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Foreword

METMA workshop comes to its 10th edition meaning 20 years of history since its first version held in

Castellon (Spain) back in 2001. Since then, its location has been moving along through Spain, Portugal, France

and Italy, and has become an international reference for space-time statistics. This edition was aimed to be

held in 2020 but was postponed to 2022 due to covid pandemic, and thus it somehow will be remembered

as the covid-time edition. The purpose of this conference is to promote the development and application of

spatial, temporal, and mainly spatio-temporal statistical methods to different fields related to the environment.

The general aim is to bring together practitioners and researchers of different areas and countries all over the

world. Cross-disciplinary actions to solve environmental problems are very welcome. The scientific program

(http://www.metma-x.udl.cat/) features sessions covering topics on the latest advancements in theory, meth-

ods and applications, and presentations from keynotes, invited and a number of oral contributed and posters

completes the program.

Spatial statistics has developed rapidly during the last thirty years. We have seen an interesting progress

both in theoretical developments and in practical studies. It seems to be honest to remark that the increasing

availability of computer power and skilful computer software has stimulated the ability to solve increasingly

complex problems. Clearly, these problems have some common elements: they were all of a spatial nature.

Some far-reaching theories have developed: image reconstruction, Markov random fields, point process statis-

tics, Geostatistics, and random sets, to mention just a few. As a next stage, these theories were applied suc-

cessfully to new disciplinary problems leading to modifications and extensions of mathematical and statistical

procedures. We therefore notice a general scientific process that has occurred in the field of spatial statistics:

well-defined problems with a common character were suddenly on the agenda, and data availability and in-

tensive discussion with practical and disciplinary researchers resulted in new theoretical developments. In this

way, spatial statistics has become a refreshing wind in statistics. We do not need to do well much longer on

difficult equations, long lists of data and tables with simulated controlled scenarios. But, to be clear, on the back

of all these nice pictures a sound science, with sometimes difficult and tedious derivations, and deep thoughts

are still required to make serious progress. Spatial statistics has hence emerged as an important new field of
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science.

Spatial statistics recognises and exploits the spatial locations of data when designing for, collecting, man-

aging, analysing, and displaying such data. Spatial data are typically dependent, for which there are classes of

spatial models available that allow process prediction and parameter estimation. Spatially arranged measure-

ments and spatial patterns occur in a surprisingly wide variety of scientific disciplines. Geology, soil science,

image processing, epidemiology, crop science, ecology, forestry, astronomy, atmospheric science, or simply

any discipline that works with data collected from different spatial locations, need to develop models that in-

dicate when there is dependence between measurements at different locations. Spatio-temporal variability is a

relatively new area within Spatial Statistics, which explains the scarcity of spacetime statistical tools 20 years

ago.

Spatial statistics is one of the major methodologies of environmental statistics. Its applications include

producing spatially smoothed or interpolated representations of air pollution fields, calculating regional average

means or regional average trends based on data at a finite number of monitoring stations, and performing

regression analyses with spatially correlated errors to assess the agreement between observed data and the

predictions of some numerical model. The notion of proximity in space is implicitly or explicitly present in the

environmental sciences. Proximity is a relative notion, relative to the spatial scale of the scientific investigation.

When a spatial dimension is present in an environmental study, the statisticians job is to create a statistical

framework within which one carries out defensible inferences on processes and parameters of interest. These

modelling and inference strategies are not always easy to do, but are never impossible. If Statistics is to continue

to be the broker of variability, it must address difficult questions such as those found in the environmental

sciences, otherwise it will become marginalised as a discipline. Problems in the environmental sciences are

inherently spatial (and temporal), observational in nature, and have experimental units that are highly variable.

In the last decade, spatial statistics has undergone enormous development in the area of statistical modelling.

It started slowly, building from models that were purely descriptive of spatial dependence. Then, it became

apparent that the process of interest was usually hidden by measurement error, and that the principal goal

should be inference on the hidden process from the noisy data. It has only been in the last few decades that

the full potential for hierarchical spatial statistical modelling has been glimpsed. There is an enormous amount
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of flexibility in hierarchical statistical models, such as the opportunity to account for nonlinearities. Their

attractive feature is that at each level of the hierarchy the model specification is simple, yet globally the model

can be quite complex. This approach could be summarised as: model locally, analyse globally.

Lately, there has been a rich and growing literature on space-time modelling. Fundamentally, it is clear that

in the absence of a temporal component, second-order geostatistical models can be used to represent spatial

variability. These are descriptive in the sense that, although they model spatial correlation, there is no causative

interpretation associated with them. Thus, for space-time modelling, the geostatistical paradigm assumes a de-

scriptive structure for both space and time (i.e., covariance structures are directly specified). For example, one

can extend the geostatistical kriging methodology for spatial processes by assuming that time is just another

spatial dimension. Alternatively, one can treat time slices of a spatial field as variables and apply a multivari-

ate or cokriging approach. Although these approaches have been successful in many applications, there are

fundamental differences between space and time, and it is not likely that realistic covariance structures can be

specified that accurately capture the complicated dynamical processes as found in geophysical applications.

This volume reflects recent contributions that develop theoretical spatial and spatio- temporal statistics to

mimic real space-time phenomena. These contributions have been presented at the Tenth International Work-

shop on Spatio-Temporal Modelling (METMA), which is made possible only thanks to all participants and

their continuous support to this type of workshop.

The editors June 2022

viii



Table of Contents

Keynotes 1

Design and Analysis of Prevalence Surveys for Neglected Tropical Diseases
P.J. Diggle, B. Amoah, C. Fronterre, E. Giorgi and O. Johnson . . . . . . . . . . . . . . . . . 3

Framing a spatio-temporal digital earth concept, around data science, analytics and Statistics
E.M. Scott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Fitting and simulating Neyman-Scott cluster process models
A. Baddeley, Y.-M. Chang, T.M. Davies, M.L. Hazelton, S. Rakshit and T.R. Turner . . . . . . 7

Estimation of spatial-temporal point process models using a Stoyan-Grabarnik statistic
C. Kresin and F. Schoenberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Spatio-temporal prediction of global carbon-dioxide fluxes at Earth’s surface using the fully
Bayesian WOMBAT framework
N. Cressie, M. Bertolacci and A. Zammit-Mangion . . . . . . . . . . . . . . . . . . . . . . . 17

The role of Preferential Sampling in Spatial and Spatio-temporal Geostatistical Modeling
A.E. Gelfand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Invited 23

Spatial analysis of epidermal nerve fiber patterns
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Design and Analysis of Prevalence Surveys for Neglected Tropical
Diseases

P.J. Diggle1,∗ , B. Amoah , C. Fronterre , E. Giorgi and O. Johnson .

1CHICAS, Lancaster University. p.diggle@lancaster.ac.uk
∗Corresponding author

In low-resource settings, where disease registries do not exist, prevalence mapping relies on data collected
from surveys of disease prevalence taken in a sample of the communities at risk within the region of interest,
possibly supplemented by remotely sensed images that can act as proxies for environmental risk factors. A
standard geostatistical model for data of this kind is a generalized linear mixed model,

Yi ∼ Binomial[mi;P(xi)], log[P(xi)/{1−P(xi)}] = d(xi)β+S(xi)+Ui, i = 1, . . . ,n.

where Yi is the number of positives in a sample of mi individuals at location xi, d(x) is a vector of spatially
referenced explanatory variables available at any location x within the region of interest, S(x) is a Gaussian
process and the Ui are iid Gaussian.

In this talk, I will first show how the application of statistical methods associated with this standard model
to some Africa-wide control programmes for Neglected Tropical Diseases (NTDs) can bring very substantial
gains in efficiency by comparison with the classical survey sampling methods that are currently used in this
context. I will then briefly describe some methodological extensions of the standard model to incorporate in-
formation from multiple data-sources.

References
[1] Diggle, P.J. and Giorgi, E. (2019). Model-based Geostatistics: Methods and Applications in Global

Public Health. Boca Raton: CRC Press.

[2] Fronterre, C., Amoah, B., Giorgi, E., Stanton, M.C. and Diggle, P.J. (2020). Design and analysis of
elimination surveys for neglected tropical diseases. Journal of Infectious Diseases. doi: 10.1093/infdis/jiz554.

[3] Diggle, P.J., Amoah, B., Fronterre, C., Giorgi, E. and Johnson, O. (2021). Rethinking NTD prevalence
survey design and analysis: a geospatial paradigm. textitTransactions of the Royal Society of Tropical Medicine
and Hygiene, 115, 208-210. doi:10.1093/trstmh/trab020.

[4] Johnson, O., Giorgi, E., Fronterre, C., Amoah, B., Atsame, J., Ella, S.N., Biamonte, M., Ogoussan, K.,
Hundley, L., Gass, K. and Diggle, P.J. (2022). Geostatistical modelling enables effcient safety assessment for
mass drug administration with ivermectin in Loa loa endemic areas through a combined antibody and LoaScope
testing strategy for elimination of onchocerciasis. PLOS Neglected Tropical Diseases, 16, e0010189.
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Framing a spatio-temporal digital earth concept, around data
science, analytics and Statistics

E.M. Scott

School of Mathematics and Statistics, University of Glasgow, Glasgow, UK. Marian.scott@glasgow.ac.uk.

Abstract. Our understanding of the environment, its connections to biodiversity, health and well being as well
as how it is changing are informed by data. The mechanisms and procedures generating those data are contin-
ually evolving, which means that the complexity of environmental systems can be studied in greater depth, and
hidden connections discovered. Statistical methods also need to evolve to deal with these new data streams. It
is in this landscape, that we often see mention of the digital environment agenda, or sometimes digital twin, and
more recently digital earth initiatives. These terms all capture the concept that we are studying a temporally
evolving system over space, and that monitoring and measurement are essential. Using examples of freshwater
quality and biodiversity connectivity, I will illustrate some of the challenges and potential solutions to statisti-
cal thinking about a digital earth.
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Fitting and simulating Neyman-Scott cluster process models

A. Baddeley1,∗ , Y.-M. Chang2 , T.M. Davies3 , M.L. Hazelton3 , S. Rakshit1 and T.R. Turner4

1School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, GPO Box U1987, Perth WA
6845, Australia; adrian.baddeley@curtin.edu.au, suman.rakshit@curtin.edu.au
2 Department of Statistics, Tamkang University, 151 Yingzhuan Rd, Tamsui District, New Taipei City 251301, Taiwan
(R.O.C.); yamei628@gmail.com
3 Department of Mathematics & Statistics, University of Otago, 730 Cumberland Street, Dunedin North, Dunedin 9016,
New Zealand; tilman.davies@otago.ac.nz, martin.hazelton@otago.ac.nz
4 Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
r.turner@auckland.ac.nz
∗Corresponding author

Abstract. When a model for spatial clustering is fitted to a spatial point pattern which is not strongly clustered,
algorithms may fail, and parameter estimates may be nonsensical. These failures are not caused by the choice
of model-fitting technique, but by weaknesses of the model itself. In particular the model does not include the
Poisson process. We propose a new parametrisation of the model involving an index of clustering strength;
the Poisson process is included in the model by setting the clustering strength to zero. Close attention to the
new parameter space leads to improved performance of fitting algorithms, comprehensible results for the fitted
models, and improved algorithms for predicting and simulating cluster process models.

Keywords. Brix-Kendall algorithm; Cluster strength; Composite likelihood; Siblings; Total variation.

1. Introduction

Neyman-Scott cluster processes are popular models for spatially clustered patterns of points. Techniques
for fitting these models to data are well-established. However, if the evidence for clustering is weak, these
fitting techniques often fail: the fitting algorithm fails to converge, or is numerically unstable, or the parameter
estimates are extreme, physically implausible values.

In applications, it is reasonable to interpret such failures to mean that a cluster process model was not
appropriate. However, a technique which fails sometimes does not inspire confidence. Indeed, the technique
can also be unreliable for moderately clustered data, which may undermine scientific findings.

It is widely believed that these failures are caused by weaknesses of the fitting method. Consequently,
researchers have devoted substantial effort to developing new fitting techniques. Unfortunately, this has not
resolved the problem: the new methods all seem to suffer from similar failures.

Here we show that these failures are not caused by the choice of model-fitting technique, but by weaknesses
of the model itself. We propose solutions to the problems [1, 2].
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A. Baddeley et al. Cluster processes

2. Motivating example

Figure 1 shows two standard examples of spatial point patterns, both giving the locations of tree saplings:
California Giant Redwoods in the left panel, and Japanese Black Pines in the right panel.

Figure 1: Clustered and non-clustered point patterns. Left: California Giant Redwood seedlings and saplings
in a 19.2-metre square. Right: Japanese Black Pine seedlings and saplings in a 5.7-metre square.

We model each dataset as a realisation of a modified Thomas process, defined as follows [4, 5]. ‘Parent’
points come from a Poisson point process with constant intensity κ. Each parent is replaced by a random number
of ‘offspring’, according to a Poisson distribution with mean µ, and the offspring are independently displaced
from the parent according to an isotropic Gaussian density with standard deviation σ in each coordinate. The
model parameters are θ = (κ,µ,σ).

Method κ µ σ ϕ p
Minimum contrast K 0.0641 2.61 0.84 1.75 0.64
Minimum contrast g 0.0635 2.64 0.72 2.40 0.71
Composite likelihood 0.1080 1.55 0.67 1.64 0.62
Palm likelihood 0.0573 2.92 0.79 2.23 0.70

Table 1: Parameter estimates for the Thomas model fitted to the redwoods data.

Table 1 shows parameter estimates for the redwoods data, fitted by minimum contrast to the empirical
K-function or pair correlation function g(r), Guan’s second order composite likelihood, and Palm likelihood
[4, 5]. The estimates broadly agree, and are plausible. Spatial coordinates are in metres, so that κ is the expected
number of parents per square metre, and σ is the standard deviation of the offspring displacement in metres.
The derived parameters ϕ, p are explained in the next section.

Table 2 shows the corresponding estimates for the Japanese Pines. There are wide discrepancies between
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Method κ µ σ ϕ p
Minimum contrast K 47740 0.00042 50.2 6.6×10−10 6.6×10−10

Minimum contrast g 47740 0.00042 50.2 6.6×10−10 6.6×10−10

Composite likelihood 30 0.06800 6.6 6.2×10−5 6.2×10−5

Palm likelihood 3280 0.00061 30.4 2.6×10−8 2.6×10−8

Table 2: Parameter estimates for the Thomas model fitted to the Japanese Pines data.

the results of different fitting methods, and the parameter estimates are physically implausible.

Extreme values of the fitted parameters cause difficulties with inference, prediction and simulation. Existing
simulation algorithms for Neyman-Scott processes fail when the parameters are extreme, because of excessive
memory requirements or unacceptably long computation time [1, 3].

The results in Table 2 do have a simple interpretation. Since κ is large and µ is small, the fitted model is
close to a Poisson process (“complete spatial randomness”). A Poisson process is an appropriate description
of the Japanese Pines data, but does not correspond to any point θ in the parameter space of the Neyman-Scott
model, except in a limiting sense. Despite the unusual behaviour, the algorithm has selected an appropriate
model. The fundamental problem with the Neyman-Scott model is that it is not closed under convergence in
distribution, and in particular, does not include the Poisson process.

3. Cluster strength

Define the cluster strength parameter ϕ = g(0)−1. Then we have the following results [2], which are stated
for the Thomas process, but which generalise to any correlation-stationary Neyman-Scott Cox processX with
isotropic kernel h. First

ϕ =
c

κσ2 (1)

where c = ‖h‖2
2 is a constant, equal to 1/(4π) for the Thomas model. The pair correlation function is

g(r) = 1+ϕ a(r/σ), r ≥ 0, (2)

where a(r) is a nonincreasing function with a(0) = 1, determined by h. The model is also a Cox process with
driving random intensity function Λ(u), u ∈ R2, such that for any fixed location u,

var

[
Λ(u)

λ

]
= ϕ. (3)

Indeed the probability distribution of Λ(u)/λ for fixed u depends only on ϕ, for the model in question.

Given that there are two points of X at locations separated by a distance r ≥ 0, the conditional probability
(two-point Palm probability) that these two points are siblings (offspring of the same parent point) is p(r) =
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(g(r)−1)/g(r), so that

p = p(0) =
ϕ

1+ϕ
(4)

is the sibling probability at distance zero, and conversely ϕ = p/(1− p) is the odds associated with the sibling
probability p. For a spatial domain W ⊂ R2 of area |W |, the total variation distance between the distribution of
X and a Poisson process Π of the same intensity inside W , satisfies

dTV(X,Π)≤ λ |W |
√

ϕ. (5)

Consequently, whenever ϕ is small, the model is close to a Poisson process.

Estimates of ϕ and p are shown in Tables 1 and 2. Estimated cluster strength for the redwoods is substantial,
while for the Japanese pines the fitted model is effectively a Poisson process.

Many of the numerical failures of the fitting algorithms can be avoided by adopting ϕ as a parameter of the
model, and optimising over the space of (ϕ,σ) pairs. The Poisson process can be included in the model by
allowing ϕ = 0.

If the parameter vector θ diverges, the Neyman-Scott model converges to a Poisson process, a mixed Pois-
son process, a Poisson process with duplicated points, or an improper “explosive” limit [2, Sec. 8–9]. This
makes it possible to interpret the fitted model in a comprehensible way in all cases.

4. Cluster scale

The other important parameter of the model is the spatial scale of the clusters. In the Thomas model, cluster
scale is controlled by the standard deviation σ. The cluster scale is undefined or unidentifiable when ϕ = 0,
and is “poorly identified” when the evidence for clustering is weak [4]. This has been another major source of
difficulty in fitting Neyman-Scott models.

A standard remedy for unidentifiability is to add a shrinkage penalty to the objective function which is
maximised when the model is fitted. The simplest approach is to penalise values of the cluster scale which are
physically implausible. We have demonstrated [2] that this strategy improves statistical performance.

For simulation of the fitted model, extreme values of the cluster scale also cause difficulty. If cluster scale is
large, the naive or direct simulation algorithm [5] becomes prohibitively slow, while if cluster scale is small, the
Brix-Kendall [3] simulation algorithm is prohibitively slow. The insights above lead to improved algorithms
for simulating cluster process models, which are ‘robust’ in the sense that, for a given expected sample size,
computation time is uniformly bounded as a function of the model parameters [1]. This makes Monte Carlo
inference practical for these models.
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Abstract. Parameters in spatial-temporal point process models are typically fit by maximum likelihood estima-
tion (MLE), or some close variant. Here, we show that such parameters can instead be estimated consistently,
under general conditions, by instead minimizing the Stoyan-Grabarnik (SG) statistic. More specifically, the
spatial-temporal region is divided up into cells, and the sum of squares of the SG statistic is minimized. The
resulting estimator has desirable properties, is extremely easy and quick to compute, and does not require
approximation of the pesky integral in the log-likelihood formula. Examples and applications to crimes and
earthquakes are presented.

Keywords. Crimes; Earthquakes; Goodness-of-fit; Hawkes models; Seismology.

The Stoyan Grabarnik (SG) statistic

m̄ =
1
λ

(1)

was introduced as the exponential “mean mark” in the context of the Palm distribution of marked Gibbs pro-
cesses [10]. As a primary property of Equation (1), it is noted in [10] that the sum of exponential marks at the
points in Borel set B is equal to the Lebesgue measure of B . The SG statistic has since been proposed as a
goodness-of-fit model diagnostic for point processes [1]. More recently, the SG statistic has been used in the
context of kernel bandwidth optimization for intensity estimation of point processes [2].

We propose using SG more generally as a tool for estimating the parameters governing the conditional inten-
sity of a space-time point process. Currently, such parameters are typically estimated via maximum likelihood
estimation (MLE), as under general conditions, the asymptotic properties of such estimates are consistent and
efficient, with standard errors readily constructed using the diagonal elements of the inverse of the Hessian
[4, 5].

For a simple stationary process N observed on the time interval [0,T ] and on the observed space S, the log
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likelihood is given by

log`(θ) =
∫ T

0

∫
S

logλθ(s, t)dN−
∫ T

0

∫
S

λθ(s, t)dsdt

= ∑
t

logλθ(s, t)−
∫ T

0

∫
S

λθ(s, t)dsdt. (2)
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Figure 2: (a) True (simulated) conditional intensity λ(t,x,y) = eαx +βey + γxy+δx2 +ηy2 +w(x,y)/2, where
(α,β,γ,δ,η) = (−2,3,4,5,−6), and w is a Brownian Sheet on the unit square with variance 100 for t in [0,1];
(b) Resulting points from simulation; (c) Conditional intensity with parameters (α,β,γ,δ,η) estimated by pro-
posed SG method.

Due to the second term, the integral term, in Equation (2), MLE estimates are often computationally in-
tractable for large point processes, or point processes with complex parametric structures, and even approxi-
mation of this integral term can be extremely difficult and frought with problems [3, 6, 8]. Further, computing
MLEs for intensities with large parameter spaces is often similarly intractable in practice [7]. Complexity of
the intensity function is O(n2) for a point process of size n, and further, flatness in the log-likelihood as a func-
tion of the parameters can lead to slow rate of convergence to the optimum [11]. Various remedies have been
proposed, including non parametric estimation [6, 8], MLE by way of EM [11], and stochastic de-clustering
[12]. Despite computational limitations, maximum likelihood remains the most common method for estimating
the parameters of conditional intensities for space-time point processes.
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We propose to use the SG statistic as a sort of method of moments type estimator for the parameters θ govern-
ing a conditional intensity λ(s, t) of a space-time point process. Specifically, for a realization {(s1, t1), . . . ,(sn, tn)}
of N on the observation region S partitioned into p subdivisions, {I}p

j=1, we define the SG estimator as the
value of θ minimizing

p

∑
j=1

[ ∑
i:(si,ti)∈I j

1
λθ(si, ti)

−µ(I j)]
2 (3)

We show that, under quite general conditions, the resulting estimator is consistent. The result is verified
using simulations. An example is presented in Figure 1, which shows the result of estimating a point process
with intensity given by a Brownian Sheet plus exponential plus quadratic in x and y. The benefits of the SG
estimator seem to be substantial in terms of programming and computation time. The computationally intensive
integral term necessary for the MLE is replaced with a term that is trivial to program and with complexity O(1).
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Abstract. Locations across Earths surface where the leading greenhouse gas carbon dioxide (CO2) is added
to or removed from the atmosphere are known as CO2 sources and sinks. CO2 flux is the rate at which this hap-
pens, and a critical goal of carbon-cycle science is to characterise the pattern and scale of sources and sinks
in both space and time. There is considerable variability in CO2 fluxes: For example, temperate forests occupy
large parts of the terrestrial biosphere and transition from sinks to sources during the year, while volcanoes are
local sources with sporadic and unpredictable outgassing of CO2. Human activity has also caused changes to
the natural processes that cause these sources and sinks. In this talk, I shall present a framework for predicting
fluxes globally and locally in space and time, which is called WOMBAT (the WOllongong Methodology for
Bayesian Assimilation of Trace-gases); see [1]. It is fully Bayesian and produces both spatio-temporal predic-
tions and quantifications of their uncertainties. The framework allows scientists and policy makers to take into
account uncertainty in CO2flux predictions and, consequently, to produce better mitigation/adaptation strate-
gies for climate change.

It is now well accepted by the scientific community that greenhouse-gas emissions, unless mitigated, will
raise global temperatures, irrevocably alter our climate, and adversely affect Earths ecosystems and human
wellbeing. All countries are accountable for their emissions through the 2015 COP21 Paris Agreement, which
was adopted in an effort to limit global warming to no more than two degrees Celsius. However, the Paris
Agreement framework requires countries to report their own emission estimates, which are based on data and
statistics that are sometimes unreliable and incomplete. Validation and corroboration of these estimates is
vitally important, to ensure countries commitments to the Agreement, and to ensure that Agreement targets
will be reached.

Satellite measurements of CO2 are taken globally and regularly in time, and they are independent of different
countries reporting of their inventory targets. WOMBAT, short for WOllongong Methodology for Bayesian
Assimilation of Trace-gases, is a fully Bayesian hierarchical modeling framework that produces spatio-temporal
predictions of the surface sources and sinks (i.e., fluxes) of greenhouse gases [1]. Prediction is based on
(satellite and in situ) measurements of the gass mole fraction after atmospheric transport of its fluxes; that is,
the fluxes are not observed directly, only the consequences of that outgassing (sources) and absorption (sinks).
The geophysical problem is commonly referred to as flux inversion, and WOMBAT performs this inversion
over the entire surface of Earth, resulting in spatio-temporal prediction of the greenhouse-gas fluxes and their
uncertainties, at a spatial resolution of 2×2.5 deg. lat-lon and a temporal resolution of one hour.

WOMBAT is the first system to use a fully Bayesian approach to capture uncertainties in the global flux
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field, the global mole-fraction field and its measurements, and the parameters used in modelling both the
spatio-temporal process errors and the measurement errors. In this talk, we give CO2 flux inversion using
mole-fraction data (in ppm) from NASAs Orbiting Carbon Observatory-2 (OCO-2) satellite and from in situ
mole-fraction observations collated by the National Oceanic and Atmospheric Administration (NOAA) from
across the globe. The full posterior distribution given by WOMBAT yields spatio-temporal predictions of the
underlying CO2 fluxes and their uncertainties, as well as posterior inferences on model parameters.

Flux inversion is a highly ill-posed problem that requires one to take into account how the gas moves in
the (three-dimensional) atmosphere via a computationally intensive chemical transport model. Flux-inversion
frameworks that pre-date WOMBAT are based on quite straightforward, non-hierarchical (empirical) Bayesian
statistical models that typically return just flux predictions (and very rarely uncertainty quantifications). WOM-
BAT is the first to jointly model and account for

• Spatio-temporal correlated error in the chemical transport model,

• Uncertainty in the prior fluxes,

• Uncertainty in the prior fluxes,

• Biases in the satellite retrievals,

• Uncertainties on the reported error statistics of the satellite retrievals.

Statistical computing features extensively in WOMBATs inferential pipeline. Chemical transport models
require high-performance computer infrastructure, and dimension-reduced fully Bayesian inference was im-
plemented using Gibbs sampling while employing the use of GPUs to facilitate targeted intensive matrix op-
erations. The WOMBAT framework also employs likelihood approximations that induce matrix sparsity and
allow for spatio-temporal correlations. In this talk, WOMBAT is implemented on more than two years of CO2
data from NASAs OCO-2 satellite. Then its flux predictions are compared to those (for the same time period)
from a model intercomparison project (MIP), which involved nine flux-inversion groups across the world. This
independent validation showed that WOMBATs results always performed favourably against, and sometimes
outperformed, those from the other flux-inversion groups.

WOMBAT will be a part of NASAs next OCO-2 MIP to be held in 2022, and it will also form a part of the
NASA OCO Science Team report in a contribution to the United Nations 2023 Global Stocktake (an initiative
stemming from the 2015 Paris Agreement to assess the global state of emissions that will directly lead to
national and international policy recommendations).

In version 2.0 of WOMBAT (Bertolacci et al., in preparation), we build on the foundations laid in version
1.0 to capture changes in the climatology of CO2 fluxes. The talk will end with a brief discussion of this
innovation.
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Geostatistical Modeling
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The notion of preferential sampling was introduced into the literature in the seminal paper of [1]. Subse-
quently, there has been considerable follow up research. A standard illustration arises in geostatistical modeling.
Consider the objective of inferring about environmental exposures. If environmental monitors are only placed
in locations where environmental levels tend to be high, then interpolation based upon observations from these
locations will necessarily produce only high predictions. A remedy lies in suitable spatial design of the loca-
tions, e.g., a random or space-filling design for locations over the region of interest is expected to preclude such
bias. However, in practice, sampling may be designed in order to learn about areas of high exposure.

While the set of sampling locations may not have been developed randomly, we study it as if it was a real-
ization of a spatial point process. That is, it may be designed/specified in some fashion but not necessarily with
the intention of being roughly uniformly distributed over D. Then, the question becomes a stochastic one: is the
realization of the responses independent of the realization of the locations? If no, then we have what is called
preferential sampling. Importantly, the dependence here is stochastic dependence. Notationally/functionally,
the responses are associated with the locations.

Another setting is the case of species distribution modeling with a binary response, presence or absence,
recorded at locations. Here, bias can arise when sampling is designed such that ecologists will tend to sam-
ple where they expect to find individuals. This setting can be extended to data fusion where we have both
presence/absence data and presence-only data. Other potential applications include missing data settings and
hedonic modeling for price with property sales. Very recent work explores preferential sampling in the context
of multivariate geostatistical modeling.

