly, greater (Fig. 6d), 

while the rate of decrease was significantly slower in the mutant than in WT (Table 2; 

Fig. 6f). 

3.5.  Correlation of transcripts with the regulation and movements of stomata  

The analysis of the 56k barley microarrays for primary leaves of plants grown in a 

controlled environment chamber showed in G132, relative to WT, a strong decrease in 

the transcript abundance of unigene 38703 (HarvEST: Barley v.1.83, Assembly 35). 

This gene has a high identity (NCBI) with the Hordeum vulgare accession AK368060. 

The transcript was annotated (Mercator) and manually curated (UniProtKB/Swiss Prot) 

as a SLAC1-like (SLAH3) slow anion channel (Table 3), a component of the guard cells 

signalling network for stomatal closure in response to CO2 [32, 34]. Quantitative RT-

PCR for leaves similar to those used for the gas exchange measurements of controlled 

environment and glasshouse plants confirmed the lower SLAH3 transcript level in G132 

than in WT (Table 3); this genotypic difference was smaller for the older, glasshouse-

grown plants than for leaves at an earlier growth stage growing in a controlled 

environment chamber. 
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4. Discussion 

The reduced photosynthesis of G132 compared to WT (Figs. 2, 4a) was associated 

with increased intercellular CO2 concentration (Fig. 4c, d), which together would be 

expected to decrease stomatal conductance [10]. The higher gs of the mutant (Figs. 2a-c 

and 5c, d) contradicts this expectation. The similar or greater conductance normalized to 

stomatal density in G132 than in WT (Fig. 3c, d) dismisses the possibility of the 

mutant’s higher gs being due to a greater number of stomata (Fig. 3a, b) with a smaller 

aperture. With ambient, rather than elevated, growth CO2 [22], and both glasshouse and 

controlled environment light intensities rather than dim light [19], leaves of G132 at 

different plant developmental stages also had lower extent (Fig. 5a, b) and rate (Fig. 5e, 

f) of stomatal closure than WT in response to rising atmospheric CO2. From these 

results it may be firmly concluded that the low-photosynthesis mutant G132 has 

reduced sensitivity to high CO2. The speed of stomatal responses to environmental 

signals is important for identifying regulating mechanisms [33] and maximizing CO2

uptake [51].We have assessed the response time of gs to CO2 through the selection and 

statistical comparison of curves of best fit, and have derived rates for each genotype 

from the start of CO2 change to the final steady state. This may be preferable to 

determining only maximum rates [33] or linear response rates after a first phase [22]. 

Previous studies suggest that smaller stomata may respond to environmental changes 

more quickly than larger ones [51, 52]. The opposite result with G132, which had 

smaller stomata compared to WT, shows that functional factors may have a greater 

influence on guard-cell movements than anatomical characteristics. Like G132 stomata, 

those of transgenic plants with impairments in several steps of the photosynthetic 

process maintain normal, rather than reduced, conductance [19-21, 23]. However, the 

magnitude and rate of stomatal opening in response to red light – which has an action 

spectrum similar to that of photosynthesis and the absorption spectrum of chlorophyll 

[42] – was not affected by antisense reductions in cytochrome b6f complex and Rubisco 

[19]. These results have led to the conclusion that gs is not directly determined by 

photosynthetic capacity or chloroplastic electron transport in guard cells or the 

mesophyll. On the other hand, the reduced stomatal sensitivity to rising CO2 observed in 

G132 has also been found, albeit to a small extent, in SBPase antisense tobacco 

mutants, which could have increased levels of chloroplastic electron transport products 

such as ATP [23]. The high yield of non-photochemical quenching in the G132 mutant 
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(Table 1) could be due to an increase in the proton gradient across the thylakoids, 

caused by the low consumption of electron transport products due to the slow rate of 

carbon assimilation. This would lead to ATP and NADPH build-up. Our experimental 

results indicate that ATP concentration in all the illuminated leaves, and very likely in 

chloroplasts [53], was higher in G132 than in WT (Table 1). Moreover, the 

photosynthesis-Ci response of G132 (Fig. 1) was Rubisco-limited up to very high CO2

concentrations, as found in transgenic tobacco plants with an antisense gene directed 