Fundamental issues are: (i) can we identify the occurrence of a preferential sampling effect, (ii) can we
adjust inference in the presence of preferential sampling, and (iii) when can such adjustment improve predic-
tive performance over a customary geostatistical model? We consider these issues in a modeling context and
illustrate with application to presence/absence data, to property sales, and to tree data where we observe mean
diameter at breast height (MDBH) and trees per hectare (TPH).
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Abstract. Epidermal nerve fibers (ENFs) are thin sensory nerve fibers in the epidermis, the outermost cell
layers in the skin. After they have entered the epidermis, they grow and branch and finally, terminate. Small
fiber neuropathies, such as diabetic neuropathy, can cause damage to the ENF structure. For example, it has
been established that the ENF density and summed length of ENFs per epidermal surface area are reduced,
and ENFs may appear more clustered within the epidermis in subjects suffering from diabetic neuropathy com-
pared to healthy subjects [2]. We have data from healthy subjects and subjects suffering from mild or moderate
diabetic neuropathy. We regard the nerve patterns as spatial point patterns consisting of entry points and end
points. We concentrate on 2D projections of the 3D data since the main interest is on how the skin is covered
by the nerve endings that are responsible for transferring signals, such as heat and pain, to the central nervous
system. We will present some point process models for the nerve patterns and compare the healthy and mild
patterns in terms of some summary statistics and model parameters [1, 3, 4, 5]. In addition, we would like
to understand how a healthy pattern changes as neuropathy advances and present some thinning mechanisms
that may explain the change of the ENF structure from healthy to mild neuropathy and further from mild to
moderate neuropathy.

Keywords. Clustering; Hierarchy; Spatial point pattern; Thinning.
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Abstract. Reliable prediction for crop yield is crucial for economic planning, food security monitoring, and
agricultural risk management. This study aims to develop a crop yield forecasting model at large spatial scales
using meteorological variables closely related to crop growth. The influence of climate patterns on agricultural
productivity can be spatially inhomogeneous due to local soil and environmental conditions. We propose a
Bayesian spatially varying functional model (BSVFM) to predict county-level corn yield for five Midwestern
states, based on annual precipitation and daily maximum and minimum temperature trajectories modeled as
multivariate functional predictors. The proposed model accommodates spatial correlation and measurement
errors of functional predictors, and respects the spatially heterogeneous relationship between the response and
associated predictors by allowing the functional coefficients to vary over space. The model also incorporates
a Bayesian variable selection device to further expand its capacity to accommodate spatial heterogeneity. The
proposed method is demonstrated to outperform other highly competitive methods in corn yield prediction,
owing to the flexibility of allowing spatial heterogeneity with spatially varying coefficients in our model. Our
study provides further insights into understanding the impact of climate change on crop yield.
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Abstract. Much of the research in disease mapping is based on Bayesian hierarchical spatio-temporal models
that borrow strength from space and time to smooth the risks and reduce their variability. However, when the
number of areas is very large, model fitting is generally time-consuming or even unfeasible. In this talk we
will discuss a pragmatic solution based on the idea of ”divide and conquer”. This is a simple idea that works
very well in this context as models are defined to borrow strength locally in space and time, providing reliable
risk estimates. We evaluate the new proposal in a simulation study with a twofold objective: to estimate risks
accurately and to detect extreme risk areas while avoiding false positives. An analysis of real data will also be
discussed.

Keywords. Areal data; INLA; Small areas; Scalable models
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subordinated spatiotemporal random fields
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Abstract. In the framework of structural complexity analysis, this work analyzes uncertainty measures, apply-
ing information theory, involving the bivariate probability distributions of spatial or spatiotemporal subordi-
nated random fields. Assumptions of homogeneity and isotropy in the spatial case, and also stationarity in time
in the spatiotemporal case, are considered. The properties of the formulated spatial and spatiotemporal struc-
tural complexity measures are investigated in some cases of interest, including the special case of Minkowski
functionals subordinated to Gaussian and Gamma-correlated random fields. The results are illustrated in the
context of geometrical analysis of sample paths.

Keywords. Gamma-correlated subordinated random fields; Gaussian subordinated random fields; informa-
tion measures; spatial functional models; structural complexity

1. Introduction

There is a growing interest on structural complexity analysis based on sojourn measures of spatiotemporal
Gaussian and Gamma-correlated random fields. Indeed, there exists a vast literature in the context of stochastic
geometrical analysis of the sample paths of random fields based on these measures (see, e.g., Bulinski et al. [3];
Ivanov and Leonenko [4], among others). A parallel literature has also been developed in the context of long-
range dependent random fields (see Leonenko [6]; Leonenko and Olenko [7]; Makogin and Spodarev [10]).
Recently, Leonenko and Ruiz-Medina [8] derive reduction theorems and central and non-central limit results for
the asymptotic analysis of functionals of spatiotemporal Gaussian subordinated random fields involving these
measures. As a motivation, the special case of Minkowski functionals (see, e.g., [11]) allows, for instance in
2D, the geometrical interpretation of the total area of all ‘hot’ regions, the total length of the boundary between
‘hot’ and ‘cold’ regions, and the Euler characteristic, which counts the number of isolated ‘hot’ regions minus
the number of isolated ‘cold’ regions within the ‘hot’ regions.

Information measures have played a fundamental role in probabilistic-statistical theoretical and applied
research, with a vast related literature disseminated in a wide variety of knowledge areas. In particular, en-
tropy and divergence measures are often used for informational characterization and comparative assessment
of probability distributions describing structural aspects of stochastic systems. Divergence measures constitute
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the basis for definition of certain forms of mutual information useful for dependence quantification. Further-
more, product-type complexity measures are also constructed based on entropy and divergence measures. In
some cases, a natural interpretation can be given in terms of diversity; a review and discussion, particularly in
reference to Rényi-information related measures, is given in [1].

2. Subordinated random fields

Let (Ω,A ,P) be the basic complete probability space, and denote by L2(Ω,A ,P) be the Hilbert space of
zero-mean second-order random variables on (Ω,A ,P). Consider X = {X(z), z ∈ D ⊆ Rd} to be a zero-
mean spatial homogeneous and isotropic mean-square continuous second-order random field, with correlation
function γ(‖x− y‖) = Corr(X(x),X(y)). Assume that the marginal probability distributions are absolutely
continuous, having probability density p(u). Let now L2((a,b), p(u)du),−∞≤ a < b≤∞, be the Hilbert space
of equivalence classes of measurable real-valued functions on the interval (a,b) which are square-integrable
with respect to the measure µ(du) = p(u)du.

Assume that there exists a complete orthonormal basis {ek, k ≥ 0}, with e0 = 1, of the space
L2((a,b), p(u)du) such that

∂2

∂u∂v
P [X(x)≤ u,X(y)≤ v] =: p(u,v,‖x−y‖) = p(u) p(v)

[
1+

∞

∑
k=1

γ
k(‖x−y‖) ek(u) ek(v)

]
. (1)

The family of random fields X satisfying the above conditions is known as the Lancaster-Sarmanov random
field class (see, e.g., Lancaster [5], Leonenko et al. [9], and Sarmanov [13]). Note that this class is not empty
since, for instance, both the Gaussian and Gamma-correlated random field classes satisfy the above introduced
conditions. In particular, for the Gaussian random field case, {ek, k ≥ 0} coincides with the (normalized)
Hermite polynomial system (see, for example, [12]), and {ek, k ≥ 0} are the Laguerre polynomials in the
case of Gamma-correlated random fields. An interesting special case of the latter is defined by the chi-square
random field family.

It is well-known that non-linear transformations of these random fields can be approximated in terms of the
above series expansions, since, for every g ∈ L2((a,b), p(u)du),

g(x) =Cg
0 +

∞

∑
k=m

Cg
k ek(x), Cg

k =
∫
(a,b)

g(u)ek(u)p(u)du, k ≥ 0, (2)

where m denotes the rank of function g in the orthonormal basis {ek, k≥ 1}. In the particular case of Gaussian
and Gamma-correlated subordinated random fields we will refer to the Hermite and Laguerre ranks, respec-
tively, of function g.

As mentioned in Section 1, an interesting example is Minkowski functional M0(ν;X ,D) =∫
D 1ν(X(y))dy = λ(SX ,D(ν)), which is defined from g(x) = 1ν(x), the indicator function based on thresh-
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old ν, with SX ,D(ν) = {z ∈ D; X(z)≥ ν} = {z ∈ D; g(X(z)) = 1}. Thus, in the Gaussian case, with p(u) =
1√
2π

exp(−u2/2), equation (2) leads to 1ν(x) = ∑
∞
k=0

Gk(ν)
k! Hk(x), where {Hk, k ≥ 0} denotes the basis of

Hermite polynomials, and Gk(ν) =
〈
1ν,Hk

〉
L2((a,b),p(u)du), with G0(ν) =

1√
2π

∫
∞

ν
exp(−u2/2)du, and Gk(ν) =

1√
2π

exp(−ν2/2)Hk−1(ν), k ≥ 1. Hence, M0(ν;X ,D) = ∑
∞
k=0

Gk(ν)
k!

∫
D Hk(X(y))dy (see [8]).

The following assumption on the correlation function γ is considered:

Assumption I.

1− γ(‖x−y‖) = O (‖x−y‖α) , ‖x−y‖→ 0, α ∈ (0,d)

γ(‖x−y‖) = O
(
‖x−y‖−ρ

)
, ‖x−y‖→ ∞, ρ ∈ (0,d). (3)

In the following section we apply equations (1) and (3) in the derivation of asymptotic orders at spatial
microscale and macroscale of mutual information between the marginal components of Lancaster-Sarmanov
subordinated random fields. Under Assumption I, these asymptotic orders are related to the fractality and
long-range dependence parameters of the underlying Lancaster-Sarmanov random field. The results can be
interpreted as a limit (infinitesimal, infinite) analysis in the structural complexity framework based on Rényi
entropy.

3. Mutual information and spatial structural complexity

Let {X(x), x ∈D} be an element of the Lancaster–Sarmanov random field class. From equation (1), mutual
information between component r.v.’s X(x) and X(y) can be computed as follows:

Sα,ρ(‖x−y‖) := I (X(x),X(y)) =
∫ b

a

∫ b

a
p(u,v,‖x−y‖) ln

(
p(u,v,‖x−y‖)

p(u)p(v)

)
dudv

=
∫ b

a

∫ b

a
p(u) p(v)

[
1+

∞

∑
k=1

γ
k(‖x−y‖) ek(u) ek(v)

]
ln

(
1+

∞

∑
k=1

γ
k(‖x−y‖) ek(u) ek(v)

)
dudv. (4)

Under Assumption I, the asymptotic behavior of Sα,ρ(‖x−y‖) when ‖x−y‖→ 0 involves the fractality param-
eter α, providing an indicator of spatial structural complexity at microscale, whose maximum is attained for α

values close to 0. While when ‖x−y‖→∞, the asymptotic behaviour of Sα,ρ(‖x−y‖) involves the long-range
dependence (LRD) parameter ρ, providing an indicator of spatial structural complexity at macroscale, whose
minimum is also attained for ρ values close to 0. For g∈ L2((a,b), p(u)du) a similar asymptotic behavior is dis-
played by mutual information I (g(X(x)),g(X(y))) when ‖x−y‖ → ∞, involving the LRD parameter ρ scaled
by the rank m of function g in the orthonormal basis {ek, k ≥ 1} (Hermite and Laguerre ranks in the Gaussian
and Gamma-correlated cases, respectively). However, the spatial microscale behavior of I (g(X(x)),g(X(y)))
is not affected by the rank m of function g.
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4. Final comments on the spatiotemporal case

The formulation of mutual information as a measure for spatiotemporal structural complexity analysis
can be addressed, for the general class of Lancaster-Sarmanov random fields (see [9]), adopting the infinite-
dimensional spatial framework introduced in [2].

Let X = {Xx(·), x ∈ D} be a zero-mean homogeneous and isotropic spatial functional random field on
the separable Hilbert space (H,< ·, · >H), mean-square-continuous w.r.t. the H norm. In the following, we
will assume that H = L2(T ), with T ⊆ R+. For every x,y ∈ D, (Xx(·),Xy(·))T is a random element in the
separable Hilbert space

(
H2,〈·, ·〉H2

)
of vector functions f=( f1, f2)

T , with the inner product given by 〈f,g〉H2 =

∑
2
i=1 〈 fi,gi〉H , ∀f,g ∈H2. Thus, for every x,y ∈D⊆Rd , we consider the measurable function (Xx(·),Xy(·))T :

(Ω,A ,P) −→
(

H2,B(H2),PXx(·),Xy(·)(dh1,dh2)
)

. Let us denote by {PXx(·)(dh), x ∈ D} the marginal infinite-

dimensional probability distributions, with PXx(·)(dh) = P(dh), for every x ∈ D. Let L2(H,P(dh)) be the space
of measurable functions g : H −→H such that

∫
H ‖g(h)‖2

HP(dh)< ∞. Assume that there exists an orthonormal
basis {Bk, k ≥ 1} of L2(H,P(dh)) such that

PXx(·),Xy(·)(dh1,dh2) = pXx(·)(h1)pXy(·)(h2)

[
1+ ∑

k≥1
γ

k
‖x−y‖(·, ·)Bk(h1)Bk(h2)

]
dh1dh2,

with γ‖x−y‖(·, ·) = Corr(Xx(·),Xy(·)) being the kernel of the spatial correlation operator γ‖x−y‖, for every x,y ∈
D .

We refer to the class of spatial functional random fields satisfying the above conditions as the functional
version of Lancaster-Sarmanov random fields.

In a similar way to Section 3, under Assumption I, the asymptotic behavior at spatial microscale and
macroscale can be studied from the infinite-dimensional formulation of Kullback-Leibler divergence given in
[2], as well as its extension based on Rényi divergence.
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Modeling complex-valued random fields in environmental
sciences
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Abstract. In geostatistical literature, the study of the evolution of vector data with two components in space
and space-time is often developed in the framework of the theory of complex-valued random fields. This formal-
ism can reflect the specific characteristics of the components of a vectorial random field, which are associated
with a physical phenomenon described by homogeneous quantities, expressed in the same unit of measure, such
as wind velocity, force, electric or magnetic field, and available at the same spatial points over the domain.
In this case, the corresponding realization of a vectorial field in two dimensions is an expression of a single
entity, i.e., a complex number, where the decomposition in modulus and angle is natural and has a physical
interpretation. Thus, a compact and unified formalism has to be suitably adopted for this kind of data. In other
terms, the use of a complex formalism and consequently of complex modeling for prediction purposes is not an
arbitrary choice, but it is strictly motivated by the nature of the phenomenon.
The aim of this work is to introduce the theoretical background regarding the complex formalism of a spatial
and spatio-temporal random field and to present some families of complex-valued covariance models.
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Bayesian MCMC inference for complex cluster models
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Abstract. The stationary Neyman-Scott point process can be extended for inhomogeneity in many ways. The
center points, cluster sizes or cluster spread can be inhomogeneous. Also a combination of these types can
be of interest. Further, the distribution of cluster sizes can be non Poisson, usually the Poisson distribution
is assumed. We consider all these models and propose the Bayesian MCMC algorithms to estimate parame-
ters of these models. The Bayesian MCMC approach is tractable for all these models and in cases where the
faster methods can be applied it gives more precise results. We developed an R package binspp avaylable at
https://github.com/tomasmrkvicka/binspp which contains these algorithms.

Keywords. Double inhomogeneity; Generalised Poisson distribution; Inference for covariate effect; Inho-
mogeneity; Neymann-Scott point process

The Neyman-Scott point process model is widely used cluster point process model due to its straightforward
interpretability in biology, astronomy, forestry, medicine, etc.. This model is built as doubly stochastic process:
firstly, cluster centers are randomly drawn under a given spatial point process; secondly, daughter points are
randomly spread around cluster centers. Thus, the Neyman-Scott point process is specified by the distribution
of cluster centers, the distribution of the number of points per cluster (thereafter called cluster size), and the
distribution of daughter points around their cluster center (thereafter called cluster spread). This construction
ensure that the user can access directly three quantities, i.e. κ - intensity of process of cluster centers, α - mean
number of points in a cluster and ω - parameter determining the cluster spread.

Introducing inhomogeneity into the Neyman-Scott process is important due to the expressing the depen-
dence of the point process on a set of covariates and checking its significance. But the inhomogeneity can be
modelled in various ways. If the intensity of cluster centers κ is made to be inhomogeneous, then the clusters
remains same but the number of clusters vary in the space. Such a model is called Neyman-Scott point process
with inhomogeneous cluster centers and the inference for this process was investigated in [8]. This model is
not second order inhomogeneity reweighting stationary (SOIRS) [2], but if instead the mean number of points
in cluster α is made inhomogeneous, the resulting process is SOIRS. The inference for such process can be
done by two step methods based on the contrast or composite likelihood in spatstat package [10]. Nevertheless
the Bayesian MCMC inference method proposed here is more precise. If the inhomogeneity is introduced in
ω the localy scaled Neyman-Scott point process is built [4]. It is also possible to introduce inhomogeneity
simultaneously in α and ω, then we talk about Neyman-Scott point process with growing clusters [7]. The last
three models keep the number of clusters same but vary the shape of the clusters, therefore we talk about cluster
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inhomogeneity, while for the Neyman-Scott point process with inhomogeneous cluster centers we talk about
inhomogeneity of centers.

Combining together cluster inhomogeneity and inhomogeneity of centers we talk about doubly inhomoge-
neous Neyman-Scott point process. The Bayesian MCMC inference for such a process was studied in [9]. Other
kinds of inference were found to be useless for such complex models. Therefore, we build up an R package
binspp which contains the Bayesian MCMC estimation procedure for all mentioned kinds of inhomogeneous
Neyman-Scott point process but for the homogeneous one as well.

As it was mentioned above, the minimum contrast approach and maximum composite likelihood approach
is available for SOIRS Neyman-Scott point process in R, it is also described in [8] for Neyman-Scott point
process with inhomogeneous cluster centers. It is not available for other kinds of inhomogeneity up to our best
knowledge.

The binspp package contains also Bayesian MCMC estimation procedure for homogeneous generalised
Neyman-Scott process. Which uses generalised Poisson distribution (GPD) as a distribution for number of
points in a cluster. The GPD allows for modelling of under- or over-dispersion of number of points in a cluster.
The method were described in [1]. This process is useful for determining the under- or over-dispersion of
number of points in a cluster or more precise modelling of the distribution of number of points in a cluster.

The R package binspp is avaylable at https://github.com/tomasmrkvicka/binspp.

The most important statistical problem is to address the dependence of the data on the given covariates.
Our package handle the spatial covariates attached in any combination to the intensity of process of cluster
centers κ, cluster size α and parameter determining the cluster spread ω. The Bayesian MCMC procedure is
time consuming, but on the other hand the significance of all covariates is automatically provided from the
posterior distribution. E.g. in case of ihomogeneity of centers and when a faster estimation method is used,
it is necessary to perform parametrical bootstrap in order to obtain the significance of the covariates, which is
as time consuming as Bayesian MCMC procedure [8]. Only in the case of inhogeneous cluster sizes, which
produce the SOIRS process, it is possible to use fast estimation method and the significance of covariates can
be obtained by asymptotic normality derived in [10].

Bayesian estimation for homogeneous Neyman-Scott point processes was carried out with a MCMC algo-
rithm in [3, 6, 7, 5], for example. In this approach, the cluster centers and the model parameters are updated
in each step of the MCMC algorithm. After reaching the equilibrium, posterior distributions of the parameters
can be provided. The cluster centers are generally viewed as nuisance parameters when they do not correspond
to an interpretable element of the phenomenon under study.

Considering the inhomogeneous clusters, the MCMC algorithm proceeds in the same way as in the homo-
geneous case, except that the likelihood is influenced by parameters connected with cluster inhomogeneity.

Considering the inhomogeneous centers, the proposed Bayesian MCMC procedure is performed in two
steps, similarly like in [10]. First, the inhomogeneity of centers is estimated from the Poisson likelihood,
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then in the second step the estimated inhomogeneity of centers is plug in to the Bayesian MCMC procedure
which estimates the cluster inhomogeneity and the rest of the parameters. The inference about the covariates
attached to the inhomogeneity of the centers is then performed from the posterior distribution of the cluster
centers obtained in the second step. It is also possible to perform full Bayesian approach by estimating the
inhomogeneity of centers in the Bayesian MCMC procedure, but this approach was found to be less precise
than twe two step approach, probably by unidentifiability issues in the full likelihood.

Considering the generalised Neyman-Scott process, the MCMC algorithm consist of one more step in ad-
dition to the traditional Metropolis-Hastings update of parameters and Birdth-death-move update of cluster
centers. It is the update of connection between points and cluster centers, since by using the non Poisson dis-
tribution the connection takes its part in the likelihood of the process.
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Due to a total fire exclusion policy, and the accompanying development of fire management systems, wild-
fires have decreased in number and burned area in Southern European countries during the last decade. Extreme
events, however, have escaped this trend. A few events are responsible every year for most of the burned area,
damages and threats to lives and properties, usually under drought and heat wave conditions than place fires
beyond suppression capacity, and under multiple-fire occurrences that overload firefighting resources.

The realization that total protection of valued resources and assets, properties and lives is virtually impossi-
ble under current conditions has come to be recognized by fire managers only recently, if at all, demanding that
new policies and strategies are implemented in Mediterranean areas beyond the usual prevention and suppres-
sion solutions applied.

Planning for better civil protection, emergency and resources management though safe and efficient sup-
pression, resilient landscapes and fire-adapted communities within a comprehensive strategy for Mediterranean
landscapes [1] requires wildfire risk analysis. Risk is often portrayed as a combination of probability or like-
lihood of a fire start, exposure caused by propagation or fire intensity, and vulnerability of exposed assets
[4]. While all these components of risk have been modelled before, and often separately, all of them admit
improvements over current methodologies.

The analysis of fire occurrence by intensity level is often called exposure analysis [3]. Fire occurrence,
the probability of a fire starting, or probability of ignition, has been modelled using different techniques for
many spatial and temporal scales, ranging from high-resolution observations (small pixels) to forest districts,
or provinces, and from daily models to models encompassing several years. A review of work done in this area
can be accessed in [2]. Developments in the field of fire occurrence prediction, for instance, achieved success
at dealing with the problem that fires are rare events, but most previous work has avoided the issue of how best
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to stratify probability of ignition models in time and space; since probabilities of ignition cannot be considered
stationary, we need to evaluate how different models should be applied in different areas or seasons, but this
spatiotemporal issue has not been solved by research.

Fire propagation is an extremely complex process depending on fuel characteristics, topographic features,
and weather (wind) parameters, all of them difficult to measure and model in a realistic manner. Simulations
providing probabilistic outputs like conditional flame length or burn probability are used as the basis for fire
management actions, but the optimization of the simulation areas and temporal windows remain also spatiotem-
poral issues that need further research.
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Abstract. This talk introduces a global optimisation procedure based on the ABC Shadow simulation dynam-
ics. First the general method is explained, and then results are presented. The method is general, in the sense
that it applies for probability densities that are continuously differentiable with respect to their parameters.

Keywords. Approximate Bayesian computation, Computational methods in Markov chains, Maximum like-
lihood estimation, Point processes, Spatial pattern analysis.

1. Set-up of the problem

Let us assume that an object pattern y is observed in a compact window W ⊂ Rd . The observed pattern is
supposed to be the realisation of a spatial process. Such a process is given by the probability density

p(y|θ) = f (x|θ)
c(θ)

=
exp[−U(y|θ)]

c(θ)
(1)

with f (x|θ) the unormalised probaility density, U(y|θ) the energy function and c(θ) the normalising constant.
The model given by (1) may be considered as a Gibbs process, and it may represent a Markov random field or
a marked point process. Let p(θ|y) be the conditional distribution of the model parameters or the posterior law

p(θ|y) = exp[−U(y|θ)]p(θ)
Z(y)c(θ)

, (2)

where p(θ) is the prior density for the model parameters and Z(y) the normalising constant. The posterior law
is defined on the parameter space Θ. For simplicity, the parameter space is considered to be a compact region
in Rr with r the size of the parameter vector.

In the following, it is assumed that the probability density p(y|θ) is strictly positive and continuous differen-
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tiable with respect to θ. This hypothesis is strong but realistic, since it is often required by practical applications.

This paper proposes a global optimisation method based on the Shadow Simulated Annealing (SSA) process to
compute :

θ̂ = argmax
θ∈Θ

p(θ|y). (3)

.

2. SSA algorithm : general description

The SSA algorithm is a global optimisation method that uses the ABC Shadow dynamics [8] that can be
used to maximise posterior densities.

Classical Simulated Annealing algorithms are based on the following principle. Assume that the probability
density p is to be maximised. This is achieved by sampling p1/T while T → 0. If the temperature parameter T
goes to 0 in an appropriate way, then the SA algorithm converges asymptotically towards the global optimum.
This method is rather general. Under smooth assumptions, the algorithm can be generalised to minimise any
criteria U that can be written as p ∝ exp(−U).

SA algorithms for maximising probability densities for random fields and marked point process such as (1) are
presented in [1, 4, 7]. The obtained cooling schedules for the temperature parameter are of the form

T =
T0

1+ logn

with n > 0. The solution guaranteed by the method converges towards the uniform distribution over the sub-
space of configurations that maximises (1).

The difficulty of solving (3) is due to the fact that the normalising constant c(θ) is not available in analytic
closed form. Hence, special strategies are required to sample from the posterior distribution (2). The present
paper use for this purpose, the ABC Shadow simulation dynamics [8].

The main steps of the SSA algorithm are presented below :

Algorithm 1 Shadow Simulated Annealing (SSA) algorithm : fix δ = δ0, T = T0, n and kδ,kT : R+→ R+

two positive functions. Assume the observed pattern is y and the current state is θ0.
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1. Generate x according to p(x|θ0).

2. For k = 1 to m do

• Generate a new candidate ψ following the density Uδ(θk−1→ ψ) defined by

Uδ(θ→ ψ) =
1

Vδ

1b(θ,δ/2){ψ},

with Vδ the volume of the ball b(θ,δ/2).

• The new state θk = ψ is accepted with probability αs(θk−1→ ψ) given by

αs(θk−1→ θk) =

= min

{
1,
[

p(θk|y)
p(θk−1|y)

× f (x|θk−1)

f (x|θk

]1/T

×
1b(θk,δ/2){θk−1}
1b(θk−1,δ/2){θk}

}

= min

{
1,
[

f (y|θk)p(θk)

f (y|θk−1)p(θk−1)
× f (x|θk−1)

f (x|θk)

]1/T
}

(4)

otherwise θk = θk−1.

3. Return θm.

4. Stop the algorithm or go to step 1 with θ0 = θn, δ0 = kδ(δ) and T0 = kT (T ).

It is easy to see that the SSA algorithm is identical to the ABC Shadow dynamics whenever δ and T remain
unchanged [8].

3. Results

The SSA lgorithm is applied here to the statistical analysis of patterns which are simulated from a Strauss
model [3, 10]. This model describes random patterns made of points exhibiting repulsion. Its probability
density is

p(y|θ) ∝ β
n(y)

γ
sr(y) =

= exp [n(y) logβ+ sr(y) logγ] . (5)

Here y is a point pattern in the window W , while t(y) = (n(y),sr(y)) and θ = (logβ, logγ) are the sufficient
statistic and the model parameter vectors, respectively. The sufficient statistics components n(y) and sr(y) rep-
resent respectively, the number of points in W and the number of pairs of points at a distance closer than r.
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The Strauss model on the unit square W = [0,1]2 and with density parameters β = 100, γ = 0.8 and r = 0.1,
was considered. This gives for the parameter vector of the exponential model θ = (4.60,−0.22). The CFTP
algorithm (see Chapter 11 in [6]) was used to get 1000 samples from the model and to compute the empirical
means of the sufficient statistics t̄(y) = (n̄(y), s̄r(y)) = (65.23,51.51). The SSA algorithm was run using t̄(y)
as observed data.

The prior density p(θ) was the uniform distribution on the interval [3,5.5]× [−5,0]. Each time, the auxiliary
variable was sampled using 100 steps of a MH dynamics [5, 6]. The ∆ and m parameters were set to (0.01,0.01)
and 100, respectively. The algorithm was run for 106 iterations. The intial temperature was set to T0 = 104. For
the cooling schedule a slow polynomial scheme was chosen

Tn = kT ·Tn−1

with kT = 0.9999. A similar scheme was chosen for the ∆ parameters, with k∆ = 0.99999. Samples were kept
every 103 steps. This gave a total of 1000 samples.

Figure 1 shows the results obtained after running the SSA algorithm. The final values for logβ and logγ were
4.60 and −0.22, respectively. These values are almost identical to the true model parameters.
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Figure 1: SSA results for computing the MAP estimates for the Strauss model parameters.

4. Conclusions and perspectives

The algorithm was also applied on real astronomical data, and the obtained models were tested and validated.
Since the ABC Shadow is an approximate algorithm, the theoretical convergence of the SA procedure based on
it was also established [9].
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Extending planar point with scalar marks to more complex mark
scenarios

M. Eckardt
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Abstract. The analysis of (marked) spatial point processes remains to be the subject of interest in various
fields. While the points have been extended to more complex domains, i.e. the network space or the sphere,
in recent years, the marks most commonly remain scalar-valued quantities. Leaving simple mark scenarios
behind, this talk focusses on extensions to the case where the attributes themselves are objects rather than
scalar-valued quantities.

Keywords. Complicated mark structures; Mark Characteristics; Non-Euclidean; Non-standard mark spaces

The analysis of random point configurations {si,m(si)} with points in S⊂R2 and marks in M has become
a vivid field of research. Apart from different summary characteristics which help to decide on the structural
properties of the points, i.e. the ground process, and deviations from complete spatial randomness, various
tools for integer-valued (multitype) and real-valued point attributes or combinations of integer- and real-valued
marks have been derived. While recent years have witnessed extensions for marked patterns with points on e.g.
network structures or the sphere, the marks themselves remain most commonly scalar-valued quantities. Ad-
dressing this gap, we consider the analysis of points with object-valued point attributes {si,o(si)} and introduce
extensions of classical mark characteristics to the present context. As special cases, non-simple (multitype)
point patterns with multiple coincident points and points with vector-valued marks are included in the class of
object-valued marks.
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1Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovská
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Abstract. In this contribution we consider the problem of testing possible dependence between a point pro-
cess and a spatial covariate. We recall the available methods which are based on the assumption of a Poisson
process. Taking advantage of the recent development of the random shift methods we study the nonparametric
tests using random shifts which are suitable also for non-Poisson processes. We study the performance of the
different tests in a simulation study and conclude that the random shift test, either with the toroidal correction
or the variance correction, depending on the strength of interactions in the point process, performs well for
non-Poisson processes.

Keywords. Spatial point process; Covariates; Independence; Random shifts; Preferential sampling.

1. Introduction and background

Let X be a spatial point process observed in a compact observation window W ⊂ R2, and let Y (u),u ∈W,
be a spatial random field (covariate). In the classical geostatistical setting the random field values are observed
only at the points of X . In this case the independence between the random field Y and the process of sampling
locations X is referred to as non-preferential sampling, as opposed to the preferential sampling which refers to
situations where Y and X are stochastically dependent [3]. For testing the null hypothesis of non-preferential
sampling the paper [3] suggests to use the test by [6], based on fitting a Gaussian random field model to the
observed data and comparing the data to the simulations from the fitted model in the Monte Carlo fashion [6].

In the following we step outside the geostatistical context and consider the random field Y to be observed
at every location u ∈W , at least on a fine pixel grid. This is usual if the values of Y are obtained by remote
sensing (e.g. altitude and slope of a terrain), interpolated from a given set of measurements by kriging or other
methods (mineral content in soil) or constructed analytically from a given set of observations (distance from a
geological fault). In such a case Y corresponds to a spatial covariate that may influence the distribution of X .
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J. Dvořák et al. Testing dependence of point process and covariate

The problem of testing whether Y affects the distribution of X has been tackled under the assumption of
Poisson process e.g. in [2]. For non-Poisson processes parametric may be employed as e.g. in [7]. We focus
here on simple methods that do not require fitting a complex model to the data.

As a natural starting point it is possible to compare the empirical cumulative distribution function F̂(y) of the
sampled values Y (xi) with the cumulative distribution function F0(y) = 1

|W |
∫

W 1{Y (u) ≤ y}dy of the covariate
values across whole W . This can be done using the Kolmogorov-Smirnov statistic, Cramér-von Mises statistic
or Anderson-Darling statistic [1, Sec. 10.5.2]. Under Poisson assumption these are in fact tests of the constant
intensity hypothesis (Complete Spatial Randomness, CSR).

Another approach is suggested by [2]. Let {x1, . . . ,xn} denote the observed points of X in W . The Berman’s
Z1 and Z2 tests assume X is a Poisson process with intensity function λ(u;θ) = b(u)exp{θ0 +θ1Y (u)} where
θ = (θ0,θ1) are parameters and b(u) is a known baseline function [1, Sec. 10.3.5]. The Z1 test is in fact the
score test of the null hypothesis that θ1 = 0, based on the sum of observed values ∑iY (xi). The Z2 test is based
on the transformed values ui = F0(Y (xi)) where F0(y) was defined in the previous paragraph.

In order to relax the Poisson assumption [2] suggests, for rectangular windows, to perform instead a Monte
Carlo test, with a suitable test statistic, based on the random shifts with torus correction (see below for details).
The author comments that “hopefully, the edge effects introduced by the wrapping procedure will have a min-
imal effect on the statistic” [2, p.60]. However, experience shows that this may not be the case, depending on
the choice of test statistic and the range of interactions in the point process, resulting in liberality of the test.
For this reason we consider here also the random shift test with variance correction proposed in [5] which can
be used also for irregular observation windows.

2. Random shift tests

In the classical Monte Carlo test one computes a test statistic value T0 from the observed data, obtains
in a certain way M replications of the data under the null hypothesis and computes the values of the test
statistic T1, . . . ,TM from the replications. The p-value of the test is then determined by assessing how typical
or extreme the value T0 is with respect to the population of (T1, . . . ,TM). The random shift tests are based on a
specific strategy for producing the Monte Carlo replications [4]. In order to break possible dependence structure
between a pair of spatial processes (such as the point process X and the random field Y in this paper), one of the
processes is kept fixed while the other one is shifted by a random vector. Note that the random shift approach in
general requires at least one of the spatial processes to be stationary, but not necessarily both. Different versions
of the random shift test are available, using different ways to deal with the part of data that is shifted outside the
observation window W . Here we focus on two of them, the well-established torus correction and the variance
correction from [5].

The torus correction approach [4, 2] makes the shifts respecting the toroidal geometry induced by identifying
the opposite edges of the observation window. Wrapping the data onto the torus introduces cracks in the
correlation structure of the shifted data which in turn introduces liberality of the test [5]. To compensate for the
liberality [5] proposed a variance correction strategy which is based on dropping out the part of the data shifted
outside W . In this way no cracks in the correlation structure are created. On the other hand the amount of
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data used for computing the test statistic values T1, . . . ,TM decreases and their means and variances are possibly
different, resulting in the need for standardization to get closer to exchangeability. Details are given in [5, Sec.
2.1.3].

In this contribution we investigate the performance of the random shift tests using the sample mean as the
test statistic, i.e. T = 1

n ∑
n
i=1Y (xi), and compare it with the tests discussed in Section 1. For the variance correc-

tion we use the correction factor 1/
√

n, motivated by the fact that for the sample mean computed from n i.i.d.
observations the order of variance is 1/n. It can be shown that the same correction factor is appropriate also in
the current context where the observed values Y (xi) are not independent.

3. Simulation study

In the following we consider the random shift tests with the torus correction and the variance correction
(RST ,RSV , based on 999 random shifts), the Schlather et al. [6] simulation-based test (SIM, based on 99 simu-
lations, the test statistic E(h) and l2-norm with constant weights), the tests based on the cumulative distribution
function and Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling statistic (FKS,FCvM and FAD, re-
spectively) and the two Berman’s tests (Z1,Z2). The nominal significance level of the tests is chosen to be 0.05.
The observation window is the unit square W = [0,1]2 and the random shift vectors are generated uniformly on
a disc with radius 1/2. We perform the tests for 1000 independent realizations from each model and report the
rejection rates.

Let Y1,Y2 be independent zero-mean unit-variance isotropic Gaussian random fields with correlation function
r(s) = exp{−5s},s ≥ 0. In both experiments considered here the point process X is a stationary log-Gaussian
Cox process with the driving intensity function Λ(u) = exp{5+αY1(u)−α2/2},u ∈W , where α ∈ R is a
parameter governing the strength of interactions in X . Intensity of X is approx. 148.

In experiment 1 the covariate Y is taken to be the random field affecting the distribution of X , i.e. Y = Y1.
This experiment hence corresponds to X being a Poisson process with intensity function depending on the
covariate. Therefore the use of the tests based on cumulative distribution function and the Berman’s tests is
justified. Setting α = 0 implies independence between X and Y and corresponds to the null hypothesis. Setting
α 6= 0 allows assessing the power of the tests against selected alternatives. In experiment 2 the covariate Y is
taken to be the random field independent of X , i.e. Y =Y2. In this case X is a clustered point process independent
of the covariate Y (null hypothesis holds) and we can investigate robustness of the tests to departures from the
Poisson assumption. Note that the random shift tests and the Schlather et al. [6] test do not rely on this
assumption and hence are expected to perform well.

The top part of Table 1 gives the rejection rates in experiment 1. In the case with α = 0 we observe that
some of the tests match the nominal significance level rather well (RST ,FKS,FCvM,Z2) while others are slightly
conservative (RSV ,Z1) or slightly liberal (SIM). The FAD test is extremely liberal and will not be discussed
further. With increasing absolute value of α the dependence of X on Y gets stronger and the rejection rates
indicate increasing power of the tests, RST ,FCvM,Z2 showing the highest power. The bottom part of Table 1
gives rejection rates in experiment 2. All choices of α now correspond to the null hypothesis so the rejection
rates should be close to 0.05. For α = 0 the point process X follows CSR and all the test are theoretically
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α RST RSV SIM FKS FCvM FAD Z1 Z2

0.6 0.999 0.961 0.828 0.996 0.999 0.999 0.994 1.000
0.4 0.975 0.669 0.593 0.945 0.964 0.976 0.963 0.977
0.2 0.561 0.175 0.214 0.463 0.548 0.654 0.533 0.573
0.0 0.043 0.026 0.082 0.046 0.051 0.211 0.030 0.046

-0.2 0.542 0.179 0.216 0.456 0.528 0.625 0.516 0.556
-0.4 0.968 0.648 0.572 0.939 0.964 0.977 0.959 0.972
-0.6 0.998 0.961 0.838 1.000 1.000 1.000 1.000 1.000

α RST RSV SIM FKS FCvM FAD Z1 Z2

0.6 0.078 0.034 0.069 0.214 0.236 0.376 0.184 0.220
0.4 0.057 0.035 0.058 0.100 0.118 0.275 0.093 0.124
0.2 0.046 0.026 0.061 0.055 0.070 0.249 0.050 0.072
0.0 0.055 0.018 0.060 0.036 0.048 0.196 0.041 0.050

-0.2 0.051 0.023 0.055 0.066 0.065 0.252 0.053 0.062
-0.4 0.065 0.028 0.076 0.118 0.133 0.294 0.108 0.133
-0.6 0.066 0.025 0.070 0.193 0.216 0.363 0.180 0.210

Table 1: Fractions of rejections of the null hypothesis by the given tests. Top part: experiment 1; bottom part:
experiment 2. Nominal significance level 0.05.

justified, only the SIM test showing slight liberality. With increasing absolute value of α the point process X has
more and more prominent interactions (clustering) and the tests based on the Poisson assumption break down,
showing high degree of liberality, as noted in [1, Sec. 10.5.4]. Also the RST and SIM tests show increasing
liberality. The RSV test is able to preserve the interaction structure of X , its rejection rates not exceeding the
nominal significance level.

Note that the observations made for the random shift methods (increasing liberality of RST with increasing
strength of interactions in the process, conservativeness of RSV ) are in line with the findings reported in [5].
To conclude, the random shift tests provide a simple, fully nonparametric way of testing the given hypothesis.
For rectangular observation windows and point processes with not very strong interactions the torus correction
is appropriate. If the interactions are strong and the user is not willing to accept the degree of liberality of the
torus correction indicated by simulation studies, the variance correction should be used instead.
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[5] Mrkvička, T., Dvořák, J., Mateu, J. and González, J.A. (2020). Revisiting the random shift approach for
testing in spatial statistics. To appear in Spatial Statistics. https://doi.org/10.1016/j.spasta.2020.100430

[6] Schlather, M., Ribeiro, P.J. and Diggle, P.J. (2004). Detecting dependence between marks and locations
of marked point processes. Journal of the Royal Statistical Society, Series B (Statistical Methodology) 66
(1), 79–93.

[7] Waagepetersen, R.P. and Guan, Y. (2009). Two-step estimation for inhomogeneous spatial point processes.
Journal of the Royal Statistical Society, Series B (Statistical Methodology) 71 (3), 685–702.

METMA X Workshop 59



60



Presence-only for Marked Point Process under Preferential
Sampling

G.A. Moreira1,∗ and R. Menezes2

1Centro de Biologia Molecular e Ambiental, Universidade do Minho, Campus de Gualtar, 4710-057 Braga - Portugal;
d12582@bio.uminho.pt
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Abstract. Preferential Sampling models have received much attention in the last few years. Although its orig-
inal model is applied to geostatistics, it can be recognized in other types of data, such as point processes, in the
form of presence-only data. This has been already identified in the Statistics literature. It is valuable to draw
advantages from both presence-only and preferential sampling specific literatures. In particular, we propose
a way to deal with biased sampling of a continuous variable collected by opportunistic sampling. For our
particular case, we employ the idea on sardine biomass collected during professional fishing expeditions. The
data, although intuitively understood, presents complications such as two types of preferential sampling. One
is about the fish presence locations, and the preferentiability happens due to the travel pattern of fishing boats
not being representative of the region. The other happens with respect to the biomass itself, as the fishermen
prefer visiting regions with larger biomass. These and other theoretical and practical aspects of the problem
are discussed. A probabilistically well defined approach is discussed. Its results may be an incentive to apply
data collection in fishing expeditions commercial fisheries as a means for decision making aimed at benefiting
both ecological and economical aspects.

Keywords. Inhomogeneous Poisson Process; Bayesian Analysis; Preferential sampling; Data augmentation;
Spatial Statistics

1. Introduction

A major challenge of quantitative ecology is a class of problems known as Species Distribution Models.
It consists of methodologies whose aim is twofold. Firstly it explains the occurrence of species in relation to
geological, ecological and climactic drivers. Secondly, it proposes to predict the occurrence over a specified re-
gion. Its applications range from conservation and reserve planning, evolution, epidemiology, invasive-species
management and other fields [11].

Scientific collection of ecological data is often expensive. It requires planning, careful consideration of the
study objectives and usage of specially suited equipment and personnel. Consequently, other sources of infor-
mation are considered, particularly data that has not been randomly or systematically collected. These cases
are often called opportunistic sampling and can contain biased information. However, if the model accounts for
the bias, then it can adequately estimate scientifically relevant quantities.
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Presence-only data is the result of opportunistic sampling when the collected data is the observed locations
of the object of study. In this case a point process [1] is adequate and the bias can result in a model predicting
the studied object less often where observers don’t tend to go. For example, a group of biologists may record
the locations of a certain species they are studying, but the data only exists close to locations easily accessible
to people. This work benefits from [10] who dealt with this problem using exact inference on an Inhomogenous
Poisson Process (IPP), dealing with identifiability issues otherwise mentioned in [5] and [4].

The problem becomes more intricate when there is a measured variable in the observed locations. For
example in fishing data, the fish biomass may be recorded in addition to the location where they were found. In
this case, the point process extends to the marked point process case. Additionally, the fishing expeditions will
likely favor locations with known higher fish biomass, causing a biased sample. In this case, the preferential
sample description of [3] is adequate, albeit still being in the presence-only field. This work joins these ideas
to deal with the opportunistically sampled marked point process. In order to achieve scalability, the theory of
Nearest Neighbor Gaussian Process is employed to sample the latent processes, using similar ideas as [12].

There has been a case which deals with presence-only data in the context of preferential sampling. Namely
[7] use the latter approach to model the sampling bias of presence-only data. The authors have not been able to
find methods that consider the case where preferential sampling happens in addition to presence-only sampling.
This can happen with fishery data collected during fishing expeditions.

It is common that fishermen prefer going to locations with the most fish biomass. It is also assumed that fish
biomass is a variable that has spatial smoothness, which is modeled using an approximated Gaussian Process.
Therefore it is reasonable that the this process can also be used to measure the sampling bias due to biomass.

Another aspect of current problems is the inclusion of information from multiple data sources, some of
which may have no sampling bias. For this reason some discussion is proposed about good practices of model-
ing species distributions when sampling bias may be present.

The mixing of a Gaussian Process in the intensity function extends the presence-only model of [10]. The
idea is based on the doubly stochastic process of [9]. To make the procedure more computationally efficient,
the recent nearest neighbor approximation of [2] has been discussed in the point process context in [12].

2. Proposal

The proposed model uses a data augmentation scheme to achieve exact computation of the Poisson Process
likelihood.

2.1 Motivating data

The data which motivates this development comes from fishing expeditions, which constitutes presence-
only data. The biomass of sardines is recorded as well. Since it is recorded from the fishing expeditions which
favor higher biomass, it constitutes preferential sampling as well.
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2.2 Model and notation

The available data is composed of an unordered set of paired variables (X ,Z) = {(x1,z1), . . . ,(xnx ,znx)}
observed in a closed region D . The component xi represents the i-th location of sardines detection and zi

represents its recorded biomass.

The data are modeled as a marked point process based on the Inhomogeneous Point Process (IPP). In
addition, a data augmentation scheme is used to avoid performing approximations of the likelihood function.

X ∼ IPP(q(·)p(·)λ∗)
X ′ ∼ IPP(q(·)(1− p(·))λ∗)
U ∼ IPP((1−q(·))λ∗)

Z(s) | s ∈ x∪ x′ ∼ Gamma(a,a/η(s))

log η(s) =Wz(s)βz +S(s), s ∈D
logit q(s) =Wint(s)βint , s ∈D
logit p(s) =Wobs(s)βobs + γS(s), s ∈D

S(·)∼ NNGP
(
0,σ2

ρ(·)
)
),

(1)

where Wz(·),Wint(·) and Wobs(·) are sets of covariates.

Parameter γ measures the preferentiability of the sampling procedure. The complete infinite-dimensional
vector of unknown quantities is Θ = (βz,βint ,βobs,λ

∗,X ′,U,a,γ,S(·),θ).

2.3 Inference

The inference is done under the Bayesian paradigm on the posterior distribution π(Θ | x,z) ∝ Lx(Θ)π(Θ)
([8]) where Lx(Θ) is the likelihood function and π(Θ) is the prior distribution. The posterior is not known
in closed form. An MCMC sampling scheme allows inference to be made. A Metropolis-within-Gibbs ([6])
sampling procedure using concepts from [10] and [12] is employed to achieve the sampling.

References

[1] Cressie, N. A. C. (1993). Spatial Point Patterns. John Wiley and Sons, Inc.

[2] Datta A., Banerjee S., Finley A. O. Gelfand A. E. (2016). Hierarchical Nearest-Neighbor Gaussian Process
Models for Large Geostatistical Datasets, Journal of the American Statistical Association, 111:514, 800–
812.

METMA X Workshop 63



G.A. Moreira and R. Menezes Presence-only for marked point process

[3] Diggle, P. J., Menezes, R. and Su, T.- L . (2010). Geostatistical inference under preferential sampling.
Journal of the Royal Statistical Society: Series C (Applied Statistics) 59 191–232.

[4] Dorazio, R. M. (2014). Accounting for imperfect detection and survey bias in statistical analysis of
presence-only data. Global Ecology and Biogeography 23 1472–1484.

[5] Fithian, W. and Hastie, T. (2013). Finite-sample equivalence in statistical models for presence-only data.
Ann. Appl. Stat. 7 1917–1939.

[6] Gamerman, D. and Lopes, H. (2006). Markov Chain Monte Carlo - Stochastic Simulation for Bayesian
Inference, 2nd ed. CRC Press.

[7] Gelfand, A. E. and Schliep, E. M. (2018). Bayesian Inference and Computing for Spatial Point Patterns.
NSF-CBMS Regional Conference Series in Probability and Statistics 10 i–125.

[8] Gelman, A. and Carlin, J.B. and Stern, H.S. and Dunson, D.B. and Vehtari, A. and Rubin, D.B. (2013).
Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science.

[9] Gonalves, F. B. and Gamerman, D. (2018). Exact Bayesian inference in spatiotemporal Cox processes
driven by multivariate Gaussian processes. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 80 157–175.

[10] Moreira, G. A., Gamerman, D. (2022). Analysis of presence-only data via exact Bayes, with model and
effects identification. Ann. Appl. Stat., To appear.

[11] Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006). Maximum entropy modeling of species geo-
graphic distributions. Ecological Modelling, 190 231–259.

[12] Shirota, S., Gelfand, A. and Banerjee, S. (2019). Spatial joint species distribution modeling using Dirichlet
processes. Statistica Sinica 29 1127–154.

METMA X Workshop 64



Disease mapping method comparing the spatial distribution of a
disease with a control disease

O. Petrof1,∗, T. Neyens1,2 , M. Vranckx1 , V. Nuyts3 , K. Nackaerts4 , B. Nemery3 and C. Faes1

1Hasselt University, Data Science Institute (DSI), The Interuniversity Institute for Biostatistics and statistical Bioinformat-
ics (I-BioStat), Hasselt, Belgium; oana.petrof@uhasselt.be, thomas.neyens@uhasselt.be, maren.vranckx@uhasselt.be,
christel.faes@uhasselt.be
2KU Leuven, Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), Department of Public Health and
Primary Care, Leuven, Belgium; thomas.neyens@uhasselt.be
3KU Leuven, Centre for Environment and Health, Department of Public Health and Primary Care, Leuven, Belgium;
valerie.nuyts@kuleuven.be, ben.nemery@kuleuven.be
4 KU Leuven, Department of Pneumology, University Hospital Leuven, Leuven, Belgium; kristiaan.nackaerts@uzleuven.be
∗Corresponding author

Abstract. Traditional disease mapping models are based on relating the observed number of disease cases
per spatially discrete area to an expected number of cases for that area. Expected numbers are often calcu-
lated by internal standardisation, which requires both accurate population numbers and disease rates per age
group. However, confidentiality issues or the absence of high-quality information about the characteristics of
a population-at-risk can hamper those calculations. Based on methods in point process analysis for situations
without accurate population data, we propose the use of a case-control approach in the context of lattice data,
in which an unrelated spatially unstructured disease is used as a control disease. We correct for the uncertainty
in the estimation of the expected values, which arises by using the control disease’s observed number of cases as
a representation of a fraction of the total population. We apply our methods to a Belgian study of mesothelioma
risk, where pancreatic cancer serves as the control disease. The analysis results are in close agreement with
those coming from traditional disease mapping models based on internally standardised expected counts. We
show that the proposed method can adequately address the problem of inaccurate population data in disease
mapping analysis.

Keywords. BYM model; Case-control study; Disease mapping; Mesothelioma; Standardization.

1. Introduction

The classical hierarchical models for disease mapping make use of data including the population at risk or a
local number of cases ”expected” under some null model of disease transmission. Due to medical confidential-
ity, it is often difficult to obtain accurate and detailed population data [2]. Census data can be used to reflect the
population data of a specific region. However, countries’ census areas can be large or population data are not
available for some countries. Census data are collected for a single snapshot in time, every decade, meaning
that any changes in populations between census counts will add to the uncertainty of these data [2], while no
data are available for the intercensal years. The objective of this paper is to propose a disease mapping method,
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where a control disease is used as a proxy for the population at risk, extending the case-control methods for
point-pattern data towards lattice data. In this study, interest is in mesothelioma cancer, while pancreatic cancer
is used as control disease.

2. Methodology

2.1 Classical Disease Mapping Method

The response Y = (Y1,Y2, ...,Yn) represents the observed number of disease cases per areal unit throughout
the study period. A Poisson model is commonly assumed to estimate the disease risk per area:

Yi ∼ Poisson(Eiθi), i = 1, ...,n, (1)

where Ei represents the expected number of disease cases in area i and θi expresses the disease risk for the ith

area. The expected number of cases is defined as [6]:

E I
i = ∑

g

Yg

Ng
Ni,g = ∑

g
rgNi,g (2)

where rg is the age-specific incidence rate in the standard population calculated as the observed number of
cases in age group g and the age-specific population number. This ratio is multiplied by Ni,g representing the
population size of municipality i in age group g.

2.2 Disease Mapping with Control Disease

An approach commonly used in the context of point-pattern data is to compare the location of disease cases
with that of a set of carefully selected controls for the population at risk [5]. In the context of disease mapping,
it is assumed that only the aggregated number of cases for the disease of interest (Y = (Y1,Y2, ...,Yn)) and the
number of cases for the control disease (Z= (Z1,Z2, ...,Zn)) are available. The expected number of cases (under
the assumption of no excess risk) for the disease of interest can be represented by

EC
i =

Zi

∑
N
j=1 Z j

(
N

∑
j=1

Yj

)
= rZ

i Y· (3)

where rZ
i is the rate of the control disease in area i and Y· is the total number of cases of the disease of interest.

Any disease utilized as a control disease will introduce uncertainty in the model, as it represents a sample
from the population data. The calculated expected values will have a lot of uncertainty if only a small number
(or no) cases of the control disease are present. To account for the uncertainty in the estimation of the expected
number EC

i , we will assume that this is not a fixed known quantity. Since the expected number is based on
the proportion of the total number of controls in the areas rZ

i , we assume that the control disease follows a
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multinomial distribution
(Z1, ...,ZN)∼Multinomial(Z·,(rZ

1 , ...,r
Z
N)),

where Z· represents the total number of controls. Given that the Poisson counts can be considered jointly
multinomially distributed, we make use of the multinomial-Poisson transformation developed by [1]:

Zi ∼ Poisson(λi) (4)

λi ∼ Gamma(0.5,0.05),

rZ
i =

λi

∑
N
j=1 λ j

,

where the number of control cases Zi in municipality i follows a Poisson distribution with mean λi. The resulting
expected value is denoted as EC2

i .

A conditional autoregressive convolution model [3] was used to analyse and compare the three methods
presented above.

3. Data analysis

3.1 Data description

Residential information about all mesothelioma and pancreatic cancer patients diagnosed between 2004 and
2015 is available (Belgian Cancer Registry) as well as information about the population distribution in all areas
during the period 2009-2015.

3.2 Results

Figure 1 presents the results of the classical method using indirect standardized number (upper panel), our
proposed control-disease’s standardized number (middle panel) and control-disease’s standardized number ac-
counting for uncertainty (lower panel). All methods show a cluster of municipalities in the Central Northern
part of Flanders, and in the Central Eastern part of the country. However, on the middle panel areas with in-
creased risk are more dispersed over the country, as compared to the classical method. The lower panel results
show less variability as compared to the model in which the expected number is considered to be a fixed value
(middle panel). By incorporating more variability for the expected values, a smoothed map is observed for the
new method (lower panel), leading to a more accurate approximation of the Poisson convolution model results.

4. Conclusion

In this paper, we have proposed a method similar to methods used in point-pattern data [4], in which the in-
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Figure 1: Map of the relative risks for the Poisson Convolution model. Upper panel: using indirect standardized
number; Middle panel: using control-disease’s standardized number; Lower panel: using control-disease’s
standardized number accounting for uncertainty.

cidence of the disease of interest is compared to the incidence of a control disease, in the context of lattice data.
Allowing for extra variability through the use of a distribution for the expected values, leads to a control-disease
approach used for a Poisson convolution model which had similar results with the classical methodology, where
the expected values were calculated based on a standard population. Our proposed method can be used either
when a standard population including patients’ characteristics factors (including age, gender strata) is missing,
or when a standard population is not available at all.
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Abstract. We extend the return level concept, usually defined point-wise, to spatial surfaces for spatio-
temporal processes. By analogy with the univariate theory of excesses above a threshold we use the recent
results on convergence to l-Pareto processes for spatial exceedances. We investigate the case of non-stationary
spatio-temporal processes by modeling the temporal tail distribution as the product of a stationary tail distrib-
tion and a skedasis temporal function, and expressing the return level as the expected number of exceedances
during the return period. The methodology is experienced on simulation of max-stable processes and climate
data. In a climate change context it provides spatial scenarios of potential future extreme temperature or pre-
cipitation surfaces.

Keywords. Spatio-temporal processes; Non-stationarity; `-Pareto processes ; Return level.

1. Introduction

We are interested in this work in investigating future extreme values of some climate variables. When deal-
ing with climate data, especially in the framework of climate change a major issue is the non stationarity in
space and time. An usual way to deal with non-stationarities in space is to transform margins via a function of
the coordinates and working pointwise in the stationary framework. Similarly non stationarity in time may be
handled through modelling the marginal parameters as a function of time, polynomials or splines for instance.
Working pointwise does not allow us to take into account the spatial structure of the data and spatial models
are needed to describe to spatial dependence. To deal with the spatial nature of climate data when focusing on
extreme values we use the `-Pareto models introduced by [5] that are an extension of the Generalized Pareto
Distribution for spatial exceedances given by the ` function. Non-stationarities in space and time are handled as
in [7] via a skedasis function that establishes a relationship between the tail distribution of the non-stationnary
spatio-temporal process and a spatial latent process. A by-product of the Extreme Value Theory is to provide
indicators such as return levels associated to return periods which are widely used by decision makers. Exten-
sion of the original definition of return levels to the non stationary case have been provided by several authors
[8], [3] writing the return level as value that has a probability to be exceeded once during the period τ according
to the non-stationary distribution of the margins. This gives point-wise return levels that can be spatialized
through kriging or other spatial extrapolation methods. We define return level surfaces similarly as a surface
which is exceeded by the spatio-temporal process in average once during the period τ. The surface is calculated
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by means of simulations according to the estimated `-Pareto model and the marginal non-stationarities. The
method is illustrated on simulation and temperature data which are likely fulfilling the max-stable assumption
necessary for the `-Pareto modelling.