against the Rubisco small subunit [20]. This result clearly shows a greater balance 

between electron transport and carbon fixation capacities. Thus, the G132 barley 

mutant’s responses of gs to CO2 are consistent with Farquhar and Wong’s stomatal 

function model [8], relating the higher conductance and reduced CO2 sensitivity of 

stomata to the balance of the production and consumption of the products used in 

carbon assimilation, such as ATP [8, 14, 54, 55]. These responses are also consistent 

with a positive role in gs of the reduction in plastoquinone and upstream electron 

carriers [12]. Higher levels of photosynthetic electron transport products such as ATP 

could promote stomatal opening [15]. Alternatively, increases in these products, or a 

reduction in the electron transport chain, could trigger a signalling mechanism, which 

might modify the levels of a gaseous ion produced in the mesophyll that could reach the 

guard cells [56]. Although the short-term responses (i.e., standard photosynthesis-CO2

curves) of gs to decreases in CO2 also seemed smaller in G132 than in WT, there was 

hardly any long-term stomatal opening response to low CO2 in our experiments (data 

not shown). The models and experimental data [8, 14, 54] show that when 

carboxylation is limited by Rubisco and has surplus electron transport capacity, as 

normally occurs at low CO2 and high irradiance, gs is nearly insensitive to CO2. 

Another line of evidence showing that photosynthesis mediates in the stomatal 

response to CO2 is the decline in gs following DCMU feeding (Fig. 6a), which is 

consistent with prior studies [9, 14, 15, 29]. In our experiments, DCMU was supplied at 

constant Ci, ruling out the involvement of stomatal closure mechanisms that respond 

directly to the increase in CO2 concentration. The gradual decline in CO2 assimilation 

with DCMU  was probably due to the progressive spread of the inhibitor along the leaf, 

rather than an even decline of photosynthesis in the whole leaf, in agreement with 

Messinger et al. [14]. At variance with these authors, however, in our study gs did not 

decrease in step with photosynthesis, but had a delayed response to DCMU. Either more 

time is required for DCMU to reach the stomatal guard cells than other leaf cell types, 
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or the photosynthesis stimulus over gs is displaced over a greater distance, whereby the 

perception of its suppression is delayed. Previous reports support the fact that the 

stomatal response to CO2 is caused by a signal generated in the mesophyll [42, 57-59], 

which could account for the deferred response of gs to the inhibitor. The earlier and 

greater (rate and extent) DCMU effect on gs in G132 than in WT may be due mainly to 

the disappearance with the inhibitor of the surplus electron transport capacity relative to 

the carbon assimilation of the mutant. To a lesser extent, it may also be due to the 

moderately higher (24 %) Ci in G132 than in WT, which could have a photosynthesis-

independent effect on stomatal closure.  

The stomatal effects of CO2 on DCMU-treated leaves (Fig. 6b, d) clearly show 

another mechanism controlling the movements of stomata that is independent of 

photosynthesis, in agreement with Messinger et al. [14] and Kim et al. [35], and is 

probably related to CO2 signalling in guard cells [57]. In contrast with the results 

reported by Fujita et al., [57], the stomata of DCMU-treated leaves responded to CO2

under red light, with the reasons for this discrepancy being unclear. In DCMU-poisoned 

leaves, the extent of stomatal closure in response to an increase in CO2 concentration 

was somewhat greater in G132 than in WT (Fig. 6b), although the stomatal response in 

absolute units was smaller, and the rate of stomatal closure slower in the former (Fig. 

6d). Gene expression analysis showed a decrease in G132 compared to WT in transcript 

abundance for the SLAH3 slow anion channel (Table 3). The efflux of osmoregulatory 

anions from guard cells via SLAC1 [60] and SLAH3 [34, 60] initiates stomatal closure 

[61], and affects the sensitivity of K+ influx channels to cytosolic free Ca2+

concentration [60]. The Arabidopsis slac1-7 mutant with a Ser-120 substitution by Phe 

has a similar stomatal conductance to WT, albeit a slower stomatal closure rate than the 

latter in response to CO2 [33]. In contrast, the slac1-3 loss of function mutation in 