2. Methodology

Let X = {Xt(s),s ∈ S, t ∈ T} be a continuous non-stationary space-time stochastic process, Ft,s the contin-
uous univariate marginal distribution with a common right endpoint xF . X is observed at locations s1, · · · ,sm

at times t = 1, · · · ,n. Let Z = {Z(s),s ∈ S} be an unobserved latent spatial stationary process satisfying the
proportional tail condition

lim
x→xF

P(Xt(s j)> x)
P(Z(s j)> x)

= cθ

( t
n
,s j

)
,with

1
m

m

∑
j=1

∫ 1

0
cθ (u,s j)du = 1, (1)

with cθ : [0,1]× S −→ (0,∞) a continuous and positive function depending on a parameter vector θ, called
tail trend or skedasis function [7]. The skedasis function is the density of the point process made by the time
occurrences of exeedances of x at location s.

Assuming that there are normalization functions an(.) > 0, bn(.) ∈ R such that Ft,s are in the maximum
domain of attraction of common index γ ∈R then peudo observations of Z may be recovered from observations
of X writing [2] :

Zt(s j) =
{

cθ

( t
n
,s j

)}−γ

[
Xt (s j)−

{
cθ

( t
n ,s j

)}γ−1
γ

(an(s j)− γbn(s j))

]
, (2)

j = 1, · · · ,m ; t = 1, · · · ,n,

If it is assumed a parametric form for the skedasis function cθ(.,s j) the parameters θ may be estimated
by maximum likelihood. Similarly the marginal parameters an(s j), bn(s j) and γ are estimated by independent
maximum likelihood.

The extremal behaviour of the process Z is then modeled as an `-Pareto process [5]. If Z is regularly varying
with exponent γ and spectral measure σ and ` : C (S) −→ R+ is a continuous and homogeneous non-negative
function then

P
{

u−1Z ∈ . | `(Z)≥ u
}
−→ P

{
W `

γ,σ ∈ .
}
,u→ ∞, (3)

W `
γ,σ is a `-Pareto process, it can be represented W `

γ,σ = PγY , Pγ is a γ-Pareto r.v. and Y is a continuous process
with distribution σ. Selecting the process Y with a distribution that lies in a parametric family which parameters
may be inferred leads to an estimation of the spatial structure. A standard choice is a log-Gaussian process with
a parametric variogram function, for which the corresponding max-stable process is the well-known Brown-
Resnick process. Algorithms for estimating and simulating `-Pareto process are developed by [4], [1], and
software are available.

METMA X Workshop 72



L. Bel et al. Non-stationary return level surfaces

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
X

Y

0

1

2

3

4
RLconstant

constant return level

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
X

Y

0

1

2

3

4
RLhoriz

horizontal return level

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
X

Y

0

1

2

3

4
RLvert

vertical return level

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
X

Y

0

1

2

3

4
RLquadratic

quadratic return level

Figure 1: Different shapes for the 500 period return level.

Several definition have been proposed to extend the notion of return levels to the non-stationary case. The
Expected Number of Exceedances(ENE) [8] xτ(s) is the value for which the expected number of events exceed-
ing xτ(s) during the period 1, . . . ,τ equals to one, it is the solution of the equation:

1 =
τ

∑
t=1

P(Xt(s)> xτ(s)) =
τ

∑
t=1

1−Ft,s (xτ(s)) (4)

We define the surface level return the same way, as a function f (s) minimizing the following criterion: Using the
transformation from the non-stationary process Xt(s) to the stationary process Z(s) and using the convergence
result to a `-Pareto process of the ` excesses of Z we can write :

P(Xt,. > f (.))≈ P(W `
γ,σ > Lt( f ))P(`(Z)> u)

with Lt( f ) =

(
c−γ

θ
(t, .)

[
f −

c−γ

θ
(t, .)−1

γ
(an(.)− γbn(.)

]
−bn(.)

)
/`(an).

P(W `
γ,σ > Lt( f )) is estimated thanks to simulations of the `-Pareto process W `

γ,σ that has been estimated previ-
ously, and P(`(Z)> u) is estimated empirically on the pseudo-observations.
Giving a parametric form to the function f (.), for instance polynomial, allows us to retrieve f (.) using a stan-
dard optimization algorithm.

METMA X Workshop 73



L. Bel et al. Non-stationary return level surfaces

3. Simulation and application to climate data

We simulate a data set of 1000 replications of a spatial process according to a Brown-Resnick model. Then
we simulate 10000 replications of the associated `-Pareto processes for the risk `(X) = max(X) and we check
the matching of some basic statistics on the marginals of the ` exceedances. With the `-Pareto simulations we
calculate the probabilities necessary to derive the return level surfaces according to several shapes. Figure 1
shows for constant, horizontal vertical and quadratic shapes, the 500 period return level resulting surfaces. The
methodology is used to derive return surfaces for daily maximum temperatures in France according to different
evolution scenarios.
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Abstract. We extend the adaptive methodology for estimating the first-order intensity function of a point pro-
cess from the planar case to the spatio-temporal case. In this context, two bandwidths are considered for each
point in a point pattern, one for space and another for time, and a non-separable estimator is considered by
summing the contributions of kernel weights. We formulate several statistical approaches for facing the issues
of adaptive estimation in the spatio-temporal case. In particular, we extend some algorithms such as bandwidth
binning and the fast Fourier approach to accelerate the computing of the adaptive estimator.

Keywords. Bandwidth selection; Bandwidth binning; Fourier transform; Intensity function; Spatio-temporal
point process.

1. Introduction

When we talk about spatio-temporal point processes, one of the essential characteristics of a given obser-
vation, that is, of a point pattern, is the first-order intensity, which corresponds to the expected number of
points per unit area in the observation window [8]. Kernel smoothing is a non-parametric technique classically
used to estimate some types of functions such as probability density functions. This technique in spatial and
spatio-temporal statistics is increasingly common, especially in those cases where additional information is not
available to understand the distribution of points in space or space-time [7].

One of the main disadvantages of Kernel estimation is the prior knowledge of the bandwidth. Regardless of
the data dimensionality, this smoothing parameter is fundamental for the adequate estimation of the intensity
and a wrong choice may have unfortunate consequences [2]. It is widespread in the statistical literature to use
fixed bandwidth kernels, mainly due to the simplicity of the implementation and the steps involved. However,
this classical approach’s lack of spatial and temporal adaptability often results in poor estimation, especially in
highly heterogeneous point processes with very complicated underlying features that affect the intensity struc-
ture within the study region [4, 5]. The fixed kernel density estimator will struggle to capture important finer
details in crowded areas when much smoothing is applied to control noise where data is sparse. Conversely,
if less smoothing is applied (to retain more of this detail), we can expect to see spurious bumps generated by
isolated points in low-density regions.

A more intuitive approach consists of variable smoothing. in this technique, the amount of smoothing is
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inversely related to the density of the points. Known as adaptive, this smoothing has shown better levels of
bias [1, 9] and lower integrated square error [6]. We can solve this issue by the rescaling the bandwidth of the
kernels associated with the data points. This technique is called the point fitting, sample smoothing or sample
point method [11]. Following [4], in this work, we focus on adaptive point estimators with the square root
methodology, i.e., the variable bandwidths are inversely proportional to the square root of the underlying inten-
sity function [1]. To illustrate the idea of point adaptation, Figure 1 provides an example of a spatio-temporal
point pattern. The ellipsoids correspond to a variable bandwidth in space and time for each point.

Figure 1: Spatio-temporal point pattern with variable kernel bandwidth in space and time for each point (as
translucent isosurfaces). The equatorial radii of the ellipsoids represent the spatial bandwidths and the polar
radii the temporal ones.

2. Statistical methodology

2.1 First-order intensity function

We consider a spatio-temporal point pattern X as a countable set of random points with spatial and temporal
coordinates; X has a generating stochastic underlying mechanism known as a point process. The number of
points in every subset of a spatio-temporal observation window W ×T governs the univariate distributions of
the points of X . If the intensity function λ(·) exists,

E[N(A×B)] =
∫

A×B
λ(u,v)dudv.

When λ() is a constant, X is called homogeneous.
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2.2 Adaptive estimation

An adaptive kernel estimator for the first-order intensity function in the spatio-temporal case can be written
as

λ̂ε,δ (u,v) =
1

eε,δ (u,v)

n

∑
i=1

Ks
ε(ui)

(u−ui)Kt
δ(vi)

(v− vi), (u,v) ∈W ×T,

where
eε,δ (u,v) =

∫
W

∫
T

Ks
ε(u′)

(
u−u′

)
Kt

δ(v′)

(
v− v′

)
du′dv′,

is an edge correction extended from the proposed by [10] , and the bandwidth functions are defined as

ε(u) =
ε?

γs

√
n

λs(u)
, and δ(v) =

δ?

γt

√
n

λt(v)
,

where ε?,δ? are global bandwidths, λs(u),λt(v) are marginal intensity functions in space and time, and γs,γt

are the geometric mean terms for the marginal intensities evaluated in the points of the point pattern.

3. Efficient computation

3.1 Partitioning algorithm

We follow the methodology proposed by [4] and discretise the bandwidths chosen for each point through the
empirical quartiles of its sampling distribution. Given the set of spatial and temporal bandwidths {ε1, . . . ,εn}
and {δ1, . . . ,δn}, we consider the empirical pth quantiles, ε̂(p) and δ̂(p) of the bandwidths together with two
quantile steps, ξ1,ξ2 ∈ (0,1] such that C1 = ξ

−1
1 and C2 = ξ

−1
2 are integers. We define the bandwidth bins

through the values {ε̂(0), ε̂(ξ1), ε̂(2ξ1), . . . , ε̂(1)}, and {δ̂(0), δ̂(ξ2), δ̂(2ξ2), . . . , δ̂(1)}, and we place each observation
(ui,vi) in one of the bins.

The sets of bins generate a disjoint partition of the original point pattern X into C1×C2 sets Yi j, and

X =
⋃
i j

Yi j.

If in each subset Yi j the intensity is estimated using a bandwidth defined as the midpoint of the respective bin
where it belongs, then the intensity can be approximated as,

λ̂ε,δ (u,v)≈
C1

∑
i=1

C2

∑
j=1

λ̂
∗
ε̄i,δ̄ j

(u,v|Yi j) ,
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where ε̄i and δ̄ j represent the midpoints of the ith spatial and jth temporal bins and λ̂∗
ε̄i,δ̄ j

(u,v|Yi j) is a fixed-
bandwidth estimate based on the sub-pattern Yi j.

3.2 Estimation via 5D FFT

The main idea for this technique is to introduce two extra dimensions that represent the logarithms of the
spatial and temporal bandwidths ans see the problem using a scale space approach [3]. We then define a
five-dimensional kernel in scale space as

K (x,y,ε, t,δ) = K2
exp(−ε)(x,y)K

1
exp(−δ)(t),

where K2 and K1 represent the two- and one-dimensional Gaussian kernel functions. Consider a counting
measure N that assigns 1 to each of the points {x′i,y′i, log(ε′i), t

′
i , log(δ′i)}n

i=1, and then, consider the convolution
of the kernel with the measure,

(K ∗N )(x,y,ε, t,δ) =
∫
R5

K (x− x0,y− y0,ε− ε0, t− t0,δ−δ0)dN (x0,y0,ε0, t0,δ0)

=
n

∑
i=1

K (x− x′i,y− y′i,ε− ε
′
i, t− t ′i ,δ−δ

′
i)

=
n

∑
i=1

K2
ε′i exp(−ε)(x− x′i,y− y′i)K

1
δ′i exp(−δ)(t− t ′i).

For the edge correction can be written analogously as a convolution of the kernel in scale space and the
Lebesgue measure. It follows that the convolution evaluated in the hyperplane where ε = δ = 0 yelds λ̂ε,δ (u,v) .
One of the fundamental properties of the convolution is that the Fourier transform of a convolution of two in-
tegrable functions is the point-wise product of their Fourier transforms. It implies that we can compute the
adaptive intensity using the Fourier transform, which is always faster than the traditional algorithms.
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Abstract. We study weekly Covid-19 incidence rates in Italy from the 24th February 2020 to late July 2021
using space-time disease mapping models. These models often include an interaction term to account for the
complexity in the data. In a Bayesian hierarchical framework, prior elicition of precision parameters, re-
sponsible for the smoothness of the process, remains a difficult task. We use an intuitive reparametrization
of space-time interaction models by means of mixing parameters that control the proportion of variability ex-
plained by each term.

Keywords. Variance partitioning; Kronecker product IGMRF; Penalized complexity prior.

1. Introduction

Italy was the first European country to report Covid-19 cases in the early beginning of 2020. The outbreak
of the pandemic was followed by a national lockdown to try and control the expansion of the virus. Data on new
Covid-19 cases have been collected since then at province level. Knowledge of the space-time evolution of the
disease, that can be studied using disease mapping models [1, 2, 3, 4], can be useful to evaluate the effectiveness
of the measures put into place by local and/or national authorities. We study variations in Covid-19 incidence
rates in Italy using a recently proposed reparametrization [5] of the space-time interaction models introduced
by Knorr-Held [6].

2. The data

Weekly data on new Covid-19 cases are available for all of the 107 Italian provinces for 70 weeks, going
from 24th February 2020 to late July 2021. We want to investigate whether the disease has spread differently
across geographical macro-regions and time windows. In particular, we are interested in assessing the contribu-
tion of the space-time interaction to the total variability in incidence rates, as this can be considered as a proxy
for local heterogeneity [7]. We divide the dataset in 3 subsets corresponding to the northern (N), central (C)
and southern (S) regions (Figure 1). For each of these, we consider two time periods: W1, corresponding to
the first 18 weeks (national lockdown period) and W2, that covers the rest of the time window. The time series
plots of the data can be seen in Figure 2.
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Figure 1: Northern (N), central (C) and souther (S) Italian regions.
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Figure 2: Weekly Covid-19 incidence rates in the North (left), Centre (central) and South (right) of Italy. The
vertical dashed line marks the separation between the first (W1) and second (W2) time period.

3. The model

Let yi j be the number of new Covid-19 cases at week i = 1, . . . ,n1 and province j = 1, . . . ,n2 and pop j be
the population at risk in province j. We consider the variance partitioning model proposed by Franco-Villoria
et al. [5]:
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yi j ∼ Bin(pop j,exp(ηi j)/exp(1+ηi j)),

ηi j = α+
√

τ−1

(√
1− γ

(√
1−φ

(√
1−ψ1β1i +

√
ψ1ε1i

)
︸ ︷︷ ︸

main temporal effect

+
√

φ

(√
1−ψ2β2 j +

√
ψ2ε2 j

)
︸ ︷︷ ︸

main spatial effect

)
+

√
γδi j︸ ︷︷ ︸

interaction effect

)
(1)

β1 ∼ N
(
0,R̃−1

)
, β2 ∼ N

(
0,R̃−2

)
, δ ∼ N

(
0,(R̃2⊗ R̃1)

−) ,
ε1 ∼ N (0,In1) , ε2 ∼ N (0,In2) ,

where R̃1 and R̃2 are the scaled [8, 9] structure matrices of a RW1 and an ICAR models on the temporal and
spatial main effects, respectively, τ > 0 is an overall precision parameter and 0 < γ < 1,0 < φ < 1,0 < ψ1 < 1,
0 < ψ2 < 1 are mixing parameters. We assume a type IV space-time interaction on δ, modelled as a Kronecker
product IGMRF following Knorr-Held [6]. Model (1) allows to investigate the different sources of variation in
Covid-19 incidence rates in a convenient scale. Of particular interest is the mixing parameter γ that represents
the contribution of the interaction effect to the total variance. Regarding prior choices, we use the Gumbel type
II PC prior for τ proposed by Simpson et al. [10] and the PC prior in Franco-Villoria et al. [5] for γ. The
remaining mixing parameters are assigned a uniform prior on (0,1).

4. Results

Table 1 reports posterior estimates for γ for the three geographical areas (N, C, S) and the two time periods
(W1, W2). As it can be seen, the impact of the interation term is greater during the second time period, sug-
gesting greater local hetereogeneity from the end of the national lockdown onwards. In both time periods, the
interaction explains a slightly greater proportion of variability in the South compared to the other two regions.

W1 W2
Region quant2.5 mean quant97.5 quant2.5 mean quant97.5

North 0.23 0.39 0.53 0.43 0.55 0.66
Centre 0.17 0.28 0.41 0.45 0.57 0.67
South 0.27 0.42 0.57 0.55 0.69 0.8

Table 1: Posterior estimates for the mixing parameter γ (contribution of the interaction term), for both time
periods W1 and W2 in North, Centre and South regions.
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5. Discussion

The reparametrization of the interaction model in Eq. (1) as a weighted sum of main and interaction ef-
fects can prove useful in practical applications. The intuitive interpretation of the mixing parameter γ makes
prior elicitation simpler, particularly in disease mapping, where the nature of the disease can provide useful
information on the importance of the interaction term.
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Abstract. Point processes are random sets which generalise the classical notion of a random (iid) sample
by allowing i) the sample size to be random and/or ii) the sample points to be dependent. Therefore, point
processes have become ubiquitous in the modelling of spatial and/or temporal event data, e.g. earthquakes
and disease cases. We here present a recent approach by the authors, point process learning, which is the first
statistical learning framework for general point processes. It is based on a subtle combination of two new con-
cepts: prediction errors and cross-validation for point processes. The general idea is to split a point process
in two, through thinning, and estimate parameters by predicting one part using the other. By repeating this
procedure, we implicitly induce a conditional repeated sampling scheme. Having discussed its properties, we
illustrate how it may be applied in a spatial statistical setting and, numerically, show that it outperforms the
state of the art.

Keywords. (Non-)parametric intensity estimation; Papangelou conditional intensity modelling; Point pro-
cess cross-validation; Point process prediction; Statistical learning

Classical statistical learning [5] may compactly be summarised as fitting a family of functions f ∗ by min-
imising the risk functional f ∗ 7→ E[ f ∗(xi)], under the assumption that X = {xi}N

i=1 ⊆ S is a random (iid) fixed-
size sample. In practice, however, one minimises the empirical risk, f ∗ 7→ 1

N ∑
N
i=1 f ∗(xi), which is motivated by

the classical law of large numbers. The typical supervised learning form is obtained when each xi = (xi1,xi2) is
a pair of input-output variables and f ∗(xi) = E( f (xi1),xi2) for some family of functions f and some context-
specific discrepancy measure E .

One may here ask the relevant question how this should be handled when we deal with the generalised
random sampling framework of a point process, i.e. when the elements of X are allowed to be dependent and
the sample size is allowed to be random. Such a setting would typically be of interest when one is dealing with
predictive modelling of different kinds of point pattern data, e.g. forestry data, earthquakes and disease case
data.

In this talk we present the work in [2], which provides a way of doing statistical learning for general point
processes. It is based on two new concepts: point process cross-validation and point process prediction errors.
The former allows us to consider a form of conditional repeated sampling of the underlying point process and
the latter provides a way of measuring how a well parametrised model/characteristic manages to predict one
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point process/pattern by means of another process/pattern.

1. Point process preliminaries

Given a (simple) point process X = {xi}N
i=1 in a space1 S, e.g. a d-dimensional Euclidean domain, its (Pa-

pangelou) conditional intensity, λ, may be defined through the GNZ formula, which states that

E

[
∑
x∈X

h(x,X \{x})

]
=

∫
S
E[h(u,X)λ(u;X)]du (1)

for any non-negative h on S×X , where X is the space of point configurations/patterns in S. Given an infinites-
imal neighbourhood du 3 u ∈ S with measure/volume du, it may be interpreted as P(X(du) = 1|X ∩ duc =
x∩duc) = λ(u;x)du, where X(A) = #X ∩A, A⊆ S, and # denotes cardinality. Moreover, the intensity function
of X satisfies

ρ(u)du = E[X(du)] = E[λ(u;X)]du,

which has the interpretation that P(X(du) = 1) = ρ(u)du; we say that X is (in)homogeneous if the intensity
function is (non-)constant. By replacing X by Xn

6= = {(x1, . . . ,xn) ∈ Xn : xi 6= x j if i 6= j} ⊆ Sn, we obtain the nth
order conditional intensity and product density of X .

Conditional intensities have become one of the main tools for full model description of a point process,
largely because likelihood functions for point processes contain intractable normalising constants. An example
of a model conveniently specified by its conditional intensity is the Strauss hard-core model, for which

λθ(u;x) = βθ′(u)1

{
u /∈

⋃
x∈x

b(x,R)

}
, θ = (θ′,R), (2)

where b(x,R) denotes a closed R-ball around x. If we have βθ′(·) ≡ θ′ > 0, we obtain a homogeneous version
of this model.

1.1 Point process statistics

In practice, we observe a point pattern x = {xi}n
i=1 ⊆ S, which we assume is a realisations of X . Most

estimators we consider can be characterised by a general parametrised estimator family

ΞΘ = {ξθ(u;y) : u ∈ S,y ∈ X ,θ ∈Θ}, Θ⊆ Rl, l ≥ 1,

e.g. a non-parametric intensity estimator, ξθ = ρ̂θ, or a parametric family of conditional intensities, ξθ = λθ,

1Polish
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and in some cases it is constant in the sense that

ξθ(·;y) = ξθ(·), y ∈ X ,

which e.g. is the case for a parametric intensity estimator, ξθ = ρθ. In addition, intensity estimation is typi-
cally carried out using i) ρθ(u) ≡ θ > 0 if X is assumed to be homogeneous, ii) a kernel intensity estimator
ρ̂θ(u;x), where θ > 0 is the smoothing bandwidth, and iii) ρθ(u) = exp{z(u)T θ} when the intensity is modelled
parametrically by means of covariates z(u) = (z1(u), . . . ,zl(u))T on S.

To obtain an estimate θ̂ = θ̂(x) ∈Θ of the true parameter θ0 ∈Θ, e.g. λ = λθ0 , one typically specifies some
loss function L(θ) = L(ξθ(·;x)) ≥ 0, θ ∈ Θ, to be minimised. In other words, this is the definition of the
statistical method used to fit the model.

2. Point process learning

As previously mentioned, our approach is based on two new concepts, which we present below.

2.1 Cross-validation

Cross-validation (CV) partitioning is simply about splitting the dataset into two parts, where typically one of
the parts is referred to as a training set and the other part as a validation set. Hence, in point process terminology,
this means carrying out thinning and calling the retained points the validation set.

Definition 1 Split the point pattern x (point process X) into two parts, a training set xT (XT ) and a validation
set xV = x\xT (XV = X \XT ), using some partitioning mechanism (thinning); repeat this procedure k≥ 1 times
to generate the pairs (xT

i ,xV
i ), i = 1, . . . ,k.

Training sets are typically used for model fitting whereas validation sets are used for model validation. As
we will see, here they are used somewhat differently. Because independent thinnings are particularly tractable,
we propose to carry out CV by means of p-thinning, i.e. each xV

i is a p-thinning with retention probability
p ∈ (0,1). Note e.g. that

ρXV (u) = pρX(u),

λXV (u;XV ) = pE[λX(u;X)|XV ].

A version of k-fold CV here would be to independently assign a label i ∈ {1, . . . ,k}, k≥ 2, to each point, where
each label has assignment probability 1/k, and let xV

i consist of all points with label i. Another approach is
Monte-Carlo CV, where we independently assign each point x ∈ x to xV

i with assignment probability p.
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2.2 Prediction errors

Consider general parametrised estimator families ΞΘ = {ξθ : θ ∈Θ} and HΘ = {hθ : θ ∈Θ}, Θ⊆Rl , l ≥ 1,
and refer to HΘ as test/weight functions.

Definition 2 For point processes Z and Y , and any A ⊆ S, the (H -weighted) bivariate prediction errors are
defined as

I hθ

ξθ
(A;Z,Y ) =

{
∑x∈Z∩A hθ(x)−

∫
A hθ(u)ξθ(u)du if ξθ(·;y) = ξθ(·),

∑x∈Z∩A hθ(x;Y \{x})−
∫

A hθ(u;Y )ξθ(u;Y )du otherwise.

Here, the the random sum collects hθ-generated ”predictions” of the points of Z ∩A (based on Y ∩A) and the
integral represents a ξθ-governed ”expected counterpart”/”compensator”. This is made precise by the following
result:

Theorem 1 Given a point process X in S, let XV be a p-thinning of X, p ∈ (0,1), and let XT = X \XV . For
a parametric family of intensity functions, ρθ, θ ∈ Θ, if ξθ(·) = pρθ(·) then E[I hθ

ξθ
(A;XV ,XT )] = 0 for any A

and any test function if and only if ρθ = ρθ0 a.e.. For a parametric family of conditional intensity functions,
λθ, θ ∈ Θ, if ξθ(·) = pλθ(·)/(1− p) then E[I hθ

ξθ
(A;XV ,XT )] = 0 for any A and any test function if and only if

λθ = λθ0 a.e..

Note here that i) when ξθ = ρθ is a parametric intensity estimator, then L(θ) = I hθ

ρθ
(W ;x,x) essentially yields

quasi-likelihood estimation [4], when ξθ = λθ is a parametric conditional intensity estimator then L(θ) =
I hθ

λθ
(W ;x,x) is an innovation [1] which yields Takacs-Fiksel estimation, and iii) when ξθ = ρ̂θ is a non-

parametric intensity estimator then L(θ) = I hθ

ρ̂θ

(W ;x,x) yields the loss functions in [3].

2.3 Point process learning

Given training-validation set pairs (xV
i ,xT

i ), i = 1, . . . ,k, consider

Ii(θ) = I hθ

ξθ
(W ;xV

i ,x
T
i ) = ∑

x∈xV
i ∩W

hθ(x)− p
∫

W
hθ(u)ρθ(u)du

when doing parametric intensity estimation and

Ii(θ) = I hθ

ξθ
(W ;xV

i ,x
T
i ) = ∑

x∈xV
i ∩W

hθ(x;xT
i )−

p
1− p

∫
W

hθ(u;xT
i )λθ(u;xT

i )du

when doing parametric conditional intensity estimation (and non-parametric intensity estimation). Point pro-
cess learning is based on the idea of minimising these prediction errors in some suitable sense.
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Definition 3 Any method based on exploting Ii(θ), θ ∈Θ, i = 1, . . . ,k, to carry out estimation is called a point
process learning method.

An example here would be to minimise an associated loss function, e.g.

L j(θ) =
1
k

k

∑
i=1
|Ii(θ)| j, θ ∈Θ, j = 1,2,

where, in many cases, we let Ii(θ) = 0 if any of xV
i ,xT

i is empty. Note that the things we need to specify here
include good choices for the CV parameters (k and p) and the test functions HΘ = {hθ : θ∈Θ} (which influence
the variances of the prediction errors).

In this talk we will introduce point process learning and illustrate it by looking closer at how it can be used
to fit the hard-core model in (2). In particular, we will show that it outperforms pseudolikelihood estimation in
terms of MSE.
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Abstract. In this work, we propose an approach for the joint estimation of the intensity function of a point
process and its support based on a single realization of the point process. This method relies on the minimiza-
tion of the expectation of loss functions related to point process innovations. This minimization is performed by
combining a stochastic gradient descent algorithm and the statistical learning framework for point processes
introduced by one of the authors in a previous work.

Keywords. Point process learning; Support; Stochastic gradient descent.

1. Introduction

Let X be a (finite) point process with state space S = Rd , d ∈ N. We assume in the following that X admits
an intensity function ρX and aim at estimating jointly ρX and its support WX , as defined by

WX = {u ∈ S : ρX(u)> 0},

from a realization of X . To that end, let Ξ = {ξθ : θ ∈ Θ} be a family of functions parametrized by some set
Θ ⊂ Rm1 (m1 ∈ N), and such that ξθ : S→ (0,+∞) for any θ ∈ Θ. Let W = {Wr : r ∈ R } be a family of
subsets of S parametrized by some set R ⊂ Rm2 (m2 ∈ N). In particular, we assume that for any θ,θ′ ∈ Θ,
θ 6= θ′⇒ ξθ 6= ξθ′ , and similarly for any r,r′ ∈ R , r 6= r′⇒Wr 6=Wr′ . Finally we assume that there exists there
exits some r0 ∈ R and some θ0 ∈Θ such that ρX can be written as

ρX(u) = ξθ0(u)1Wr0
(u), u ∈ S.

Note that this is in fact a very general setting, as any intensity ρX can be written as ρX = ρX1WX where WX is
the support of ρX . Then, estimating ρX and WX comes down to estimating the values r0 ∈ R and θ0 ∈Θ.