SLAC1 had significantly higher gs than WT, in addition to reduced sensitivity to 

elevated CO2 [33]. As with mutations in the SLAC1 anion channel [62, 63], the 

decreased abundance of SLAH3 may account for the impaired closure rate of the 

stomata of G132 in response to increases in the CO2 concentration in DCMU-treated 

leaves. The reductions in SLAH3 might be expected to slow stomatal opening in G132 

when Ca was decreased to 50 µmol mol-1 (Fig. 4b, c), due to the down-regulation of the 

K+ influx following the elevation of the cytosolic Ca2+ concentration [62, 63]. The Ca2+

concentration in G132 may not have increased sufficiently to affect the rise in gs in 
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response to low CO2. Electrophysiological studies are needed to confirm that the levels 

of SLAH3 protein in G132 decrease in parallel to transcript levels.  

The data presented here show that the altered stomatal CO2 responses of the barley 

G132 mutant may be due to its surplus electron transport capacity. This suggests that 

decreased stomatal sensitivity to increases in CO2 is positively associated to the balance 

between photosynthetic electron transport and Rubisco-catalysed carboxylation. The 

operation of a photosynthesis-independent mechanism contributing to CO2-induced 

stomatal movements is evidenced by stomatal closure and CO2 responses in DCMU-

poisoned leaves. The slower CO2 closing response of stomata in DCMU-fed G132 

leaves may be due to the impaired functioning of the slow anion channel SLAH3. 

Although some changes in the population of individual ion channels are ineffective and 

have counterintuitive effects [51, 64], the speed of stomatal movements can be modified 

through the manipulation of the ion channels in guard cells. Elevated stomatal 

conductance, as displayed by G132, is a trait that could increase photosynthesis in well-

watered conditions. 
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Table 1. Chlorophyll fluorescence quenching parameters and ATP content (µmol g Fwt-

1) in barley (Hordeum vulgare L.) leaves. The youngest fully expanded leaf of WT (4th

leaf) and its G132 mutant (3rd leaf) grown in a glasshouse (chlorophyll fluorescence) 
and a controlled environment chamber (ATP). Fluorescence was measured with ambient 
CO2 concentration (390 µmol mol-1) and 1000 µmol m-2 s-1 irradiance. Chamber 
conditions as in Fig. 2. The data are the means (± standard errors) of five replicates. lsd, 
least significant difference. Numbers in bold type represent significant effects (P<0.05). 

Fv/Fm Fq'/Fm' qL ΦNPQ ATP 
G132 0.52 (0.06) 0.14 (0.01) 0.43 (0.03) 0.73 (0.04) 0.28 (0.05) 
WT 0.81 (0.003) 0.36 (0.01) 0.43 (0.03) 0.50 (0.01) 0.17 (0.03) 
lsd 0.101 0.045 0.130 0.082 0.091 
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Table 2. Regression parameters and probabilities in the analysis of parallelism of the gs-time (s) response curves for barley (Hordeum vulgare L.) 
leaves shown in the indicated figures. A sequence of regression models was fitted to the values for WT and the G132 mutant. The first model to 
be fitted was a single curve with common parameters for both genotypes. Next, the model was extended to include a different constant parameter 
(A) for each genotype, giving two parallel curves. All the linear parameters in the following model were different for each genotype. Finally, 
completely separate curves were fitted, in which all the parameters differed between genotypes. The significant regression model with the highest 
complexity (shown in bold) was selected. 

Experiment Site Function Genotype Regression parameters Regression analysis of variance 

        A B C k D E 
common 
param. 

constant 
separate

all 
linear 
param. 

separate

all 
param. 

separate
1800 µmol mol-1 CO2 Growth chamber gs=A+B·exp(k·time)+C·time WT 80.76 51.01 -5.47E-03 -4.13E-03   <.001 <.001 0.831 0.036
(Fig. 5c, d)   G132 16.00 150.00 3.13E-02 -7.02E-04
 Glasshouse  WT 38.33 74.04 -3.00E-03 -3.95E-03   <.001 <.001 <.001 <.001

G132 49.70 139.20 3.58E-03 -1.07E-03

 DCMU (Fig. 6a) Glasshouse gs=A+(B+C·time)/ WT 147.60 49.67 -6.91E-03  -4.15E-04 9.32E-08 <.001 <.001 <.001 0.658 
(1+D·time+E·time2) G132 120.60 67.13 -1.58E-02 -4.15E-04 9.32E-08

50 µmol mol-1 CO2  Glasshouse gs=A+B·exp(k·time) WT 198.00 -49.26  -3.10E-04   <.001 <.001  0.315 
with DCMU (Fig. 6b) G132 162.40 -49.26 -3.10E-04

800 µmol mol-1 CO2  Glasshouse gs=A+(B+C·time)/ WT 44.17 54.32 -6.15E-03  -2.82E-04 2.28E-08 <.001 <.001 <.001 0.227 
with DCMU (Fig. 6b)   (1+D·time+E·time2) G132 22.08 42.44 -4.48E-03  -2.82E-04 2.28E-08
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Table 3. log2-tranformed transcript level ratios of the barley (Hordeum vulgare L.) 
G132 mutant compared with WT. Primary leaves at the stage of 2 unfolded leaves in 
plants grown in a controlled environment chamber (conditions as in Fig. 2) were 
analysed with a microarray, and the youngest fully expanded leaves at the stages of 3 
(G132)-4 (WT) leaves from controlled environment-growth plants and of 5 (G132)-7 
(WT) leaves from glasshouse-grown plants were analysed by qRT-PCR. Unigene code 
from HarvEST: Barley v.1.83, Assembly 35 database. 

   Log2 fold change 

Unigene Description GenBank 
Growth 
chamber 

array 

Growth 
chamber 

qRT-
PCR 

Glasshouse 
qRT-PCR 

38703 

Slow anion channel-
associated malate 
transporter SLAH3 
(SLAC1 HOMOLOGUE 
3) 

AK368060 -2.23 -3.76 -0.85 
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Fig. 1. Rate of CO2 assimilation limited by Rubisco (Ac) and by Ribulose-1, 5-
bisphosphate regeneration (RuBP, Aj) in barley (Hordeum vulgare L.). Measured and 
fitted values for the G132 mutant (closed symbols, broken line) and WT (open symbols, 
solid lines). There was no RuBP-limited CO2 assimilation in G132 (see text for details). 
Curves were fitted with the LeafWeb (leafweb.ornl.gov) utility to five replicate leaves 
per genotype and the mean values are presented. The youngest fully expanded leaves 
(3rd-4th leaf) of plants grown in a glasshouse were measured. Vertical bars represent 
twice the standard error of means. Inset: Vcmax and J values (µmol m-2 s-1 ± standard 
errors of means) and probability (P) in the analysis of variance. 
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Fig. 2. Photosynthesis (black columns) and stomatal conductance (open columns) of 
barley (Hordeum vulgare L.) leaves. The youngest fully expanded leaf of barley WT 
and G132 mutant at the stage of (a, b) 3 (G132)-4 (WT) expanded leaves; and (c) 5 
(G132)-7 (WT) expanded leaves. Measurements with 390 µmol mol-1 CO2 and 1000 
µmol m-2 s-1 irradiance. Plants were grown in (a) a controlled environment chamber 
with 390 µmol mol-1 CO2, 20:15 ºC light:dark temperature, 16:8 h light:dark 
photoperiod, 60 % relative humidity and 450 µmol m-2 s-1 light intensity; and (b, c) a 
glasshouse. The data are means of five replicates. Vertical bars represent least 
significant differences (lsd; P<0.05). 
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Fig. 3. Stomatal numbers and normalized conductance in barley (Hordeum vulgare L.) 
leaves. (a) Stomatal density (filled columns) and index (open columns) on the adaxial 
central segment of the youngest fully expanded leaf (3rd [G132]-4th [WT]) of plants 
grown in a controlled environment chamber with conditions as for Fig. 2; (b) Stomatal 
density (squares) and index (circles) along the adaxial side of the youngest fully 
expanded leaf (5th [G132, filled symbols]-7th [WT, open symbols]) of plants grown in a 
glasshouse. Conductance normalized to stomatal density in the adaxial central segment 
of (c) growth chamber-plants and (d) glasshouse-plants. The steady state stomatal 
conductance was determined after 20 min in an atmosphere with 390 µmol mol-1 CO2, 
1000 µmol m-2 s-1 red irradiance, 0.95±0.12 kPa vapour pressure deficit and 20 ºC. Each 
point is the mean of five replicate leaves. Vertical bars represent the lsd (P<0.05). 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0