In the remainder of the text, and for p ∈ (0,1), we denote by Xp an independent p-thinning of X . Recall
then that Xp has an intensity function ρXp given by

ρXp(u) = p ρX(u) = p ξθ0(u)1Wr0
(u), u ∈ S.
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2. Prediction errors

Following the Point Process Learning (PPL) approach of [2], in order to estimate the intensity and support
parameters of the point process, we rely on the definition of so-called “prediction errors” which are closely
related to the notion of point process innovations [1].

Let g : S→ R be some (square-integrable) test function, and let θ ∈ Θ, r ∈ R . We introduce the prediction
errors Ig(θ,r;Xp) defined by

Ig(θ,r;Xp) = p
∫

Wr

g(u)ξθ(u)du− ∑
x∈Xp

g(x). (1)

Following the Campbell formula [3], we have that

E[Ig(θ,r;Xp)] = p
∫

S
g(u)

(
ξθ(u)1Wr(u)−ρX(u)

)
du = p

∫
S

g(u)
(
ξθ(u)1Wr(u)−ξθ0(u)1Wr0

(u)
)
du.

Note that, if for any test function g, we have E[Ig(θ,r;Xp)] = 0, then we must have that for (almost every) u∈ S,

ξθ0(u)1Wr0
(u) = ξθ(u)1Wr(u). (2)

This in turns yields that Wr0 =Wr (since any point u in Wθ0\Wθ or Wθ\Wθ0) would contradict (2)), and therefore
that r = r0 and θ= θ0. The problem of finding the optimal parameters (θ0,r0)∈Θ×R can therefore be restated
as follows:

Problem 1 Find (θ,r) ∈Θ×R such that, for any test function g, E[Ig(θ,r;Xp)] = 0.

We now propose an alternative definition of the prediction errors. Let h : S→ (0,∞) be a test function, and
consider the prediction errors defined by

Jh(θ,r;Xp) = p
∫

Wr

h(u)ξθ(u)2du− ∑
x∈Xp

2h(x)ξθ(x). (3)

Using once again the Campbell formula gives

E[Jh(θ,r;X)] = p
∫

S
h(u)

(
ξθ(u)21Wr(u)−2ρX(u)ξθ(u)1Wr(u)

)
du

= p
∫

S
h(u)

(
ξθ(u)1Wr(u)−ρX(u)

)2du− p
∫

S
h(u)ρX(u)2du.

Hence, for any choice of test function h : S→ (0,∞), the function

Jh(θ,r) = E[Jh(θ,r;X)], θ ∈Θ, r ∈ R (4)

is minimized for (θ∗,r∗) such that ξθ∗1Wr∗ = ρX over S, which in turn means that θ∗ = θ0 and r∗ = r0. The
problem of finding the optimal parameters (θ0,r0) ∈Θ×R can therefore be restated as follows:
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Problem 2 Given a test function h : S→ (0,∞), find the minimizers (θ∗,r∗) ∈Θ×R of the function Jh defined
in (4).

3. Estimation by point process learning

We assume that we observe a realization χ of the point process X , and aim at estimating parameters (θ0,r0)
defining the intensity of the process and the support of that intensity. Since this is equivalent to solving either
Problem 1 or Problem 2, we propose to solve these problems instead, using the PPL approach of [2]. Hence,
let p ∈ (0,1) and let χ

(1)
p , . . . ,χ

(K)
p be a large number K of independent p-thinnings of χ.

3.1 Solving Problem 1

Following [2], instead of finding parameters (θ,r)∈Θ×R such that the expectation of the prediction errors (1)
is (exactly) zero, we simplify the problem and try instead to make them as small as possible for a large class
of test functions. To do so, we first note that since the map g 7→ E[Ig(θ,r;Xp)] is linear, it is enough to show
that E[Ig(θ,r;Xp)] ≈ 0 only for some test functions g taken in some basis of functions of S (eg. polynomial
functions). Besides, for any test function g, we have |E[Ig(θ,r;Xp)]| ≤ E[Ig(θ,r;Xp)

2]1/2. Hence, instead of
minimizing |E[Ig(θ,r;Xp)]|, we can minimize E[Ig(θ,r;Xp)

2].

Following these remarks, let then G be a finite subset of a basis of test functions of S. We consider the
following simplified version of Problem 1:

Problem 1bis Find (θ∗,r∗) ∈Θ×R that minimize the cost function

L(θ,r) = ∑
g∈G

E[Ig(θ,r;Xp)
2] = E

[
∑

g∈G
Ig(θ,r;Xp)

2
]
, (θ,r) ∈Θ×R . (5)

Note that the cost function (5) can be seen as the expectation, over the distribution of thinned point processes
Xp, of the loss function given by

y 7→ ∑
g∈G

Ig(θ,r;y)2, (6)

where y denotes here a point pattern in S. Under the assumption that independent samples of Xp are available,
the minimization of this cost function can be handled using a (batch) stochastic gradient algorithm where at
each iteration, the gradient of the loss function is computed using a different sample (or a different batch of
samples) [5]. Since the only data at hand is the realization χ of X , we propose instead to replace these samples
by the thinned patterns χ

(1)
p , . . . ,χ

(K)
p computed from χ. This yields the Batch stochastic gradient algorithm

presented in Algorithm 1, and that we use to solve Problem 1bis.
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Algorithm 1 Batch stochastic gradient algorithm

Input: Thinned patterns χ
(1)
p , . . . ,χ

(K)
p , Initial estimates (θinit,rinit) ∈ Θ×R , Step size α ∈ (0,1), Batch

size Nbatch.
Output: Estimates (θ̂, r̂) of the minimizers of the cost function (5) of Problem 1bis.

1: θ̂ = θinit, r̂ = rinit
2: for q = 0, . . . ,bK/Nbatchc do

3: (θ̂, r̂)T ← (θ̂, r̂)T −α

(q+1)Nbatch

∑
k=1+qNbatch

∇

(
∑

g∈G
Ig(θ̂, r̂;χ

(k)
p )2

)
4: end for
5: return (θ̂, r̂).

3.2 Solving Problem 2

Similarly to Problem 1bis, the cost function defining to be minimized in Problem (2) can also be written as
the expectation of a non-negative loss function. Hence, Algorithm 1 can be used to solve Problem (2), after
substituting the loss function (6) in Step 3 of the algorithm by the loss function y 7→ Jh(θ,r;y) defined in (3).

Intensity Area of the support

True 50 1

True support only 52 1

Convex hull 73.2 0.71

Ripley–Rasson 59.13 0.88

PPL 49.38 1.04

(a) Results of the parameter estima-
tion.
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(b) Plot of the point pattern and estimated
windows.

Figure 1: Results of the numerical experiment: “True” corresponds to the true process, “Convex hull” (resp.
“Ripley–Rasson”, “True support only”) corresponds to the case where we estimate the support of the intensity
by the convex hull of the points (resp. the Ripley–Rasson estimate, the true support of the intensity), “PPL”
corresponds to our approach.
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4. Example of application

In the following examples, we aim at estimating jointly the intensity of a homogeneous Poisson point pro-
cess, as well as the support of that intensity, given a single realization χ of the process. We consider a Poisson
process with intensity 50, defined on the unit square [0,1]2. To estimate these parameters, we solve Prob-
lem 1bis using the Batch stochastic gradient algorithm. Following the approach of Ripley and Rasson [4], we
take the family W of possible supports for the intensity function to be given by scalings of the convex hull of
χ. As for the family of test functions G , we choose the polynomial basis functions up to order 2. We choose a
thinning parameter p = 0.25, a number of thinned patterns K = 200 and a batch size Nbatch = 1.

The results of this numerical experiment are presented in Figure 1. They show that our approach consisting
in carrying out a joint estimation of the intensity and its support yields better estimates for both the intensity
and the support, compared to more classical approaches consisting in estimating the support first (through the
convex hull of the points, their Ripley-Rasson method [4] or even when using the actual support of the inten-
sity), and then estimating the intensity using this support.
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Abstract. A common question when a given point process is observed in more than one population is whether
those patterns share the same structure or they can be partitioned in a ceitain number of groups. A k-means
algorithm could be used to classify the densities of event locations. However, the space of density functions
does not fulfill Hilbert conditions, so specific measures should be adopted. In this work we propose some
possibilities, and we compare their performance through a simulation study. Real data problems, such as the
classification of COVID-19 infection curves can be addressed.

Keywords. Density of event locations, functional data, k-means algorithm, synthetic data, Wasserstein metric.

1. Motivation

Point processes are mathematical models generating a random number of events randomly located on a
mathematical space, S , such as any d-dimensional Euclidean space, the spatiotemporal domain, or linear graphs.
In many real-world problems we observe a point process in two or more populations defined in a common
observation domain. This is for example the case of spatiotemporal patterns of wildfire with different cause,
different types of crime, or the temporal patterns of COVID-19 infections in differnt regions. In these cases,
we may be interested on testing whether these patterns have the same distribution. This issue has already been
addressed for two spatial point processs by measuring the distance between their corresponding densities of
event locations, see [2] for more details. We could use defining statistical procedures to compare the structure
of a larger number of point processes and classify them into groups.

Classification is the problem of identifying which of a set of categories or groups, an observation (or observa-
tions) belongs to. Focussing on point processes observed in the one-dimensional Euclidean space for simplicity,
our aim is to classify a set of Poisson point processes {Xi}n

i=1 observed in a given interval S = [a,b]⊂R into K
groups, conditioning on point processes in each group share a same distribution. To address this problem, we
estimate the corresponding first-order intensity function {λ̂i(x)}n

i=1, moving from the point process framework
to the intensity space, Ω. As argued by [3], this space can be seen as a product metric space Ω = D ×ΩS,
where D ⊂ { f : S→R+;

∫
S f (x)dx = 1} denotes the spaces of density functions in S, and ΩS =R+ the space of

intensity factors, which determine the shape and expected number of events (size) of the point process, respec-
tively. Therefore, we can use a L2 product metric, d, between a given pair of intensity functions λ1 = (m1, f2)
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and λ2 = (m2, f2) given by
d (λ1,λ2) =

(
d2

D ( f1, f2)+d2
E (m1,m2)

)1/2
, (1)

where dE is the one-dimensional Euclidean metric and dD is a metric in the density space. Considering this
decomposition, the structure of point processes relies on the density of event locations and, consequently, our
problem can be reduced to that of classifying density estimates in groups.

2. Classification algorithm

Let {Xi}n
i=1 be a set of point patterns observed in a bonded interval S, and { f̂i(x),x ∈ S}n

i=1 the kernel
estimators of their densities of event locations. Let assume that these point processes belong to K categories
characterized by the densities of events locations { fk}K

k)1, referred as centers. Classification of the n density
estimates into the K groups can be conducted by a k-means algorithm in the space of density functions, D , with
a certain metric, d, which is implemented as follows.

Step 1 Estimate the initial centers, { f 0
k }K

k=1, as the K density estimates maximizing ∑
i, j∈p j

d
(

f̂i, f̂ j
)
, where p j ∈

Cn,K , all possible combinations of {1, . . . ,n} in groups of K elements.

Step 2 Once obtained the initial centers, compute pairwise distances between the remaining n−K densities and
the K centers, d

(
f̂i, f 0

k

)
, and assign each density to the group with the closest center.

Step 3 Once partitioned the n functions into the K clusters, estimate the mean of the density curves in each group
to be the density of event locations that characterizes that group,

Intutively, the density estimates can be considered as functional data, and the k-means algortihm for functional
data could be used to proceed with classification. However, D is not Hilbert, and consequently, statistlcal
procedures for functional data can not be directly applied in the density space. In particular, we cannot use
the L2 distance as discrepancy measure in the k-means algorithm. Following a common practice for statistical
modeling and computing of densities, we should conduct the classification in a representative space. These
spaces have been mainly defined under two perspectives, the functional and object-oriented approaches, see
details in [4]. In this work we use both of them. We propose a transformation approach for functional data
representation, as well as two object-oriented metrics to determine the discrepancy between density functions.

• Transformation approach (L2-LQD), density curves can be treated as functional data after transfor-
mation into the Hilbert space. Here we use the log-quantile density (LQD) transformation, and the L2

distance in the transformed space:

dLQD( f1, f2) =

(∫ 1

0

(
ψLQD( f1)(x)−ψLQD( f2)(x)

)2 dx
)1/2

,

where ψLQD( f )(·) denotes the LQD-transformed density.
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• L2-Wasserstein distance (L2-WS), is an optimal transport distance that measures the cost of transporting
one distribution to another in the object-oriented framework and can be defined in quite general spaces.
For absolutely continuous distributions it can be defined as the L2- distance between their respective
quantile functions, Q j, j = 1,2:

dW ( f1, f2) =

(∫ 1

0
(Q f1(r)−Q f2(r))

2 dr
)1/2

.

• Fisher-Rao distance (FR), first used as a Riemmanian structure for parametric models, is the spherical
geodesic distance between square root densities:

dFR( f1, f2) = arccos
(∫ b

a

√
f1(x) f2(x)dx)

)
,

where, arccos denotes the arcocosine function. The square root of a density lies on the Hilbert unit
sphere, so dFR measures the length of an arch connecting

√
f1 and

√
f2 along this sphere.

3. Simulation study

We have conducted a simulation study to test the performance of the k-means algorithm for density functions
with the different distance measures outlined above, We use the L2 and Kullback-Leibler (KL) metrics as
benchmark criteria. The latter is defined as follows

dKL( f1, f2) =
1
2

(∫ b

a
f1(x) log

(
f1(x)
f2(x)

)
dx+

∫ b

a
f2(x) log

(
( f2(x)
f1(x)

)
dx
)
.

We simulated (n j = 20)3
j=3 point patterns with densities of event locations given by Model A and Model B, see

Figure 1 (thick lines in the first column) with intensity factor (m j = 200)3
j=3, and estimated the density of event

locations by kernel smoothing with plug-in bandwidth [1]. Once obtained the density estimates, we applied
the k-means algorithm detailed in Section 2. for functional data with the different distance measures under
comparison.

Table 1 shows the correct classification rates obtained with the k-means algorithm for functional data with
the 5 distance measures under study. The L2 and Kullback-Leibler correct classification rates are below the
80%. The LQD transformation approach varies between models reported a poor performance for Model A, as
the log-quantile densities of the three groups are similar, but a perfect classification for Model B. The object-
oriented approaches with the Fisher-Rao and Wasserstein metrics provide perfect classifications for both mod-
els.

In real data applications we way not know the number of clusters in the population. Table 1 shows the
classification matrix obtained applying the k-means algorithm with K = 2 using the FR and l2-WS metrics.
Both approaches identify correctly the point processes in the most distant groups, but distributes those in the
remaining group between them. These results highlight the need of some mechanism to estimate the number of
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Figure 1: Density of event locations (thick lines) for Models A and B, and density estimates assigned to each
cluster (thin lines) in the different representation spaces.

L2 KL L2-LQD FR L2-WS

Model A 0.78 0.68 0.42 1 1

Model B 0.77 0.75 1. 1 1

Table 1: Right classification rates

groups prior to apply the k-means algorithm.

Model A Model B

FR L2-WS FR L2-WS

Ĉ1 Ĉ2 Ĉ1 Ĉ2 Ĉ1 Ĉ2 Ĉ1 Ĉ2

C1 20 0 20 0 20 0 20 0

C2 5 15 11 9 12 8 1 19

C3 0 20 0 20 0 20 0 20

Table 2: Classification matrix provided by the k-means algorithm with K = 2, {C j}3
j=1 target clusters, and

{Ĉ j}2
j=1 clusters assigned by the k-means algorithm.
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Abstract. The estimation of traffic volumes on a street network represents a fundamental step to im- prove
transport planning protocols and develop effective road safety interventions. The traditional ways to derive traf-
fic figures involve manual counts or fine-tuned automatic tools (e.g. cameras or inductive loops). Unfortunately,
the manual counts are extremely time consuming, whereas the fixed instruments are typically very expensive
and geographically sparse. However, given the increasing availability of mobile sensors (e.g. smartphones
and GPS sat-nav), in the last years we observed a surge of methods to infer traffic counts from geo-referenced
mobile devices. This paper proposes a spatial statistical calibration technique to combine accurate fixed counts
and extensive GPS mobile data for the estimation of traffic flows, re-adapting the statistical methods to the spa-
tial network con- text. The suggested methodology is exemplified using data collected in the City of Leeds (UK).

Keywords. Geographical weighted regression; Spatial networks; Statistical Calibration; Traffic flows

1. Introduction

The estimation of traffic volumes on a street network represents a critical issue to improve transport planning
protocols and develop effective road safety interventions. In fact, the traditional ways to produce traffic figures
typically involve manual counts with ad-hoc cameras or automatic counts with road-fixed sensors (e.g. induc-
tive loops and spirals). Unfortunately, both techniques have several limitations linked to their limited spatial
coverage and high economical costs of installation and maintenance. More recently, traffic information have
been collected by geo-referenced mobile sensors (e.g. smartphones and sat-navs) using ad-hoc models. These
mobile sensors have several advantages, such as extremely detailed spatial resolution and extensive spatial
coverage. However, since not all vehicles are equipped with GPS devices, traffic counts from mobile sensors
typically underestimate the real flows.

The precision of the mobile information can be improved by integrating mobile figures using more tradi-
tional road-fixed sensors. This allows one to calibrate extensive mobile measurements using more accurate
data. We propose a statistical technique to spatially calibrate mobile sensor data using geographical weighted
regression (GWR). Being traffic flows a classical example of a phenomenon occurring in a spatial network, the
usual GWR was modified to take into account the spatial domain.
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2. Spatial calibration by geographical weighted regression

The term statistical calibration represent a series of techniques adopted in several research fields to adjust
the values of one measurement, say X , using some other measurements, say Y . The need for calibration arises
when X is more expensive or more difficult to measure than Y or when the values of X are not recorded and
cannot be retrieved [3].

We consider an absolute calibration problem where X is assumed to be measured without error. In particular,
X represents the traffic flows measured by the fixed traffic cameras installed on a restricted number of segments
of the city network, whereas Y represents the traffic counts derived from mobile sensors installed on cars and
available on each street segment. The next two sections will briefly introduce the regression calibration problem
and present its spatial re-adaptation in this context.

2.1 Regression Calibration

In a linear regression calibration context, it is assumed that, given a sample of n pairs of observations,
the relationship between an imprecise measure Y and a gold-standard or reference value X has the following
functional form: Yi = f (Xi) = β0 + β1Xi + εi, i = 1, . . . ,n where εi represents the measurement error of the
less precise instrument. Two main approaches have been developed when Y is calibrated on X , the so called
classical and inverse calibration.

The classical calibration technique is articulated in two steps. In the first step, Y is regressed on X to obtain
the estimated model Ŷ = β̂0 + β̂1X . Then, the estimated regression model is inverted to obtained predictions of
X , i.e. X̂ = (Y − β̂0)β̂

−1
1 , using known experimental values of Y for each unit where X is not available. On the

other hand, in the inverse calibration approach, X is regressed on Y and the values of X are predicted from the
estimated model, i.e. X̂ = α̂0 + α̂1Y , for the units where the gold-standard is not available.

2.2 Spatial calibration via GWR

The analysis of spatial data typically requires ad-hoc adjustments to take into account the nature of the spatial
domain. In fact, the relationship between the traffic flows measured by fixed cameras and mobile devices can
change according to the spatial location. Hence, a global calibration as described in the previous section is not
appropriate and a more local approach would seem preferable.

We thus propose a spatial calibration approach based on geographical weighted regression. GWR is a local
form of spatial analysis that allows the estimation of relationships between a dependent variable and a set of
predictors that vary over space [2]. More precisely, given a sample of n units in a region S observed at locations
si, i = 1, . . . ,n, the GWR model reads as

Y (si) = β(si)
′X(si)+ ε(si), i = 1, . . . ,n, (1)
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where Y (si) denotes the response variable, X(si) a column vector of explanatory covariates with a column of
constant unitary values that represent the intercept, β(si) the corresponding spatially-varying coefficients, and
ε(si) is a zero mean random error.

Parameter estimation at a selected location s j ∈ S is carried out using locally weighted least squares

β̂(s j) =
[
X′(s)W (s j)X(s)

]−1 X(s)′W (s j)Y (s j), (2)

where W (s j) = diag(w1 j, . . . ,wn j) is a local weighting square matrix with entry wi j giving the weight associated
to unit i when the regression is estimated at location s j, and X(s) represents the design matrix. The weights
are defined in terms of a kernel function K that decays gradually with di j, i.e. the distance between the ith
observation and the point s j. In particular, a Gaussian kernel function is adopted in this paper: K(di j) =
exp{−d2

i j/2h}, where the bandwidth parameter h determines the spatial range of the kernel. In the case study
presented in the next section, the value of h is selected using cross-validation by minimising the mean square
error of traffic flows predictions.

Re-adapting the calibration equations described before to the GWR framework is actually straightforward.
In fact, since the regression coefficients β̂(s j) depend upon the spatial locations, the GWR permits one to map
the variation in the regression parameters and, more importantly, to calibrate the variable of interest taking
into account the spatial pattern of the two measures. More precisely, the inclusion of a GWR into a classical
calibration approach can be performed as follows. First, we need to estimate a local model that written as

Ŷ (si) = β̂0(si)+ β̂1(si)X(si), (3)

and then we calculate the calibrated value of X(s) by inverting the local equation at any desired location s i.e.
X̂(s) = (Y (s)− β̂0(s))(β̂1(s))−1.

Similarly, the spatial inverse calibration can be performed by estimating a local regression

X̂(si) = α̂0(si)+ α̂1(si)Y (si) (4)

which can be used to predict X(s) at any desired location s.

Finally, we note that the usual distance metric adopted in a spatial regression context is the Euclidean
distance e.g. di j = ||s j− si||. However, the problem that motivated the analysis presented in this paper develops
on a one-dimensional linear domain and the sample unit considered below is a road segment represented by
its centroid si. Therefore, we argue that the distances di j should be calculated preserving the graph structure
of the network. More precisely, indicating by L = (V,E) the one-dimension graph object representing a street
network (where V and E denote the sets of vertices and edges, respectively), a path ρi j connecting any two
generic locations si and s j on the network is defined as a finite sequence {pm}M

m=1 of adjacent vertices in V such
that the edges with endpoints [si,p1] and [pM,s j] belong to E. The length of ρi j can be computed as

||si−p1||+
M−1

∑
m=1
||pm+1−pm||+ ||pM− s j||,
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(a) (b) (c)

Figure 1: (a) The segments represent the road network of Leeds, whereas the coloured dots represent the
location of the fixed cameras and the corresponding traffic figures; (b) Predicted traffic flows for all segments in
the network using an inverse spatial calibration. The black star denotes the city centre; (c) Comparison between
classical and spatial calibration in terms of estimated slope coefficient.

and we define di j as the minimum length of all paths connecting si and s j [1].

3. Results and Conclusions

The statistical methods presented in this paper were exemplified considering fixed and mobile traffic data
recorded in the street network of Leeds (UK) from January to December 2019. The road network and the mobile
traffic counts were obtained from TomTom Move provider (https://move.tomtom.com/ ). In particular, the net-
work is composed by 8959 geo-referenced segments that are associated to traffic volumes estimated using mo-
bile devices connected to cars and anonymous GPS-equipped smartphones. On the other hand, the fixed camera
counts were derived using data shared by the Department for Transport (https://roadtraffic.dft.gov.uk/downloads).
The linear network, the fixed cameras and the corresponding traffic estimates are displayed in Figure 1(a).

Figure 1(b) displays the predicted traffic flows obtained using the inverse spatial calibration technique.
The figure clearly highlights several roads corresponding to a motorway (i.e. the yellow segments connecting
the south area with the north/north-east) and the most important arterial thoroughfares. Similar results were
obtained in the classical spatial calibration framework. Finally, we explored the stationarity of the relationship
between the two available measurements. Figure 1(c) compares the slope estimates given by a non-local inverse
calibration obtained using OLS regression with the suggested extension. The results highlight a non-stationarity
in the relationship between mobile and fixed counts. The Pearson correlation coefficient between observed and
calibrated counts (obtained by a leave-one-out approach) were found equal to 0.956 (classical calibration) and
0.965 (inverse calibration).

We plan to extend the analysis presented in this paper in several directions. In fact, there exists a vast liter-
ature on classical and inverse statistical calibration problems (see [3]) that can be extended to the problem at
hand. In particular, we will focus on a) deriving estimates of the standard errors of the regression coefficients;
b) comparing classical and inverse spatial calibrations using a variety of criteria (e.g. MSE or consistency);
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c) exploring more sophisticated statistical methods such as multivariate calibration (joining information from
different providers), robust GWR and truncated calibration.
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Abstract. A new framework is introduced in this paper for modeling and statistical analysis of point sets in
a manifold, that randomly arise through time. Specifically, in the characterization of these sets, the random
counting measure is assumed to belong to the family of Cox processes driven by a L2(M )–valued Log–Gaussian
intensity, where M denotes here a compact two–point homogeneous space. The associated family of tempo-
ral covariance operators on L2(M ) characterizes the n–order product density under stationarity in time. In
particular, the pair correlation functional, the reduced second order moment measure or K function can also
be constructed from this covariance operator family. Some functional summary statistics of interest are intro-
duced, analyzing their asymptotic properties in the simulation study undertaken.

Keywords. Compact two–point homogeneous space; functional summary statistics; Log–Gaussian Cox pro-
cesses; M –valued Gaussian random fields.

1. Introduction

In point pattern analysis, different parametric, semiparametric and nonparametric models have been adopted
in the estimation of deterministic and random intensities characterizing their counting functions. The nearest
neighbor functions, empty space functions, and Ripley’s and inhomogeneous K functions arise as classical
summary functional statistics in point pattern analysis (see, e.g., [2];[4]). Particularly, a growing interest for
point processes in the sphere is observed in recent contributions (see [7]; [8], among others). The goal of the
present paper is located in a related more general framework involving point processes driven by log–intensities
evaluated in the space L2(M ) of square integrable functions on a compact two–point homogeneous space M .
Well–known examples of compact two–point homogeneous spaces are the sphere Sd ⊂Rd+1, projective spaces
over different algebras (see Section 2 in [5], for more details). Any one of these spaces defines a manifold Md ,
where d denotes its topological dimension. We restrict our attention here to random counting functions driven
by a temporal Log–Gaussian infinite–dimensional process with values in L2(M ) (see [3] in the Euclidean set-
ting). The n–order joint product density is characterized, in the weak–sense, in terms of test functions lying
in the n–fold tensor product [L2(M )]⊗n of the Hilbert space L2(M ). Particularly, we adopt the setting of d–
dimensional manifolds Md embedded in Rd+1. The isometric identification of (Sd ,dSd ) with (Md ,dMd ) can
then be considered via the identity dSd (x1,x2) = arccos

(
xT

1 x2
)
, for x1,x2 ∈ Sd . In the case of Riemannian man-

ifolds, one can replace the inner product in Rd+1 by the family of inner products Gx(·, ·) defined on the tangent
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space, smoothly varying over x ∈Md .

2. Log–Gaussian intensity with values in L2(Md)

Let {Xt(·), t ∈ T ⊆ R} be an infinite–dimensional random process such that, for each t ∈ T ⊆ R, almost
surely log(Xt) ∈ L2(Md), E[log(Xt)] =

L2(Md)
0, with log(Xt) having characteristic functional

flog(Xt)(h) =
∫

L2(Md)
exp
(

i〈h, log(xt)〉L2(Md)

)
µlog(Xt)(d log(xt))

= exp

(
−
〈R0(h),h〉L2(Md)

2

)
, h ∈ L2(Md), (1)

where R0 = E [log(Xt)⊗ log(Xt)] ∈ L1(L2(Md)) denotes the covariance operator of log(Xt), and L1(L2(Md))
denotes the space of trace or nuclear operators on L2(Md). Here, µlog(Xt) is the induced Gaussian measure by
log(Xt) on (L2

(
Md),B(L2(Md))

)
, with B(L2(Md)) being the σ–algebra generated by all cylindrical subsets

of L2(Md). In the subsequent development, we will also assume that, for any t,s ∈ T ,

E [log(Xt)(z) log(Xs)(y)] = rt−s (dMd (z,y)) = r̃ (dMd (z,y), t− s) , z,y ∈Md , (2)

i.e., stationarity in time and isotropy over Md in the weak sense are assumed. Note that the covariance operator
Rt−s with kernel rt−s(·, ·) is a nuclear operator, and kernel r̃ (dMd (z,y), t− s) = rt−s (dMd (z,y)) is assumed to
be continuous.

For the special case rt−s(·, ·) = rs−t(·, ·), the following series expansion is obtained from Theorems 4 and 5
in [5]:

log(Xt)(z) =
∞

∑
n=0

Vn(t)P
(α,β)
n (cos(dMd (z,U)) , z ∈Md , t ∈ R, (3)

where {Vn(t), n∈N0} is a sequence of independent stationary random processes on T ⊆R, satisfying E[Vn(t)]=
0 and E[Vn(t1)Vn(t2)] = a2

nbn(t1 − t2), n ∈ N0. The random variable U is uniformly
distributed on Md , and is independent of {Vn(t), n ∈ N0}, and ∑

∞
n=0 bn(0)P

(α,β)
n (1) converges. Also,

cov
(

Vn(t)P
(α,β)
n (cos(dMd (z,U)) ,Vm(t)P

(α,β)
m (cos(dMd (z,U))

)
= 0, for m 6= n, and z ∈Md , and t ∈ T .

3. Cox processes family

Let now consider the measure dν(z) induced on the homogeneous space Md = G/K, by the probabilistic
invariant measure on G, with G being the connected component of the group of isometries of Md , and K be the
stationary subgroup of a fixed point o ∈Md . As before, H = L2 (Md ,dν(x)) . Consider Y = {Yt , t ∈ T ⊆ R}
to be a family of finite random subsets of Md , arising at the random times in the interval family {[0, t], t ∈ T }.
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Let {Nt(·), t ∈ T } be the family of counting measures associated with Y = {Yt , t ∈ T ⊆R}. For every t ∈ T ,
and any Borel set A⊆Md , Nt(A) denotes the number of points in Yt falling in a region A⊆Md , at the random
times specified by Yt in the interval [0, t]. The state space for Yt is then the set of all possible combinations
of finite subsets of Md with finite time sets of [0, t], equipped with the σ–algebra F generated by the events
{Nt(A) = n}, indicating that n points in Yt falling in a region A ⊆Md , at some specific times in [0, t], for
any Borel set A ⊆ Md , interval [0, t], and integer n ∈ N. Assume that, for each t ∈ T , given a realization
{xt(z), z ∈Md}, of Xt , satisfying (1)–(3), the conditional distribution of Nt(A)/{xt(z), z ∈Md} is a Poisson
distribution with parameter λt =

∫ t
0
∫

A xs(z)dν(z)ds. The n–order product density ρ
(n)
t1,...,tn(z1, . . . ,zn) is such that

ρ
(n)
t1,...,tn(z1, . . . ,zn)dν(n)(z1, . . . ,zn)dt1, . . . ,dtn indicates the probability that Yt has a point in each of n infinites-

imally small regions on Md around z1, . . . ,zn, of surface measure dν(z1) · · ·dν(zn), over the infinitesimal time
intervals around t1, . . . , tn, of length dt1, . . . ,dtn. From equation (3), for any t1, . . . , tn ∈ R, one can compute
ρ
(n)
t1,...,tn as follows:

ρ
(n)
t1,...,tn(z1, . . . ,zn) = E

[
n

∏
i=1

exp(Xti(zi))

]
= E

[
exp

(
n

∑
i=1

Xti(zi)

)]

= [ρ]n exp

(
1
2

n

∑
i=1

n

∑
j=1

∞

∑
k=0

bk(ti− t j)P
(α,β)
k (cos(dMd (zi,z j)))

)
, ∀zi ∈Md , i = 1, . . . ,n.

In particular, for any t ∈ T , and, for any t1, t2 ∈ T , the intensity function ρt = ρ0 = ρ(1)(t), and the pair
correlation function gt1−t2 (cos(dMd (z1,z2))) , z1,z2 ∈Md , respectively admit the following expressions:

ρ = ρ0(z) = exp

(
1
2

∞

∑
n=0

bn(0)P
(α,β)
n (1)

)
, ∀z ∈Md ,

gt1−t2 (cos(dMd (z1,z2))) =
ρ
(2)
t1−t2 (cos(dMd (z1,z2)))

ρ2 = exp

(
∞

∑
n=0

bn(t1− t2)P
(α,β)
n (cos(dMd (z1,z2)))

)
.

4. Functional summary statistics and simulation

A simulation study is undertaken for an asymptotic analysis of the usual functional summary statistics. We
will consider the empirical counterparts of the nearest neighborhood function, given by
Ĝt(s) = 1

Nt(Md)
∑(u,y)∈Yt 1{inf(v,z)∈Yt \{(u,y)} dMd (z,y)|u−v|≤s}, and of the empty space function defined as

F̂t(s) = 1
m(t) ∑(u,x)∈Qt 1{inf(v,z)∈Yt dMd (z,x)|u−v|≤s}, for s ∈ [0,π], and t ∈ T , with Qt being a finite grid on Md× [0, t],

of m(t)> 0 points. For the Kt function, its empirical version K̂t(s) = 1
ν(Md)ρ̂2 ∑(u,x)6=(v,y)∈Yt 1{dMd (x,y)|u−v|≤s} will

also be asymptotically analyzed, with ρ̂ being an unbiased estimator of ρ, and assuming Yt is fully observed
on Md , provided Nt(Md)> 0, for any t ∈ T . This asymptotic analysis is achieved from simulations, under the
particular model rt−s(〈x,y〉) = ∑

∞
l=0Cl(t− s)2l+1

4π
Pl(〈x,y〉), t,s ∈ T , introduced in [1];[6] on the sphere S2, in

terms of Legendre polynomials. Figure 1 displays the short–memory case at the first four rows, for τ = t− s,
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Figure 3: Ejemplo de una Log-intensidad generada para τ = 0, 0.5, 3, 15.

Figure 4: Ecuación (1) para τ = 0, 0.5, 3, 15.

3

Figure 7: Ecuación (1) para τ = 0, 0.5, 3, 15.

Figure 8: Ecuación (1) para τ = 0, 0.5, 3, 15.

Figure 9: Ecuación (1) para τ = 0, 0.5, 3, 15.

Figure 10: Ecuación (1) para τ = 0, 0.5, 3, 15.

5

Figure 1: At the top, short–memory covariance operator model is displayed for different temporal lags, sim-
ulated realizations of the log-intensity and the intensity random processes are given at the second and third
rows, respectively. At the fourth row, point patterns generated from the corresponding log–Gaussian Cox pro-
cess are drawn for τ = t− s = 0,0.5,3,15. Finally, long–memory covariance operator model for temporal lags
τ = t− s = 0,25,50,100 is displayed at the bottom row.

Cl(τ) =
φ
|τ|
l Cl;Z

1−φ2
l

with φl = G(l + 1)−αφ , αφ = 3, Cl;Z = GZ(1+ l)−αZ , αZ = 3, G = GZ = 0.5. At the bottom of

Figure 1, the long–memory case is showed, for Cl(τ) = Gl(τ)gl(τ), Gl(τ) = G(l+1)−2−kττ, gl(τ) = (1+ |l|)−βl ,

βl =
kβ(l+1)√
(l+1)2+1

, kβ = 0.8, G = 0.5 and kτ = 0.03. In both cases Legendre series is truncated at Lmax = 30 con-

sidering a spherical regular grid.
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Abstract. Accurate spatiotemporal stochastic modeling of conditions leading to moderate and large wildfires
provides better understanding of mechanisms driving fire-prone ecosystems and improves risk management.
Typically, the distribution of burnt areas is very heavy-tailed, such that the few largest wildfires have dominant
contribution to the aggregated burnt area of all wildfires in a region. We here propose a novel joint model,
called Firelihood, for the occurrence intensity and the wildfire size distribution that combines extreme-value
theory and point processes within a Bayesian hierarchical regression framework. The model is used to study
daily summer wildfire data for the French Mediterranean basin during the 1995–2018 period. The occurrence
component models wildfire ignitions as a spatiotemporal log-Gaussian Cox process. Burnt areas are numerical
marks attached to points and are considered as extreme if they exceed a high threshold. Therefore, the model’s
size component is a two-component mixture varying in space and time that jointly models moderate and extreme
fires. We capture potentially non-linear influence of covariates (Fire Weather Index for weather drivers, forest
cover for exposure to wildfire risk) through component-specific smooth functions, which may further vary with
season. We also propose estimating shared random effects between model components to reveal and interpret
common drivers of different aspects of wildfire activity. For instance, this mechanism could incorporate behav-
ior where larger occurrence numbers are associated with either larger or smaller wildfires, depending on the
subregion. This sharing of random effects leads to increased parsimony and reduced estimation uncertainty
with better predictions. We fit various models using the integrated nested Laplace approximation, and we com-
pare and validate them through predictive scores and visual diagnostics. Our methodology provides a holistic
approach to explaining and predicting the drivers of wildfire activity and associated uncertainties.

Keywords. Bayesian hierarchical model; Cox process; Extreme-value theory; Forest fires; Common-component
model

1. Wildfires: a challenging global problem

Wildfires represent major environmental and ecological risks worldwide. They provoke many human ca-
sualties and substantial economic costs, and can trigger extreme air pollution episodes and important losses
of biomass and biodiversity. While climate change is expected to exacerbate their frequency and extent (see
[1]), wildfires themselves contribute an important fraction of global greenhouse gases that can accelerate cli-
mate change. To aid in wildfire prevention and risk mitigation, one must identify the factors contributing to
wildfires and predict their spatiotemporal distribution. Prediction maps of various components of wildfire risk
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are relevant for the study of historical periods, for short-term forecasting and for long-term projections. The
joint modeling of wildfire occurrences and sizes is highly challenging since wildfire activity depends on many
factors and their complex interactions, such as weather, season, vegetation type and socioeconomic variables.
We here discuss modeling extensions in the framework of Firelihood introduced in [3], a Bayesian hierarchical
model for spatiotemporal modeling, prediction and long-term projection of wildfire activity.

2. Available data for Southeastern France

The French Prométhé database, filled since the 1970s, provides data of wildfire occurrences in Southeastern
France. For each wildfire, it contains the date of ignition, the location of wildfire ignition with 2km precision,
and the burnt area, among other information. We here focus on the period 1995–2018, for which Figure 1
shows a map of wildfire occurrences, including contour lines of a kernel-based intensity estimate of the spatial
point pattern, highlighting strong spatial heterogeneity. For this study period, we also have weather reanalysis
data from the SAFRAN model of Météo rance at daily 8km pixel resolution for France. Weather data have
been preprocessed to obtain the Fire Weather Index, a scalar metric of weather-induced fire danger, at day-pixel
level. Another important covariate is the forested area (FA) per pixel and year, obtained from the Corine Land
Cover database, which provides a metric for the exposure to wildfire risk 8km pixel for each year.

3. Modeling approach

Wildfire size distributions are known to be heavy-tailed, and for our dataset we find that approximately 1%
of the larges fires contribute around 99% of the aggregated burnt area. Therefore, appropriate modeling of
large wildfires is crucial for making reliable predictions of aggregated burnt areas, which are a key indicator for
sanitary, ecological and economic damages of wildfires. In this work, we propose using split modeling where
the distribution of wildfire size is modeled as a mixture of two components: a generalized Pareto distribution
(GPD) for sizes exceeding a fixed high threshold u > 0, as suggested by extreme-value theory, and an appropri-
ately rescaled Beta distribution in [0,u] to model the size of small and moderate fires. The mixing probability
is determined by the probability of fires to exceed the threshold u. Here, exploratory analyses have led us to fix
u = 79ha.

For explanatory and predictive modeling, Bayesian hierarchical models are useful; they can include latent
Gaussian components to allow for observation and estimation uncertainty and to capture nonlinear influences
of covariates. In this framework, we construct four spatiotemporal regression equations at day-pixel resolution
using Gaussian random effects, where the response distributions are of the following type: Poisson for day-
pixel wildfire counts, GPD for positive excesses of wildfire sizes above the threshold u, Bernoulli for the binary
indicator of a wildfire exceeding the threshold, and rescaled Beta for wildfire sizes below the threshold u.

Conceptually, our model defines a marked log-Gaussian Cox process with a mixture distribution for the
marks. We here use the integrated nested Laplace approximation for Bayesian inference, and we combine it
with the Stochastic Partial Differential Equation (SPDE) approach to leverage Gauss–Markov representations
of Gaussian fields with Matérn covariance for flexible inference with many observation locations; see [2] for
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Figure 1: Spatial point pattern of wildfire data in Southern France. Each point refers to a single or multiple
occurrence of wildfires during the period 1995–2018. Overlaid contour lines have been obtained through a
kernel estimate of the point process intensity function with spatial unit of 1 km2.
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details. The SPDE approach is used to define the Gaussian priors of spatial effects and of nonlinear effects of
the two covariates FWI and FA, where the FWI contribution is further allowed to vary across months.

We further study the benefits of sharing spatial random effects across several of the four components, where
a spatial random effect W (s) included in one component can also be shared towards another component as
βW (s) with an additional scaling factor β to be estimated. For instance, having positive β generates positive
correlation between the two components. This sharing mechanism can reduce estimation uncertainties and can
allow for useful interpretations of the interactions among the four model components.

4. Results and discussion

Our model diagnostics show that using sophisticated techniques such as split modeling of moderate and
extreme marks or sharing of random effects provides improvements over alternative modeling approaches and
leads to a realistic stochastic representation of spatiotemporal wildfire activity.

Our findings improve decision support in wildfire management. Spatial and temporal random effects quan-
tify the spatiotemporal variation in wildfire activity not explained by the available explanatory variables, i.e.,
FWI and Forest Area. Our shared spatial effects explain how residual spatial variability is correlated across
wildfire numbers and extreme sizes, and allow us to provide maps of the significant disparities between re-
gions. Weather forecasts, and the derived FWI forecasts typically delivered at regional levels, are currently the
main components guiding fire detection and suppression resources as well as the temporary shutdown of forest
areas to the public. However, FWI maps used for fire danger rating must be interpreted with care because of
the strongly nonlinear and seasonal FWI effect on wildfire risk highlighted by our model. Moreover, strong
residual spatial effects estimated in our model could also hint at weather effects not captured by FWI. The
precise regional forecasting of fire activity that our model can provide, especially of the expected number of
fires and of the expected number and sizes of extreme fires, equips wildfire managers with additional objective
criteria to aid decision-making.
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Abstract. When modeling data collected in different locations (space) and at different times one may specify
a model that contains a stochastic model accounting for the correlation over the spacetime domain. Although
there are some theorectical properties to be accounted for, it is also of great practical importance to consider
computational aspects. In this talk we will highligh some important details of a flexible class of spacetime
models. We can achieve computing time similar to somewhat much simpler models. An illustration is shown
for a real dataset on particulate matter concentration.

Keywords. spacetime; stochastic partial differential equation; non-separable; non-stationary.

1. A framework: the SPDE approach

There are a number of approaches to be considered when specifying a stochastic model. One famous model
was specified considering a (discrete) lattice system in [16], and in Eq. (54) of this work the correlation function
was given as a function of (continous) distance. This work was further extended in [9], [17] and [7]. The latter
stablished an (explicit) link between models over discrete basis representations and continuous domain fields.
The framework introduced in [7], so called Stochastic Partial Differential Equations (SPDE) approach, can be
schematically represented in Figure 1.

The SPDE has parameters that directly relate to the local properties of the model, giving interpretation
related to the dynamics of the defined process, as well as spectral properties for stationary models. These
parameters are translated into the parameters of the conditional distributions implied by a Gaussian Markov
Random Field (GMRF) representation. The parameters in GMRFs are common in statistics, starting with
autoregressions in time series (spectral methods are very common in time serie methods). It is usual to consider
the marginal (covariance) property parameters, that can be derived from the former ones, even for intrinsic
models, see [11].

A key point in the SPDE approach is that it does not require covariances to be computed. This is appealing
when working with spatio-temporal models. The commonly considered problem is the complexity of numerical
factorizations for the working matrices. Even evaluating covariances can be already challenging when dealing
with good spacetime models as shown in [12] and [13]. In these two works, the covariance was derived from
the spectral density, as in Figure 1, but only for integer smoothness parameters.
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Figure 1: Work flow with the SPDE model formulation.

The SPDE framework was further developed still enabling computations with sparse precision matrices, [6].
This alleviates the double hard work of computing with covariances: no need of evaluating covariances and no
need of solving dense matrices. When needed, an efficient algorithm for computing covariances of selected
elements of the precision matrix exists and is available in the INLA package. In addition, the computation of
conditional expectations, or kriging, can take advantage of this formulation.

In [13], three desired properties for spacetime models were stated. The third one is regarding to computa-
tion: covariance “computed accurately and efficiently”. We can improve on this by having the whole fitting
approach to be computationally efficient, without the need to explicitly evaluate covariances.

2. An SPDE based spatio-temporal model class

Consider the operator Ls = γ2
s −∆ on a spatial domain D and introduce the precision operator for the Matérn

covariance as Q(γs,γe,α) = γ2
eLα

s , corresponding to the stationary solutions v(s) to

γeLα/2
s v(s) = W (s), s ∈D (1)

where W is a spatial white noise process, as in [17] and [7].

We replace the damping coefficient κ with a fractional dampened diffusion operator Ls defining a model
family of time-stationary solutions to a iterated diffusion-like processes(

−γ
2
t

d2

dt2 +Lαs
s

)αt/2

u(s, t) = dE[Q](s, t), (s, t) ∈D×R. (2)

When D =Rd , the space-stationary solutions are used. For compact manifolds with boundary, the operators
Ls and Q are equipped with suitable boundary conditions on ∂D . In total, the model has three non-negative
smoothness parameters (αt ,αs,αe) and three positive scale parameters (γt ,γs,γe).

The smoothness parameters can be chosen so that we can have models such as separable, fully nonsepara-
ble, diffusion and iterated diffusion. The scale parameters can be written as function of intepretable parameters:
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temporal range, spatial range and marginal variance. For more details see [1] and [15].

3. Practical implementation and example

In order to work with this model in practice, a discretization has to be done. The considered discretization
combines discretizations over space and time following [7]. The resulting precision matrix is a linear com-
bination of kronecker product between finite element matrices from temporal and spatial discretizations. [6]
discusses the basis function options, showing that the SPDE models do not require the triangle-FEM approach.
For example, one can mix temporal B-splines with spherical harmonics, which can be used for smooth global
models.

An appealing property of separable models is that the factorization of the spatio-temporal precision matrix
simplifies into the factorization of a purelly temporal matrix and a purely spatial one. However, when consider-
ing a general hierarchical model formulation as in INLA, the factorization is done for the joint problem precision
matrix, which already takes the form of a sum of sparse matrix products, and direct sparse linear solversare used.
Therefore, because the derived precision matrices for the nonseparable case has similar sparsity order as the
separable one, the computational complexity is also similar.

The particular case of αt = 1, αs = 2 and αe = 1 was considered in [5]. The implementation illustrated
there was a particular way for building the precion matrix to be considered in the INLA package. This package
was further developed including a new way for building the precision matrix and a series of methodological
improvements that further improved the computations, see [14].

We considered the data in [3], where a separable spacetime model was present in the fitted model. The
authors of that paper reported a computation time of 240 seconds. With the current INLA the same analysis
took a bit over a minute. This factor of four is mainly due to all the improvements cited in [14].

The recent development of the cgeneric interface in INLA has enabled a flexible and efficient way for
building general precision matrices. This also takes full advantage of performing the matrix factorizations in
parallel, which is particularly appealing for huge spacetime models. We fitted the nonseparable model in a bit
more than two minutes. The fitted model, as in [3], consider a triangulated domain with 142 nodes as well and
the 182 time points.

4. Conclusion and further developments

The basis of working with models for spacetime domains through the SPDE approach is set in the litera-
ture, see [6] and [1]. The adequate numerical representations of the model make possible the use of efficient
algorithms within a general modeling framework as implemented in the INLA, [10]. This combination provides
the capability for chosing between separable and nonseparable models, without restricting this choice due to
computational limitations.

The extension for the non-stationary case is a follow up of the spatial case as proposed in [4]. Under this
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approach, the parameters can be specified considering covariates or it can be considered basis functions to
provide smoothing over desired support. It applies either to the parameters in the SPDE or the derived ones
related to the marginal properties, as detailed in [8].

The theoretical work done under the SPDE framework is not restricted to Euclidean domains. One can
specify the model on a sphere, useful for modeling global data. Furthermore, physical barriers can also be con-
sidered as in [2]. This implementation is a work in progress, and we have started a new R package dedicated to
this work. The aforementioned extensions for non-stationary models are under develompment.
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Abstract. We propose a flexible mixed effects autoregressive model in time using four spatial processes to
detect space-time quantile changes in a point-referenced collection of daily maximum temperature series with
a wide climatic variability in the Ebro Basin (Spain). We consider regression through asymmetric Laplace (AL)
errors. Using the AL specification, we propose a method to extract marginal quantiles from the conditional
quantiles in the autoregression.

Keywords. Asymmetric Laplace; Bayesian hierarchical model; climate change; daily temperature; quan-
tile autoregression.

1. Introduction

Climate change can lead to changes in various aspects of the distribution of climatic variables, in particular,
for the series of daily maximum temperatures (Tmax), a different evolution could occur in the central and
extreme quantiles. Quantile regression (QR) makes it possible to detect this type of heterogeneous pattern
in evolution. The modeling approach for QR called multiple QR, follows the original ideas by Koenker and
Bassett [1], offers a separate regression model for each of the quantiles of interest, and inference proceeds by
minimizing a check loss function or assuming asymmetric Laplace (AL) errors. An alternative approach, called
joint QR, specifies an appropriate joint model for all quantiles [2]. Frequently, spatial QR models assume that
the data have no temporal dependence [3]. However, to study Tmax in daily scale, the statistical modeling must
include components that represents the strong serial correlation. Reich [4] works with spatial time series but its
model is not autoregressive in time.

We develop a flexible spatio-temporal model for QR that specifies temporal dependence through autoregres-
sion and that introduces spatial dependence through Gaussian processes (GPs). Additionally, an approach to
obtain marginal quantiles from the conditional quantiles is proposed.

The quantiles of Tmax in the Ebro Basin are analyzed. This Spanish region is a challenge because it in-
cludes mountains and aride subregions with a wide variety of climate conditions in a relatively small area. An
exploratory analysis shows that the elevation is a factor, but not the only one, having an influence on the mean
and standard deviation of the Tmax distribution, and that trend and serial correlation are spatially varying.
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These characteristics motivate the spatial random effects introduced in the model.

2. Methodology

2.1 The space-time model

We propose a spatio-temporal quantile autoregression (QAR) model for Tmax, where each quantile is mod-
eled separately. Denote by Yt`(s) the daily maximum temperature for day ` (`= 2, . . . ,L) of year t (t = 1, . . . ,T )
at location s (s ∈ D our study region), τ ∈ (0,1) the quantile order and QYt`(s)(τ | Yt,`−1(s)) the τ conditional
quantile of Yt`(s) given Yt,`−1(s). The model expresses separately fixed and random effects in qτ

t`(s) and the
autoregressive term,

Yt`(s) = QYt`(s)(τ | Yt,`−1(s))+ ε
τ

t`(s) = qτ

t`(s)+ρ
τ(s)

(
Yt,`−1(s)−qτ

t,`−1(s)
)
+ ε

τ

t`(s). (1)

In particular,

qτ

t`(s) = β
τ
0 +α

τt +β
τ
1 sin(2π`/365)+β

τ
2 cos(2π`/365)+β

τ
3 elev(s)+ γ

τ
t (s),

γ
τ
t (s) = β

τ
0(s)+α

τ(s)t +ψ
τ
t +η

τ
t (s).

The fixed effects are given by βτ
0, a global intercept, ατt, a global long-term linear trend, sin and cos terms

that capture the annual seasonal component, and elev(s), the elevation at s. The random effects given by
γτ

t (s) capture space-time dependence through GPs. In particular, βτ
0(s) ∼ GP(0,C(·;σ

2,τ
β0
,φτ

β0
)) and ατ(s) ∼

GP(0,C(·;σ
2,τ
α ,φτ

α)) provide local adjustments to the intercept and the long-term linear trend, where C(·;σ2,φ)
is the exponential covariance function. In addition, ψτ

t ∼ i.i.d. N(0,σ2,τ
ψ ) provides annual intercepts and ητ

t (s)∼
i.i.d. N(0,σ2,τ

η ) provides local annual intercepts. We also specify ρτ(s) spatially varying to capture spatial
autoregession dependence through Zτ

ρ(s) = log{(1+ρτ(s))/(1−ρτ(s))} ∼ GP(Zτ
ρ,C(·;σ

2,τ
ρ ,φτ

ρ)).

The error term is ετ

t`(s) ∼ ind. AL(0,στ(s),τ). The AL distribution is characterized by location, scale, and
asymmetry parameters, µ, σ, τ; by setting µ = 0 to ensure P(ε≤ 0) = τ, the density of ε∼ AL(0,σ,τ) is written
as f (ε) = τ(1− τ)σexp{−σε[τ− 1(ε < 0)]}. A convenient strategy for generating ε’s is to use the following
representation, ε =

√
2U

σ2τ(1−τ)
Z + 1−2τ

στ(1−τ)U , where Z ∼ N(0,1) and U ∼ Exp(1). So, ε | σ,U is normally

distributed enabling us to use all the familiar Gaussian theory. In the same way as above, we specify στ(s) to
capture spatial scale dependence through Zτ

σ(s) = log{στ(s)} ∼ GP(Zτ
σ,C(·;σ

2,τ
σ ,φτ

σ)).

Model inference is implemented in a Bayesian framework. The conditional AL distribution for all Yt`(s) can
be expressed as normal when it is conditioned on Uτ

t`(s)∼ Exp(1). To complete the model we specify diffuse
and, when available, conjugate priors such as normal and inverse gamma for all model parameters. We develop
a Metropolis-within-Gibbs algorithm to obtain Markov chain Monte Carlo samples from the joint posterior
distribution. Full conditional distributions for each of the parameters are derived, including the n×T × (L−1)
reparameterized latent exponential variables ξτ

t`(s) =Uτ

t`(s)/στ(s).
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Adequacy of the model is studied considering the performance across the L days within year, T years and
n locations. We apply a leave-one-out cross-validation where the conditional quantiles are obtained using one-
step ahead prediction. A version of the R1(τ) by Koenker and Machado [5], and the probability p(τ) that an
observation is less than the conditional quantile are calculated. In-sample, R1(τ) takes values between 0 and 1,
where a value close to 1 indicates a better fit. The target for p(τ) is proximity to τ. Analogous versions of these
measures without averaging over days, years, or sites have also been considered.

2.2 Marginal quantiles

The conditional quantile model is used to extract a marginal quantile from the conditional quantile. The first
idea is to add an adjustment term to qτ

t`(s) in (1). Note that qτ

t`(s) is not immediately a marginal quantile for
Yt`(s) because P(Yt`(s)≤ qτ

t`(s)) 6= τ. The proposed adjustment to qτ

t`(s) will adjust this probability to τ.

For sake of simplicity, space and years and the superscript τ in the parameters are suppressed. We have Y` =
q`+ρ(Y`−1−q`−1)+ ε`, where ε` ∼ i.i.d. AL(0,σ,τ). Using this notation, QY`(τ | Y`−1) = q`+ρ(Y`−1−q`−1)
is the τ quantile of the QAR. For convenience, write this model as W` = ρW`−1 + ε` with W` = Y`− q`. Upon
substitution, we have W` = ρ`W0 +∑

`−1
j=0 ρ jε`− j. We consider the τ quantile of W`, call it dτ

`(ρ,σ), so that the τ

quantile of W`−dτ

`(ρ,σ) is 0, and therefore the τ marginal quantile of Y` is q`+dτ

`(ρ,σ). Using the conditional
normal form for ε` and defining ε̃` ≡ ∑

`−1
j=0 ρ jε`− j, we have

ε̃` | ρ,σ,U`,U`−1, . . . ,U1 ∼ N

(
1−2τ

στ(1− τ)

`−1

∑
j=0

ρ
jU`− j,

2
σ2τ(1− τ)

`−1

∑
j=0

ρ
2 jU`− j

)
. (2)

Though ε̃` does not have an AL distribution we can find its τ quantile. For any d, we seek

P(ε̃` < d | ρ,σ) =
∫ ∫

· · ·
∫

P(ε̃` < d | ρ,σ,{U j : j = 1,2, . . . , `})[{U j}]dU1dU2 · · ·dU`.

Given {U j : j = 1,2, . . . , `}, we have the distribution for ε̃` in (2). We can do a Monte Carlo integration to
calculate P(ε̃`< d | ρ,σ) by generating many sets {U j : j = 1,2, . . . , `}, all i.i.d., all distributed as Exp(1). Then,
using a simple search, we can find dτ

`(ρ,σ). In our modeling setting we can create the posterior distribution
of the τ marginal quantile for any year, day, and site. In the sequel, we denote this as q̃Yt`(s)(τ) ≡ qτ

t`(s) +
dτ

t`(ρ
τ(s),στ(s)).

These marginal quantiles can be kriged over a spatial region for any τ, year, and day within year to reveal
the temperature quantile surface; i.e., we can obtain the posterior distribution of q̃Yt`(s0)(τ) at any new site s0.
We obtain this for a sufficiently spatially resolved grid, and we can obtain the posterior mean at each point and
represent the posterior τ quantile surface for the given day within year.

3. Results

The data include the time series from n = 18 sites at a daily scale from 1956 to 2015, provided by the
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Figure 1: Left: Spatially varying autorregression coefficients. Center: Difference in ◦C between marginal
quantiles of the last and the first decade. Right: Marginal 0.95 quantile on July 15, 2015.