10

20

30

40

50

G132 WT G132 WT

St
om

a/
pa

ve
m

en
t c

el
l

S
to

m
at

a 
m

m
-2

(a)

0

1

2

3

4

5

G132 WT

nm
ol

 s
-1

st
om

a-
1

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

10

20

30

40

50

60

0 2 4 6 8 10

S
to

m
a/

pa
ve

m
en

t c
el

l

S
to

m
at

a 
m

m
-2

Section from leaf base to apex

(b)

0

1

2

3

4

5

G132 WT

nm
ol

 s
-1

st
om

a-
1

(d)



31 

Fig. 4. Change with time in photosynthesis and intercellular CO2 concentration of 
barley (Hordeum vulgare L.) leaves after a step increase in air CO2 concentration. CO2
was increased from 390 to 1800 µmol mol-1 under 1000 µmol m-2 s-1 red irradiance at 
time zero. (a, b) photosynthesis and (c, d) intercellular CO2 concentration of the 
youngest fully expanded leaves of the G132 mutant (closed squares) and WT (open 
squares) at the growth stage of (a, c) 3 (G132)-4 (WT) leaves in a controlled 
environment chamber with conditions as for Fig. 2; (b, d) 5 (G132)-7 (WT) leaves in a 
glasshouse. Mean of five replicate leaves per genotype. Vertical bars represent twice the 
standard errors of means. 
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Fig. 5. Stomatal conductance of barley (Hordeum vulgare L.) leaves after a step 
increase of air CO2 concentration. CO2 was increased from 390 to 1800 µmol mol-1
under 1000 µmol m-2 s-1 red irradiance at time zero. Measurements in the youngest fully 
expanded leaves of the G132 mutant (closed squares, dashed lines) and WT (open 
squares, closed lines) at the growth stage of (a, c, e) 3 (G132)-4 (WT) leaves in a 
controlled environment chamber with conditions as for Fig. 2, and of (b, d, f) 5 (G132)-
7 (Graphic) leaves in a glasshouse. (a, b) gs after 40-50 min in 1800 µmol mol-1 CO2
relative to initial gs. (c, d) Change with time in stomatal conductance. Regressions of gs
over time with the shape (exponential plus linear) gs=A+B·exp(k·time)+C·time were 
fitted. Table 2 shows the regression parameters and statistical significance (analysis of 
parallelism) of the differences between genotypes. (e, f) Rates of gs change over time, 
estimated as first derivatives with respect to time of curves in panels (c) and (d), 
respectively. Means of five replicate leaves per genotype. Vertical bars represent twice 
the standard errors of means. 
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Fig. 6. Photosynthesis (circles) and stomatal conductance (squares) of leaves of the 
barley (Hordeum vulgare L.) mutant G132 (closed symbols, dashed lines) and WT 
(open symbols, solid lines) in response to DCMU feeding and air CO2 concentration. (a) 
DCMU (100 µM) was supplied at zero time to detached leaves kept at 390 µmol mol-1
CO2 under 1000 µmol m-2 s-1 red light; Ci was held constant by decreasing Ca; (b) Ca
was decreased from 390 to 50 µmol mol-1 CO2 and subsequently increased to 800 µmol 
mol-1 CO2, following the exposure to DCMU shown in panel (a). Regressions were 
fitted to gs change over time; Table 2 shows the regression parameters and statistical 
significance (analysis of parallelism) of the differences between the G132 mutant and 
WT. (c, d) final gs relative to initial gs after (c) DCMU feeding at 390 µmol mol-1 CO2; 
(d) increasing CO2 from 50 to 800 µmol mol-1. (e, f) Rates of gs change over time, 
estimated as first derivatives with respect to time of curves in panels (a) and (b), 
respectively. The youngest fully expanded leaf (5th leaf) of glasshouse-grown plants. 
The data are the means of six replicate leaves per genotype. Vertical bars represent 
twice the standard errors of means. 
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