Spanish Meteorological Office, but we focus on the warm months from May 1 to September 30. We show some
results for the τ = 0.95 quantile as an illustration.

The model assessment yields p(0.95) = 0.944 and R1(0.95) = 0.442. The daily, annual and local measure-
ments also show the good assessment of the model. Figure 1 shows maps of E(ρ0.95(s) | data),
E
(
∑t∈D6 q̃Yt`(s)(0.95)−∑t ′∈D1 q̃Yt′`(s)(0.95) | data

)
/10 where D1 is the first decade (1956–1965) and D6 the

last (2006–2015), and E(q̃Y60,75(s)(0.95) | data). It is observed that ρ0.95(s) shows a strong serial correlation
that varies spatially from 0.53 to 0.69. A general warming between decades is observed, it exceeds 3◦C in
the southwest, but a cooling pattern appears in the northwest. Finally, marginal quantiles enjoy direct inter-
pretation, the range for this marginal quantile goes from 23.3◦C to 41.1◦C. Other quantiles have been fitted,
obtaining remarkable differences in components and trends.

Summary and future work

A modeling approach to predict a specific quantile in a spatio-temporal framework is proposed. We have
specified a spatial autoregressive model on a daily scale using the AL distribution for the errors, that captures
serial correlation. An attractive approach to obtain marginal quantiles at daily scale from the conditional quan-
tiles fitted by the model is also developed. This allows posterior inference to evaluate distributional changes
between marginal quantiles.

Future work focuses on characterizing a joint QAR model. This will allow the comparison of persistence
and long-term trends between quantiles jointly.
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Abstract. Spatial econometric research typically relies on the assumption that the spatial dependence struc-
ture is known in advance and is represented by a deterministic spatial weights matrix. This matrix, like an
adjacency matrix in graphical models, defines how the locations are connected, meaning which locations are
possibly dependent and by which extend. The spatial autoregressive term is then classically modelled as mul-
tiple of the product of this predefined weighting matrix and the vector of observations. Of course, estimated
spatial autoregressive coefficients, therefore, depend on the choice of this matrix. Thus, all coefficients as well
as inference on these parameters should always be done conditional on the definition of the weighting scheme.
From this perspective, the current practice is quite unsatisfactory. In this talk, I will present the results of two
papers. First, we propose a two-stage lasso estimation approach for the estimation of a full spatial weights
matrix of spatiotemporal autoregressive models. In addition, we allow for an unknown number of structural
breaks in the local means of each spatial location. These locally varying mean levels, however, can easily
be mistaken as spatial dependence and vice versa. Thus, the proposed approach jointly estimates the spatial
dependence, all structural breaks, and the local mean levels. For selection of the penalty parameter, we pro-
pose a completely new selection criterion based on the distance between the empirical spatial autocorrelation
and the spatial dependence estimated in the model. Secondly, we investigate the estimation of sparse spatial
dependence structures for regular lattice data. In particular, an adaptive least absolute shrinkage and selection
operator (LASSO) is used to select and estimate the individual connections of the spatial weights matrix. To
recover the spatial dependence structure, we propose cross-sectional resampling, assuming that the random
process is exchangeable. The estimation procedure is based on a two-step approach to circumvent simultaneity
issues that typically arise from endogenous spatial autoregressive dependencies

Keywords. Adaptive LASSO; Change Points; Cross-Sectional Resampling; Spatial Weights Matrix.
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Abstract. In Geostatistics, the common assumption is that the selection of the sampling locations does not
depend on the values of the spatial variable of interest. However, dependence can be observed for example
in fishery data, where catches are certainly associated with the locations where the fisheries take place, in
order to optimize capture effort. Thus, the process under study determines the data-locations and the above
mentioned assumption is violated. This phenomenon is coined as preferential sampling and ignoring the pref-
erential nature of the sampling can lead to biased estimates and misleading inferences. We plan to investigate
the use of constructed covariates, based on an average value of the nearest neighbors observations distances,
that are able to mitigate preferential sampling. The objective is that the inclusion of this covariate is able to
explain the stochastic dependence of sampling locations on the spatial variable under study. If this dependence
is no longer detected after this adjustment, then we can use standard statistical techniques. This approach is
assessed in a simulation study and we also discuss issues specific to this approach that arise when several study
configurations are accounted in a model. The methodology is illustrated using a real data set provided by the
Instituto Portugułs do Mar e da Atmosfera

Keywords. Preferential sampling; Constructed covariates; Nearest neighbour distances.

1. Geostatistical model for preferential sampling

Diggle and colleagues [2] developed a model for geostatistical data collected in a preferential way, where
sampling locations and observations are jointly modelled depending on a common unobserved random field.
According to authors, the model for point locations is a log Gaussian Cox process with intensity

Λ(xi) = exp{α+βS(xi)} (1)

where S is a stationary Gaussian Process with mean µs and variance σ2
s and β controls the degree of preferen-

tiality, for example, when β > 0 the sample points are concentrated, predominantly, near the maximum of the
observed values and when β = 0 it corresponds to the situation of a non-preferential sampling, corresponds to
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a homogeneous Poisson process with intensity exp(α).
The model for the data takes the form

Y (xi) = S(xi)+Wi (2)

Y (xi) denotes the measured value at the location xi and Wi is a Gaussian random error with mean 0, variance τ2

and i = 1 · · ·n, where n is the number of locations.
The modeling approach suggested [2], accounts for preferential sampling using likelihood-based inference with
Monte Carlo methods, but Bayesian inference based on a SPDE-INLA approach has more recently been used
[3]. Geostatistical model, can be regarded from the perspective of a marked point process, modelling the marks
the observed quantities and the points the sampling locations.

2. Constructed Covariates

Due to the computational challenges of fitting joint models, detecting preferential sampling or dependence
between marks and points is therefore an important issue. When there are covariates available, it is possible
that when they are explicitly included in the model they are sufficient to account for this relationship between
points and marks. The discovery of these covariates may justify the continued use of standard methodologies,
[5].
We consider an approach to deal with preferential sampling using a constructed covariate. Constructed covari-
ates are summary characteristics defined for any location in the observation window reflecting inter-individual
spatial behavior such as local interaction or competition, [4]. The constructed covariate considered in this paper
is based on the nearest point distance, which is simple and fast to compute.
The constructed covariate considered is based on the averaged K nearest neighbour distances. We consider a
grid for the region and for each point of the grid, s, we find the distance to the k nearest point in the observation
pattern X = (x1, · · · ,xn) as

d(s,k) =
1
k

k

∑
j=1
||s− x j||

where || · || denotes the Euclidean distance.

3. Numerical Studies

In this Section, we document the performance of including the constructed covariate to mitigate the effect
of preferential sampling. This is demonstrated across a range of simulated data settings. We consider three de-
grees of preferentiality, with β =−2, β = 0.3 and β = 2 and data with three sample sizes, n = 50, n = 100 and
n = 250. Each experimental setting is repeated 100 times. To illustrate these sampling schemes, we represent
in Figure 1, 100 sampling points, assuming β equals 2, -2 and 0.3.
Considering the average distance to 5% of the nearest neighbors as the construct covariate and performing for

the different degrees of preferentiality and sample sizes, a total of 100 independent samples, Table 1 summa-
rizes the percentage of replicas in which the inclusion of the constructed covariate failed to mitigate the effect
of preferential sampling, considering 10% confidence level. By analysing Table 1, the results are quite satisfac-
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Figure 1: Sampling schemes assuming β = 2; β =−2; β = 0.3.

tory and we believe that the inclusion of the construct covariate is able to explain the stochastic dependence of
sampling locations on the spatial variable under study. This allows proceeding with data analysis using standard
statistical techniques.
Further studies with different combinations of the parameters, namely for β and different percentages of nearest
neighbors lead to similar conclusions.

n = 50 n = 100 n = 250

β = 2 1% 0% 2%

β =−2 2% 2% 7%

β = 0.3 0% 0% 2%

Table 1: Percentage of replicas in which the inclusion of the constructed covariate failed to mitigate the effect
of preferential sampling.

4. Data example

We illustrate the previously described methodology on a real data provided by the Instituto Portugułs do
Mar e da Atmosfera (IPMA) on black scabbardfish catches. A subset of the original data described in [1] was
taken for this data analysis: the fishing area with latitude minor than 39.3o, captures that have occurred from
September to February for the years between 2009 to 2013, resulting in a total set of 733 observations. The
data, include the Black Scabbardfish (BSF) catches (in kg) by fishing haul of the longline fishing fleet but also
include the location of each fishing haul, Figure 2.

The existence of preferential sampling was detected in BSF data with a degree of preferentiality equal to
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Figure 2: Locations of the BSF catches.

0.5. With the inclusion of the constructed covariate (average distance to 5% of nearest neighbors), we mitigate
the preferential sampling effect and we can now proceed the analysis using standard statistical techniques.

5. Concluding remarks and further work

We present a methodology that allows to deal with sampling designs that depend on the observed values of
the spatial variable and the suggested approach exhibited, in the numerical studies, a quite satisfactory perfor-
mance. For future investigation we intend to investigate more general covariates, certainly also suitable, such
as the local intensity or the number of points within a fixed interaction radius from a location s ∈ R2.
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Abstract. Spatial models are used in a variety of research areas, such as environmental sciences, epidemi-
ology, or physics. A common phenomenon in such spatial regression models is spatial confounding. This
phenomenon is observed when spatially indexed covariates modeling the mean of the response are correlated
with a spatial random effect included in the model, for example, as a proxy of unobserved spatial confounders.
As a result, estimates for regression coefficients of the covariates can be severely biased and interpretation of
these is no longer valid. Recent literature has shown that typical solutions for reducing spatial confounding
can lead to misleading and counterintuitive results. In this paper, we develop a computationally efficient spatial
model that explicitly correlates a Gaussian random field for the covariate of interest with the Gaussian random
field in the main model equation and integrates novel prior structures to reduce spatial confounding. Starting
from the univariate case, we extend our prior structure also to the case of multiple spatially confounded co-
variates. In simulation studies, we evaluate the performance of our model. Finally, as a real data illustration,
we study the effect of elevation and temperature on the mean of monthly precipitation in Germany.

Keywords. Bayesian inference; Penalized complexity prior; Spatial statistics; Stochastic partial differential
equation.

1. Introduction

Spatial regression data are regression data {(y(s),z(s) : s ∈ S}, where both the response variable y(s) and
the explanatory variables z(s) are indexed by a spatial variable s representing the location of the corresponding
observational unit in a spatial domain S . Based on observations collected at locations si ∈ S , i = 1, . . . ,n, a
standard regression model would then be of the form

y(si) = β0 +z(si)
Tβ+ εi, (1)

with i.i.d. error terms εi ∼ N(0,σ2
ε). However, this model could only be applied if – after adjusting for the

covariates z(si) – no spatial dependence remains such that the residuals can indeed be assumed to be indepen-
dent. This assumption is questionable for typical, observational spatial data where spatial dependence is likely
to arise, for example, due to direct interaction between observational units of interest with spatial proximity
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determining the intensity of mutual interactions or due to omitted variables that themselves obey spatial depen-
dence. In this paper, we are considering situations of the second type, i.e. model (1) is assumed to represent
the true data generating mechanism, yet we only have access to a subset of covariates instead of the complete
vector.

More formally, we assume that z(s) = (zobs(s)
T ,zunobs(s)

T )T and zobs(s) is a subset of covariates that
are observed, while the remainder zunobs(s) is unobserved. This refers to the classical setup of unobserved
confounders where: (1) naive estimation of the model relying exclusively on observed data will be biased
unless observed and unobserved covariates are uncorrelated, and (2) estimation uncertainty will usually be
underestimated in the naive model based on observed data only.

In spatial data, it is particularly unlikely that zobs(s) and zunobs(s) are uncorrelated when both obey spatial
dependence themselves. A common approach that is considered to adjust for unobserved spatial covariates is to
approximate their overall effect as γ(s)≈ zunobs(s)

Tβunobs and to model γ(s) as a spatially correlated random
effect in the model

y(si) = β0 +zobs(si)
Tβobs + γ(si)+ εi. (2)

Unfortunately, this modeling strategy does not completely solve the problem since the correlation between the
observed and unobserved part of the covariates carries over to dependence between zobs(s) and γ(s), which
is then usually referred to as spatial confounding. Whether or not spatial confounding is a relevant concern,
depends both on the specific properties of the omitted variables zunobs(s) and the purpose of the analysis. For
the former, the scale at which spatial variability is observed and how this scale relates to the spatial variability
in zobs(s) is of major relevance (e.g. [3]).

In this paper, we pragmatically consider dealing with spatial confounding as a way of getting a more real-
istic approximation of the underlying data generating process that enables meaningful interpretation of βobs,
positioning our contribution close to the evaluation of spatial risk factors [1]. Thus, we distance ourselves from
the causal inference literature. We develop a Bayesian framework that allows to deal with spatial confounding
in continuously indexed spatial models using a novel prior structure. For this, we model γ(s) and zobs(s) jointly
using a multivariate Gaussian random field (MGRF) distribution. We do estimation with the stochastic partial
differential equation (SPDE) approach [2] which utilizes a Gaussian Markov random field (GMRF) for com-
putations and use Markov Monte Carlo (MCMC) for inference. Moreover, we explore a penalized complexity
(PC) prior for the correlation parameter that controls the shrinkage towards a base model, i.e. the case of no
spatial confounding [5]. Finally, we extend our model to the case of multiple spatially confounded covariates
in a spatial model, while explicitly accounting for spatial scale and computational complexity.

2. Spatial confounding in one covariate

In the SPDE-approach [2], the Gaussian random field (GRF) γ(s) (similarly for z(s)) that solves a given
SPDE is expanded into a piecewise linear basis through

γ(s) =
M

∑
m=1

ψm(s)γm, (3)
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where the joint distribution of the GMRF weight vector γ = (γ1, . . . ,γM)T are normally distributed weights
γ with mean zero and sparse precision matrix Qγ such that γ ∼ N(0,Q−1

γ ). Each basis function ψm(·) is
piecewise linear. Thus, the GRF and GRMF are empirically equivalent and connected via a SPDE and we
benefit from both the computational benefits of the GMRF and a well-defined continuous GRF counterpart

Consider the model in (2). Let z be a covariate having a spatial structure that can be represented by a
GMRF with mean µZ and precision matrixQz, i.e., z ∼Np(µz,Qz). Let γ ∼Np(0,Qγ). For positive definite
Qγ , there is a unique Cholesky triangle Lγ such that Lγ is a lower triangular matrix with Lγ(ii) > 0 ∀i and
Qγ = LγL

T
γ . By exploiting the Markov graph structure of the GMRF, the Cholesky factor of the precision

matrix can be guaranteed to be sparse [4]. The same logic applies to z. We assume that γ and z are jointly
Gaussian distributed and we can write the conditional mean and precisions as

µγ|z = 0+ρL−T
γ LT

z(z−µZ) (4)

Qγ|z = Σ−1
γ|z =

1
1−ρ2Qγ (5)

where ρ ∈ [−1,1] such that Corr(γm,Zm) = ρ, for all m = 1, . . . ,M. We refer to a prior that assumes ρ = 0 as
the base prior, and the model associated with it as the base model. The more general case with ρ ∈ [−1,1]
is denoted MGRF prior, and the model associated with it the MGRF model. We use a PC-prior [5] on ρ that
shrinks the model towards the less complex base model.

We need to avoid boundary cases |ρ| ≈ 1. To address this, one can consider the unconstrained GMRF,
γ ∼N (0,Q−1

γ ), and then compute

γ∗ = γ+ρL−T
γ LT

z(z−γz), where γz ∼N (µz,Σz). (6)

The resulting γ∗ has the correct conditional distribution. This structure essentially removes from the linear
predictor the part of the spatial effect that is correlated with the covariate of interest.

3. Spatial confounding in multiple covariates

Spatial confounding typically biases regression coefficients when z has a larger spatial scale than γ, since
when the spatial effect operates on a smaller scale than the covariate, it is likely to explain the data better than
the covariate [3, 1]. With this in mind, in the multiple covariates case we use principal component analyzes
(PCA) to reduce the dimensionality of the design matrix z when deriving the prior for γ. We choose the first B∗

(largest) eigenvalues λ1, . . . ,λB∗ and their respective eigenvectors, as these should capture large scale behavior.
The vector of variables resulting from PCA is w = (w1, . . . ,wb∗ , . . . ,wB∗)

T . The model follows

y(si) = β0 +z(si)
Tβ+ γ(si)+ εi

but now the spatial effect has the prior γ|w ∼N (µγ|w,Σγ|w). Either (4) and (5) or (2) can be used.
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4. Simulation study

In the simulation study, we were able to confirm that spatial confounding typically biases regression coef-
ficients when z has a larger spatial scale than γ. Our prior structure behaved quite well in these scenarios, in
both the single and multiple covariate cases, and successfully shrinked the model towards the base model in the
remainder.

βobs
1 (elevation) βobs

2 (temperature)

Model Mean 95% CI Mean 95% CI

NS 0.024 [-0.024, 0.071] -0.381 [-0.429, -0.332]

Base model 0.641 [0.493, 0.802] -0.035 [-0.140, 0.066]

RSR 0.023 [-0.04, 0.088] -0.170 [-0.228, 0.113]

MGRF 0.165 [0.068, 0.258] -0.143 [-0.202, -0.086]

Table 1: Mean and equal-tailed 95% credible interval for the posterior of βobs
1 and βobs

2 in the five models.

5. Application

We analyze average monthly precipitation in Germany in October 2015 using open-access data from the
German Meteorological Institute We consider model (2). Variable y(si) is the standardized amount of precipi-
tation in milliliters at weather station si ∈ S , where S represents Germany. Covariate z1(si) is the standardized
elevation in meters and z2(si) is the standardized average monthly minimum temperature in degrees Celsius.
We test four models with different specifications for γ(s): (i) γ(s) is excluded from the model, i.e., non-spatial
(NS) model, (ii) γ(s) has a base prior that does not account for spatial confounding, (iii) γ(s) has our novel
MGRF prior, (iv) γ(s) is the spatial effect not in the span of the fixed effects, i.e., restricted spatial regression
(RSR), which is the classic solution for spatial confounding.

Although linearity is a strong assumption, one would generally expect a positive association between el-
evation and monthly precipitation (βobs

1 > 0) and a negative association between minimum temperature and
monthly precipitation (βobs

2 < 0). Table 1 shows the posterior summaries for βobs
1 and βobs

2 and it clearly demon-
strates the discrepancies in the posterior distribution of βobs

1 and βobs
2 for different models.

By using our prior we go further into the expected direction of the association between the two covariates
and monthly precipitation: none of the credibility intervals cover zero and both coefficients show the expected
association. Thus, the MGRF seems to pull the coefficients in the direction of the expected association, while
RSR and NS behave similarly, as previously reported in the literature (e.g. [1]).
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Abstract. A two-stage model is proposed motivated by an epidemiological problem which involves data with
different spatial supports. The first-stage model performs data fusion to combine measurements from pollution
monitors and from a high-resolution data of air quality from numerical models or from satellites. The second-
stage model fits a Poisson GLMM to link exposures and the health outcomes. The proposed method is applied
on NO2 measurements and respiratory hospitalizations for year 2007 in England. The results show that an
increase in NO2 levels is significantly associated with an increase in the relative risks of the health outcome.
Also, there is a strong spatial structure in the risks, a strong temporal autocorrelation, and a significant spatio-
temporal interaction effect.

Keywords. Integrated nested laplace approximation (INLA); data fusion; spatial misalignment

1. Introduction

Dealing with spatially misaligned data is a common problem in spatial modelling. [1] [2] [5] This paper
focuses on a particular case of spatial misalignment relevant to spatial epidemiology. Data on health outcomes
such as the incidence of certain diseases are available as aggregated counts on irregular areal units. Mea-
surements on exposures are typically collected from a sparse network of monitoring stations. Two additional
sources of information, which has wider spatial coverage, are also used: satellite images and computer simula-
tion using numerical or deterministic models. These data are also called proxy data. This problem of combining
data from monitoring stations and proxy data is referred to as data fusion. [4]

This paper proposes the use of a two-stage model to link exposures and the health outcomes. The first-stage
model performs data fusion using an approach similar to the Bayesian melding approach. [3] The Bayesian
melding approach assumes that the point-referenced outcomes from monitors and the high-resolution proxy
data have a common latent spatial process. The former is assumed to be observed with measurement error
and the latter as a spatial average of point outcomes of the latent process within a grid. The point outcome
inside a grid is a linear function of the true latent process, which has an additive and multiplicative calibration
parameters and possibly an additional noise term. The second-stage model fits a Poisson GLMM in addition
to spatial effects, temporal effects, and their interactions. Both models are fitted using the integrated nested
Laplace approximation(INLA) method. [7] In addition, the exposures model are fitted using the stochastic par-
tial differential equation (SPDE) approach. The use of the INLA approach is motivated by its computational
benefits. The INLA method is a deterministic approach for doing Bayesian inference, as opposed to MCMC
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which is a simulation-based approach. The SPDE approach also provides a means to speed up computation [6].

2. Methodology

Suppose we denote by wt =

(
w(s1, t) w(s2, t) . . . w(sM, t)

)ᵀ

the measurements from M monitors at

time t, t = 1, . . . ,T . Also, we denote by x̃t =

(
x̃(g1, t) x̃(g2, t) . . . x̃(gG, t)

)ᵀ

the data from the single proxy

data at time t, where x̃(gi, t) is the observed value at the grid whose centroid is gi at time t,g = 1, . . . ,G and
t = 1, . . . ,T. The true latent exposures field is denoted by xt , and both wt and x̃t are error-prone realizations
of the true exposure values xt . Suppose the vector of true exposures combined for both the monitors and the

centroids of the grids of the proxy data at time t is given by xt =

(
xt,M xt,G

)ᵀ

. The spatial dependence are

assumed to be induced by ξt =

(
ξt,M ξt,G

)
, with ξt,M as the vector of spatial random effects at the monitors

for time t and ξt,G as the vector of spatial random effects at the centroids of the grids of the proxy data. The
first-stage estimation procedure fits the following joint model:

wt = xt,M +et , et ∼ N(0,σ2
eIM), t = 1, . . . ,T (1)

x̃t = α01G +α1xt,G +δt , δt ∼ N(0,σ2
δ
IG), t = 1, . . . ,T (2)xt,M

xt,G

= β01G+M +β1

zt,M

zt,G

+

ξt,M

ξt,G

 (3)

ξt,M

ξt,G

= ς

ξt−1,M

ξt−1,G

+

ωt,M

ωt,G

 ,

ωt,M

ωt,G

∼ N(0,Σ), t = 1, . . . ,T (4)

whereωt =

(
ωt,M ωt,G

)ᵀ

is a temporally-independent Gaussian vector with mean zero and covariance matrix

Σ whose elements are computed using the Matern covariance function with parameters σ2
ω and κ, and zt =(

zt,M zt,P

)
is a vector of covariates.

Suppose χt is the extended latent (exposures) field, and

θ =

(
σ2

e σ2
δ

α0 α1 β0 β1 ς σ2
ω κ

)ᵀ

, the posterior distribution of interest for the stage model is

π(χ,ξ,θ|w, x̃,0) which is estimated using the INLA-SPDE approach. Suppose we denote by x̂(Gs j , t) the pre-
dicted value at the prediction grid whose centroid is s j at time t. With N(s j ∈ Bi) as the number of prediction
grids with centroids inside Bi, the block-level estimate of exposures at Bi and time t, denoted by x̂(Bi, t), is
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computed as

x̂(Bi, t) =
1

N(s j ∈ Bi)
∑

s j∈Bi

x̂(Gs j , t). (5)

The second model is specified as follows:

Y (Bi, t)
iid∼ Poisson

(
µ(Bi, t) = P(Bi, t)λ(Bi, t)

)
(6)

log(λ(Bi, t)) = γ0 + γ1x̂(Bi, t)+φi +ψi +νt +ζt +υit (7)

where Y (Bi, t) is the observed count at block Bi at time t, P(Bi, t) is the expected count, and λ(Bi, t) is the relative
risk. The relative risk is modelled as a function of x̂(Bi, t), a block-specific iid effect φi, a spatial random effect
ψi which follows the intrinsic conditional autoregressive (AR) process, a time-specific iid effect νt , a time effect
ζt which follows the AR process of order 1, and a spatio-temporal interaction effect υit . The interaction term υit

can take several forms. The first case is when the unstructured effects φi and νt interact, which is called Type I
interaction. When the structured temporal effect ζt and the unstructured spatial effect φi interact, this is Type II
interaction. Type III and Type IV interaction are defined as the case when νt and ψi interact, and when both the
structured effects ψi and ζt interact, respectively. The criteria for model selection are the following: marginal
likelihood, widely applicable Bayesian information criterion (WAIC), deviance information criterion (DIC),
predictive integral transform (PIT), and the conditional predictive ordinate (CPO). Smaller values for the CPO
indicates better model fit. Moreover, if the model fits the data well, the values of the PIT should be close to a
uniform distribution. To properly account for the uncertainty in the block-level exposure estimates when fitting
the second-stage model, several samples from the estimated posterior predictive distribution of the latent field
π̂(xt |·) will be generated. For each sample, x̂(Bi, t) will be computed and will be used to fit the second-stage
model. All posterior estimates from all samples will be combined to come up with the final posterior estimates.

The method is applied on monthly respiratory hospitalizations at the level of local authorities in England for
year 2007, NO2 measurements from the the Automatic Urban and Rural Network AURN), and the pollutant
estimates from the Air Quality Unified Model (AQUM) on a 12km2 grid.

3. Results and Discussion

Figures 1 and 2 shows a side-by-side plot of the block-level NO2 estimates and the high-resolution AQUM
dataset for two time points. The block-level estimates appear to correspond well to the AQUM dataset. Table
1 shows the marginal likelihoods, WAIC, DIC, PIT and CPO for the five second-stage models considered. The
model with Type II interaction has the highest marginal likelihood, but the model with Type IV interaction has
the lowest WAIC and DIC, although the WAIC and DIC for the Type II model is not too different from the Type
IV model. All the mean PIT are close to 0.5 which is the mean of a uniform distribution from 0 to 1, and all the
mean CPO are also close to 0. Based on the values, Type II seems to provide the best fit among the five models
considered.

Figure 3 shows the estimated posterior distribution of γ1, π̂(γ1|·), for the five models considered. The γ1
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Figure 1: Estimated block exposures (left),
AQUM data (right), Time = 1

Figure 2: Estimated block exposures (left),
AQUM data (right), Time = 2

estimates are quite close to each other except for the model with Type III interaction. As shown in table 1, the
model with Type III interaction has 11.42% of the observations with predictive measures which are not reliable
due to some numerical problems. Figure 4 shows the parameter estimates and the 95% credible intervals for the
model with Type II interaction. Since the block-level estimates of exposures were log-transformed, for a 10%
increase in the NO2 levels for a block, we expect the relative risk of respiratory illness to increase by 2.67%.
There seems to be a high spatial correlation in the risks since the estimate for the variance of the spatially
structured effect σ2

ψ (0.3050) is higher than the unstructured effect σ2
φ

(0.0608). Also, the temporal correlations
is very evident as seen by the estimated AR coefficient ρζt of 0.7970 and the estimate of the variance of the
structured time effect σ2

ζt
(0.0625) which is bigger than the variance of the unstructured time effect (0.0006).

The estimated AR coefficient in the interaction term is 0.8105 which indicates a strong interaction effect. The
Type II interaction says that ith area/block has its own autoregressive structure which is independent from the
other areas.

Model Mlik.Integ Mlik.Gauss WAIC DIC Failure PIT CPO

No Interaction -17208.3 -17209.0 33646.12 32872.71 0% 0.5093 0.0230

Type I -16684.5 -16685.1 32404.37 30966.22 0.9% 0.5046 0.0204

Type II -15831.3 -15831.7 29366.97 29284.8 2.51% 0.4972 0.0206

Type III -17460.0 -17460.9 29555.34 29516.32 11.42% 0.4873 0.0195

Type IV -18120.7 -18121.1 29308.01 29203.12 2.65% 0.4999 0.0212

Table 1: Model choice criteria values

4. Conclusions

The proposed method worked in the actual data with the expected result that NO2 is significantly associated
with respiratory diseases and additional insights about the spatial and temporal structure of the risks. The
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Figure 3: π̂(γ1|·) of the five models

Parameter Mean P2.5% P50% P97.5%

γ0 -0.5034 -0.8283 -0.5192 -0.0690

γ1 0.0267 0.0006 0.0266 0.0533

σ2
φ

0.0608 0.0295 0.0592 0.1026

σ2
ψ 0.3050 0.1800 0.2931 0.4914

σ2
ζt

0.0625 0.0173 0.0476 0.1954

ρζt
0.7970 0.5054 0.8189 0.9592

σ2
νt

0.0006 0.0000 0.0001 0.0048

σ2
υit

0.0225 0.0181 0.0223 0.0281

ρυit 0.8105 0.7446 0.8023 0.8540

Figure 4: Estimates of the final second-stage model

SPDE worked well to efficiently estimate the spatial field, while the INLA method sped up the estimation
of the posterior marginals of all parameters. The next step is the perform simulation studies to look at the
performance of the proposed method under different scenarios and its sensitivity to priors.
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Abstract. Infectious disease modeling plays an important role in understanding and preventing diseases from
spreading, and different approaches can be taken to describe them. In this context, the well-known SIR (Suscep-
tible, Infected and Recovered) compartment model is a common choice for modeling problems of this kind. In
this work, we will use the SIR model machinery to describe the disease-spreading evolution in time, and a Cox
process to model the spatial correlation in each of the discretized time windows. By means of simulation, we
verified that adding the SIR model output in the mean component of the Cox process may drastically improve the
quality of the obtained intensity function, especially when making prediction. In summary, our work proposes
a framework for a common problem in epidemiology; in particular, we integrate two well-known modeling
approaches for the distribution of infectious individuals in space and time in such a way that the predictions in
space are more accurate as long as we can correctly characterize the epidemic dynamics in time.

Keywords. Compartment Model; Spatio-temporal Modeling; Point Process; Cox Process.

1. Introduction

Infectious diseases may have a huge impact on individuals’ lives and put enormous pressure on healthcare
systems globally. In this sense, one common approach to describe such diseases dynamics in time is the SIR
compartment model, where individuals are assigned to one of the following three groups: Susceptible, Infected,
or Recovered. However, we may also be interested in studying how these infectious individuals are distributed
in space (and time), and that is our focus with this work.

2. Methodology

Aiming to integrate a compartment model with a log-Gaussian Cox process modeling approach, we will
divide our work into two steps, namely (1) temporal modeling, and (2) spatio-temporal modeling. In the first
stage, we will use a compartment model to describe the dynamics of the infectious individuals in the popula-
tion, and in the second stage, using information acquired in the previous step, we will study the intensity of the
infectious group over space for each of the previously discretized time points. In this section, we will detail
these two steps and state the corresponding models.
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2.1 Temporal Modeling

Firstly, for t ∈ T ⊂R≥0 = {x∈R : x≥ 0}, let S(t), I(t), and R(t) denote the number of Susceptible, Infected,
and Recovered individuals, respectively, in a region U at time t. Also, let S(t)+I(t)+R(t) = N(t) = N, ∀t; that
is, the population size is kept constant over time. Under this setting, we will use the SIR model [3] to describe
the infectious disease dynamics over time, in particular, we will set

dS(t)/dt =−βS(t)I(t) dI(t)/dt = βS(t)I(t)− γI(t) dR(t)/dt = γI(t), (1)

such that β > 0 and γ > 0. Under initial conditions (S(0), I(0), R(0)), such system can be numerically solved,
and the β and γ parameters can be estimated in different forms; for instance, we can introduce a sampling
distribution for the observed number of infectious individuals in such a way that

IOBS(t)∼ Negative Binomial(IODE(t),φ),

where IODE(t) is the solution of the system of Ordinary Differential Equations (ODEs) in (1), and φ is an
overdispersion parameter. Thus, given some data Y , estimating θ = {β,γ,φ} can be done by maximizing the
log-likelihood log(L(θ;Y )) function; alternatively, under the Bayesian framework, we can estimate θ by sam-
pling from the posterior distribution p(θ|Y ), as in [2].

2.2 Spatio-temporal Modeling

Secondly, for a partition of T = [0,T] given by {tk : k = 0,1, · · · ,n}, and u ∈U ⊂ R2, let ξ(tk) be a spatial
point process defined in U at t = tk. In particular, let ξ(tk) denote the locations of infectious individuals in the
region of interest for a point in time. For such spatial point process, we may define an intensity function λ(u; tk),
such that

∫
A λ(u; tk)du <+∞, for all bounded A⊂U , in the following way

E[N (A; tk)] =
∫

A
λ(u; tk)du,

where N (A; tk) is the random variable that counts the number of events in A at t = tk. Also, ξ(tk) is a Poisson
point process if N (A; tk)∼ Poisson(

∫
A λ(u; tk)du) and, conditional on N (A; tk) = n, the points in ξ(tk)∩A are

independent and identically distributed (i.i.d.) with density proportional to λ(u; tk) [1].

However, since the Poisson point process may not correctly describe our phenomena of interest, we will
model the events related to the infectious individuals as a log-Gaussian Cox process; that is, for a non-negative
valued stochastic process Λ(u; tk), ξ(tk) is said to be a Cox process if, conditional on Λ(u; tk) = λ(u; tk), ξ(tk)
is a Poisson process with intensity λ(u; tk). In particular, for a log-Gaussian Cox process, we will have

Λ(u; tk) = exp{µ(u; tk)+ζ(u; tk)}, (2)
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where ζ(u; tk) is a Gaussian Process with variance σ2, correlation function Corr(ζ(u1; tk),ζ(u2; tk)) = ρ(h; tk),
such that h = ||u1−u2||, and constant mean function given by −σ2/2.

From Equation (2), we will set the mean term E(Λ(u; tk)) = exp{µ(u; tk)} as λ0(u; tk) · I(tk)/|U|, where
λ0(u; tk) represents the population at risk (in our case, it will be constant over time), such that

∫
U λ0(u; tk)du= 1,

and I(tk) is the estimated (or predicted) number of infectious individuals obtained as described in Subsection
2.1.

In that way, and under a Bayesian framework, we can estimate the intensity function for the infectious
individuals in U and all {tk} by fitting the following model

ξ(tk)|Λ(u; tk) = λ(u; tk)∼ Poisson
(∫

U
λ(u; tk)du

)
, for k = 0,1, · · · ,n

Λ(u; tk) = λ0(u; tk) ·I(tk)/|U| · exp{ζ(u; tk)}
ζ(u; tk|σ2,η)∼ Gaussian Process(−σ

2/2,σ2
ρ(h; tk|η))

σ
2,η∼ priors.

3. Results

As a way to validate our model, we will use a mix of real and synthetic data. In particular, for a region
of approximately 3 km2 in São Paulo city, Brazil (Figure 1), we will use the estimated values [5] for the
population size defined in each of the (approx.) 100 × 100 m cells (with 39,040 individuals in total) as a way
to mimic the real intensity function that describes how infectious individuals are distributed over space. For
a simulated epidemic dynamics sampled in {tk : k = 0,1, · · · ,100} and obtained from Model (1) with a set of
chosen parameters, the true intensity function will be drawn from the following scheme

Λ(u; tk) = pop(u) ·I(tk)/|U| · exp{ζ(u; tk)}, for k = 0,1, · · · ,n (3)

ζ(u; tk) =−σ
2/2+ϑ(u; tk)+u(tk),

such that pop(u) = pop(u; tk), ∀tk, is given by the normalized populational grid, u(tk) = u(u; tk), ∀u ∈ U, is
a zero-mean temporally independent Gaussian process with variance σ2

u, and ϑ(u; tk) = δ(u; tk), if k = 0, and
ϑ(u; tk) = aϑ(u; tk−1)+δ(u; tk), if k ∈ {1, · · · ,n}, where δ(u; tk)∼ Gaussian Process(0,σ2

δ
ρ(h; tk)) and ρ(h; tk)

is given by the Matérn model. Also, as before, σ2 is the variance of ζ(u; tk). Note that, in this case, we are
modifying the populational grid by incorporating a noise spatio-temporal structure into it.

3.1 Model Fitting

For the previously described data set, we first fitted the temporal model as described in Subsection 2.1. To

METMA X Workshop 153



A.V. Ribeiro-Amaral et al.

Figure 1: U with an overlapped grid for the estimated population. Red points are the infectious locations.

do so, we used RStan, and the obtained I(tk) curve can be seen in Figure 2 (LEFT PANEL). Notice that, in that
case, we only observed data up to tk = 50, and to make prediction for the remaining points, all we had to do
is solving Equations (1) for I(tk) using the posterior sample of the estimated parameters. Then, based on the
obtained I(tk), we can continue with the spatio-temporal modeling procedure.

Figure 2: LEFT PANEL: Estimated I(tk) curve with its 95% prediction interval (shaded area). RIGHT PANEL:
MAAPE for the true and estimated intensity function using both NULL and ALTERNATIVE models. For both
figures, the corresponding models were fitted with data up to tk = 50.

Now, under the same setting as in Equations (3), we can fit the model introduced in Subsection 2.2. To do
this, we used R-INLA. Recall that we are using I(tk) in the mean component of the log-Gaussian Cox process,
and therefore, we should expect better results when comparing it with a model in which

Λ(u; tk) = β0 · exp{ζ(u; tk)},

where β0 is a parameter to be estimated (call it “NULL model”, as oposed to our “ALTERNATIVE model”).

Now, to assess the results, we can compute an error measure for the difference between the true and estimated
intensity functions. To do this, we will use the Mean Arctangent Absolute Percentage Error (MAAPE) [4]. In
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particular, we want to compute

MAAPE =
1
n

n

∑
i=1

arctan
(∣∣∣∣ fi− f̂i

fi

∣∣∣∣) ,

such that f and f̂ are the true and estimated functions, respectively. Figure 2 (RIGHT PANEL) shows the
results for the two fitted models, namely NULL and ALTERNATIVE.

From this figure, we can see that our model performs much better (with respect to the proposed error mea-
sure) than the NULL model, especially when making predictions. This means that including the SIR model
output into the mean component of the log-Gaussian Cox process may drastically improve the quality of the
obtained intensity function for the spatial distribution of the infectious individuals for all t.

References

[1] Diggle, P. J. (2013). Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Chapman & Hall
Monographs on Statistics & Applied Probability, third edn, CRC Press, Boca Raton, Florida.

[2] Grinsztajn, L., Semenova, E., Margossian, C. C. and Riou, J. (2021). Bayesian workflow for disease
transmission modeling in Stan. Statistics in medicine 40, 6209–6234.

[3] Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics.
Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical
character 115, 700–721.

[4] Kim, S. and Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts.
International Journal of Forecasting 32, 669–679.

[5] WorldPop (2020). Population Counts. https://www.worldpop.org/geodata/listing?id=78.

METMA X Workshop 155



156



Local test of random labelling for functional marked point
processes

N. D’Angelo1,∗ , G. Adelfio1 , J. Mateu2 , and O. Cronie3

1Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy; ∗nicoletta.dangelo@unipa.it,
giada.adelfio@unipa.it
2Department of Mathematics, University Jaume I, Castellon, Spain; mateu@uji.es;
3Department of Mathematical Sciences, Chalmers University of Technology, University of Gothenburg, Gothenburg, Swe-
den; ottmar.cronie@gu.se.
∗Corresponding author

Abstract. We introduce the local t-weighted marked nth-order inhomogeneous K-function, in a Functional
Marked Point Processes framework. We employ the proposed summary statistics to run a local test of random
labelling, useful to identify points, and consequently regions, where this assumption does not hold, i.e. the
functional marks are spatially dependent.

Keywords. Spatio-temporal point process; Local features; K-function; Random labelling; Envelopes

1. Introduction

Despite of the relatively long history of point process theory, few approaches have been performed to analyse
spatial point patterns where the features of interest are functions (i.e. curves) instead of qualitative or quan-
titative variables. Examples of point patterns with associated functional data include: forest patterns where
for each tree we have a growth function, curves representing the incidence of an epidemic over a period of
time, and the evolution of distinct economic parameters such as unemployment and price rates, all for distinct
spatial locations. [2] introduced a very broad framework for the analysis of Functional Marked Point Processes
(FMPPs), indicating how they connect the point process theory with both Functional Data Analysis (FDA) and
geostatistics. In their work, they defined a new family of summary statistics, so-called t-weighted nth-order
marked inhomogeneous K-function, together with their nonparametric estimators, to analyse Spanish popula-
tion structures, such as demographic evolution and sex ratio over time. This summary statistic can be used to
run a test of random labelling by means of the global envelopes test (GET, [3]), to assess whether the functional
marks of the analysed pattern are spatially dependent. However, this procedure is essentially global, since it
does not provides information on the points which mostly contributed to the rejection of the random labelling
hypothesis. Therefore, motivated by the will of detecting those points, and therefore regions, where the func-
tional marks really do depend on the spatial locations, in this paper, we introduce the local t-weighted marked
nth-order inhomogeneous K-functions, and use them for proposing a local test of random labelling.
The structure of the paper is as follows. Section 2. gives notation of functional marked point processes. The
local nth-order summary statistics and the local test of random labelling are proposed in Section 3. In Section
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4., by an application to simulated data, we show that our proposal succeeds in identifying points (and thus
regions) where the functional marks are spatially dependent. The conclusions are drawn in Section 5.

2. Functional marked point processes

We consider marked point processes Ψ = {(xi,mi)}N
i=1 in the sense of [1] (Definition 6.4.1), with ground

points xi in Rd , which is equipped with the Euclidean metric and the Lebesgue measure l(A) =
∫

A dz for Borel
sets A ∈ B(Rd); a closed r-ball around x ∈ Rd will be denoted by b[x,r]. The ground process Ψg, obtained
from the marginal Ψ w.r.t. the marks, is by definition a well-defined point process on Rd in its own right. We
shall assume that Ψ is simple, that is, almost surely (a.s.) does not contain multiple points. We assume that
the mark space M is Polish and equipped with a finite reference measure ν on the Borel σ-algebra B(M ).
The Borel σ-algebra B(Rd×M ) = B(Rd)⊗B(M ) is endowed with the product measure A×E 7→ l(A)ν(E),
A×E ∈ B(Rd×M ). Given this general setup, one may obtain various forms of marked point processes, most
notably multivariate/multitype point processes with M = {1, . . . ,k} and FMPP with M given by a suitable
function space.
In FDA, one analyses collections of functions { f1(t), . . . , fn(t)}, t ∈ T ⊂ [0,∞),n≥ 1, in some Euclidean space
Rk, k ≥ 1, which belong to some suitable family of functions (usually an L2-space); note that the argument t
does not need to represent time, but it could represent spatial distance. Classically, it has been assumed that
these functions are realisations/sample paths of some collection of independent and identically distributed (iid)
random functions/stochastic processes {F1(t), . . . ,Fn(t)}, t ∈ T . However, it is often the case that these func-
tions have some sort of spatial dependence. For example, two functions fi and f j, with starting points fi(0)
and f j(0) which are spatially close to each other in Rk, either gain or lose from being close to each other.
Accordingly, it seems natural to generate F1, . . . ,FN conditionally on some collection of (dependent) random
spatial locations. Moreover, these random functions may not be iid. More specifically, it makes sense to de-
scribe the collection of locations and functions as a FMPP, which is defined as a marked point process where the
marks are random elements in some (Polish) function space, most notably the L2 space of functions f : T →Rk.

3. Local nth-order summary statistics and test for random labelling

Assume we observe a FMPP Ψ within a bounded spatial domain W ∈ B(Rd), l(W ) > 0, i.e. Ψ∩W ×M .
We define the local t-weighted marked nth-order inhomogeneous K-function for the ith point (x,m) as

L(i) = K̂ (x,m)×n−1
i=1 Ei

t (r) = ∑
(x1,m1),...,(xn−1,mn−1)∈Ψ\{(x,m)}

w(x,x1, . . . ,xn−1)

νM (E)∏
n−1
i=1 νM (Ei)

×

× t(m,m1, . . . ,mn−1)
I{(x,m) ∈W ×E}

ρ̂g(x)

n−1

∏
i=1

I{xi ∈ (W ∩b[x,r]}I{mi ∈ Ei}
ρ̂g(xi)

.

(1)

with r ≥ 0, w(·) an edge correction term, and ρ̂g(x) an estimator of the ground intensity ρg(x).
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It can be prove that its expectation is

K (x,m)×n−1
i=1 Ei

t (r) =
1

l(W )νM (E)∏
n−1
i=1 νM (Ei)

×

×E

[
∑

(x1,m1),...,(xn−1,mn−1)∈Ψ\{(x,m)}

t(m,m1, . . . ,mn−1)

ρ(x,m)

n−1

∏
i=1

I{xi ∈ b[x,r]}I{mi ∈ Ei}
ρ(xi,mi)

]
.

Simple hypotheses for spatial point patterns (such as CSR) are commonly tested using an estimator of a global
summary statistic, e.g., the Ripley’s K-function. In this context, one typically resorts to the Monte Carlo
simulation. The first step is then to generate Q simulations under the null hypothesis, and to calculate the
chosen summary statistics for both the observed pattern and the simulations. In order to study whether there
is random labelling in a FMPP Ψ, the simulations are obtained by permuting the functional marks, that is,
randomly assigning them to the spatial points of the ground pattern Ψg, which are kept fixed. Then, the chosen
summary statistic, is computed for each of these permutations, and global envelopes at a given nominal level
are generated based on them. The result of the test can be assessed graphically: if the summary statistic of
the observed pattern goes outside the envelopes, we proceed with the assumption that the functional marks of
the analysed pattern are indeed not randomly labelled. Furthermore, it is possible to calculate a point estimate
for the p-value based on the position of the observed summary statistic within the qth envelopes, following
[3]. We know however, that the conclusion drawn from the application of the above-mentioned global test is
referred to the whole analysed process, indicating whether all the functional marks of the analysed pattern are
randomly labelled or not. Motivated by the will of further detecting the specific points, and regions, where the
functional marks really do depend on the spatial locations and dependencies, we propose a local test of random
labelling. The main idea is to run a global envelope test on each point of the analysed pattern by means of
the previously proposed local t-weighted marked inhomogeneous K-functions, to obtain p-values and to draw
different conclusions on the individual points.
We next outline the proposed local test:
• Set a number of simulations Q;
• For each q = 1, . . . ,Q:

– Randomly sample n functional marks, from the original n ones;
– Compute the local summary statistic, say L(i)

q in (1) ;

• For each point xi of ground pattern Ψg, run the global test of random labelling, where the qth envelopes
are given by the all the local summary statistics of the ith point, computed over the Q permutations
{L(i)

q }Q
q=1.

The testing procedure ends with providing a p-value pi for each point of the analysed FMPP Ψ.
The null hypothesis is rejected for the ith point if pi ≤ α, with α the fixed nominal value of type I error.

4. Application to simulated spatially dependent functional marks

We simulate a homogeneous spatial point pattern with 250 points on the unit square. This represents the
ground pattern Ψg. For each point xi, we simulate a functional mark from yt = µt +εt , with εt ∼N (0,σ2

t ), where
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σ2
t is a variance function approximated by a piecewise constant regression function with K0 +1 segments. We

set K0 = 2, T = 500 equispaced observations zt = t ∈ [0;1] and σ2
t = 0.2+7.5I(t > 0.4)−5I(t > 0.6). The mean

signal µ is just taken equal to zero. To make the functional marks spatially dependent, we then superimpose
a homogeneous spatial point pattern with 50 points, generated in the [0,0.5]× [0,0.5] square, i.e. the bottom
left region of the entire analysed window. For these additional points, we generate different functional marks
than before, namely with underlying trend µt = 10+6sin(3πzt). Therefore, we have simulated a FMPP Ψ with
spatially dependent functional marks, i.e. not random labelled. We therefore expect a global test of random
labelling to confirm it.
We first run a global test of random labelling, by means of the t-weighted nth-order marked inhomogeneous
K-function of [2], with n = 2, making it a second-order summary statistic. As test function t(·), we consider the
functional marked counterpart of the test function for the classical variogram t( f1, f2) = tv( f1, f2) =

∫ b
a ( f1(t)−

F̄(t))( f2(t)− F̄(t))dt, with F̄(t) = (1/n)∑
n
i=1 fi(t), that is the average functional mark at time t for the observed

functional part of the point pattern. We run Q = 39 permutations, and obtain a global p-value of 0.025. This,
together with the observed K-function lying outside the envelopes (left panel of Figure 1), indicates the ability
of the global test to correctly detect the spatial dependence of the functional marks. We know, however, that
this conclusion show not be drawn for each point of the pattern, but specifically for those in the [0,0.5]× [0,0.5]
square.
We therefore proceed by running our proposed local test, based on the proposed local K-functions (1) in their
second-order version, and with the same choice for the test function t(·) as the global one. The right panel of
Figure 1 depicts the points of the simulated point pattern, and displays in pink those for which the local test
resulted significant. From this, we know that the proposed local test is able to correctly identify some of the
points, and then the region, where the hypothesis of random labelling does not hold.
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Figure 1: Left panel: Result of the global envelopes test; Right panel: The simulated point pattern. Significant
points for which the hypothesis of random labelling is rejected are in pink.

5. Conclusions and future directions

In this work, we have proposed the local t-weighted marked nth-order inhomogeneous K-functions for
spatial point processes with functional marks. We have employed them to construct a local test for random
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labelling, to identify points, as well as regions, where this hypothesis does not hold.
In future, we plan to run an extensive simulation study to assess the performance of the test under different
scenarios in reference to both the ground pattern (random, clustered, regular) and the functional marks (which
could differ in mean, variance, and correlation structure).
Finally, we aim at analysing seismic data. Indeed, while spatial (and temporal) location of the epicenter of the
earthquake is typically studied within the theory of point processes, the seismic waveforms are commonly in-
vestigated in separate analyses through FDA. Applying the local test would allow to identify where one would
expect waveforms (i.e. functional marks) to be similar to those of close points or not.
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Abstract. In this paper we investigate the effect of gas production volumes on seismicity in the Groningen field
by means of a log-linear Poisson model. First, we consider the annual counts and then refine to the temporal
point pattern of earthquake occurrence times.
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1. Introduction

Discovered in 1959, the Groningen gas field, the largest gas field in Europe with an estimated recoverable
gas volume of around 2,900 billion cubic meters (bcm), has been a massive boost to the Dutch economy.
Production in Groningen started in 1963, initially only to accommodate the high demand for gas during the
winter months [8]. However, the closure of smaller fields in the country led to an increase in production. By
2012, annual production volumes had climbed to over 40 bcm per year [6].

Increasing production volumes and the resulting depletion of the gas field have led to induced earthquakes
in the previously tectonically inactive Northern Netherlands. Depletion causes a decrease of the gas pressure,
which causes compaction of the gas reservoir, noticeable by subsidence. Additionally, a drop in gas pressure
increases stress in the faults of the region. Due to the increased stress, faults slip and cause seismicity [10]. The
most significant event to date, in August 2012 near Huizinge with a magnitude of 3.6, attracted massive public
attention, prompting the Ministry of Economic Affairs to reduce production volumes.

Numerous studies have been conducted, of which we mention a few. For example, [5] models the times
in between earthquakes in terms of the cumulative and annual production rates, pressure, subsidence and fault
zones. A more recent example of such a study is [12]. Van Hove et al. [7] propose a Poisson auto-regression
model for the annual hazard maps in terms of subsidence, fault lines and gas extraction in previous years. Si-
jacic et al. [14] focus on the detection of changes in the rate of a temporal Poisson point process by Bayesian
and frequentist methods. Moreover, [1] modify Ogata’s space-time model [11] to include changes in stress
level and estimate the probability of fault failures. Other papers [2, 3, 13] discuss the modelling of seismicity in
relation to stress changes based on a differential equation. Both [6] and [15] explore the temporal development
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of seismicity in Groningen by proposing a linear model for the relation between the number of earthquakes over
specific periods and gas production volumes. In this paper, we take a similar approach towards the temporal
development of seismicity in Groningen including data up to 2020. Details on the methodology used can be
found, e.g., in [9].

2. Data

An earthquake catalogue for The Netherlands is being maintained by the Royal Dutch Meteorological Office
(KNMI) at www.knmi.nl/kennis-en-datacentrum/dataset/aardbevingscatalogus. Data on the period
before 1995 are not reliable due to the inaccuracy of the equipment used. Moreover, a threshold on the magni-
tude is necessary to guarantee data quality. According to [4], earthquakes with a magnitude of 1.5 or larger can
be reliably recorded. We therefore restrict ourselves to induced earthquakes with a magnitude of 1.5 or higher
between January 1st, 1995, and December 31st, 2020. The resulting pattern of occurrence times consists of 322
earthquakes.

Monthly production figures are available at the site of the Dutch Oil Company (NAM) at
https://www.nam.nl/feiten-en-cijfers/gaswinning.html, both for the gas field as a whole and per
individual well. The figures are published in cubic meters, which we re-scale to bcm. Since we focus on the
temporal aspects, we use only the cumulative numbers over the entire field.

3. Annual counts

To explore the relationship between seismicity and gas production, Figure 1 plots the total annual production
in bcm for the years 1994, . . . ,2019 and the annual number of earthquakes in the next year against time. A dip in
the produced volumes is observed during the late 1990s, followed by a steep increase. After 2014 the volumes
decrease following government regulations. As for the number of earthquakes, there seems to be a general
upwards trend up to about 2013. From 2014 onward, the frequency of earthquakes also tends to decrease.
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Figure 1: Plots of the annual number of earthquakes (1995–2020) in the Groningen gas field (red dots) and
annual gas production volumes (1994–2019, blue dots, in bcm) against time.
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A statistical model that captures these aspects is the following. Assume that the number of earthquakes N(t)
in year t ∈ {1995, . . . ,2020} is Poisson distributed with intensity parameter λ(t) such that

logλ(t) = α1 +α2C(t−1)+α3 log(C̃(t−1)). (1)

Here C(t − 1) denotes the gas produced in year t − 1, C̃(t − 1) is the cumulative gas production up to year
t−1. By maximizing the likelihood function we obtained the parameter estimates α̂1 =−2.23, α̂2 = 0.025 and
α̂3 = 0.64. We are especially interested in α2 as it quantifies the effect of the gas production in each consecutive
year. Its asymptotic approximate 95% confidence interval is (0.015,0.035), from which we conclude that an
increase in production leads to increased seismicity.

To validate the model, Figure 2 shows the Pearson residuals (left-most panel) and the empirical inhomoge-
neous auto-correlation function (central panel). We conclude that the model fits reasonably well. The estimated
and predicted number of earthquakes are shown in the right-most panel. For λ(2021), an approximate 95%
confidence interval is (7.16,13.69). The actual number was 12. For comparison [6] predicted a 16±8 events
in 2016. Our prediction for 2016 is tighter, 15.67±2.61. In reality, there were 13 earthquakes.
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Figure 2: Left: Pearson residuals plotted against time. Central panel: empirical inhomogeneous auto-
correlation function for lags h = 1, . . . ,15 and local envelopes based on 19 simulations from the fitted model.
Right: estimated number of earthquakes (black dots) and predicted number (red dot) for 2021 with associated
approximate 95% confidence intervals (grey dots).

4. Temporal point pattern

So far, we used aggregated count data. Since the earthquake times are being recorded, we may also consider
a temporal Poisson point process model. Taking days as our unit of time, suppose that the intensity function λ

satisfies
logλ(t) = α1 +α2C(t,12)+α3 log(C̃(t)). (2)

for t ∈ (0,9497]. Here C(t,12) denotes the amount of gas produced over the twelve months preceding time
t ∈ (0,9497] and C̃(t) is the cumulative amount produced from 1994 and preceding time t. The maximum
likelihood estimates are α̂1 =−8.56, α̂2 = 0.023 and α̂3 = 0.72.
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Figure 3: Left: smoothed Pearson residuals using a Gaussian kernel with σ = 30. Central panel: empirical
inhomogeneous pair correlation function for lags h = 1, . . . ,7000 and local envelopes based on 19 simulations
from the fitted model. Right: estimated intensity function.

Figure 2 shows the smoothed Pearson residuals (left-most panel) and the empirical inhomogeneous pair
correlation function (central panel). We conclude that the model fits reasonably well. The estimated intensity
function is shown in Figure 3. Compared to Figure 2, it is more detailed, but the general interpretation is sim-
ilar. The approximate 95% confidence interval for α2 is (0.010,0.036). Since it does not contain 0, C(t,12) is
significant. The earthquake hazard λ(t) at the dawn of the new year, January 1st, 2021, based on the gas pro-
duction C(9498,12) = 7.95 in 2020, has an approximate confidence interval (0.018,0.0413). The first induced
earthquake with a magnitude of at least 1.5 happened on January 24, 2021, near Tjuchem.
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Abstract. Sex differences in chess expertise tend to be large, with males scoring higher than females in the Elo
chess rating. Past reports attribute these differences either to the differential participation of males and females
in chess, or to biological and cultural factors. For instance, a previous study comparing the top-hundred male
and female chess players in 24 Eurasian countries highlights that differential sex ratios explain only in part the
sex difference in chess expertise [1]. There is in addition considerable variability across countries that might
depend on geographical aspects. Countries with narrower sex gaps in chess expertise predominate in Eastern
Europe or have smaller territories (Georgia, Czech Republic, Romania, Hungary, Slovakia or Netherlands).
On the other hand, countries with wider sex gaps in chess expertise predominate in southern Europe or have
larger territories (Greece, Russia, Bulgaria, Croatia, Portugal, or France). In this study, we reanalyze the data
in [1] in order to address the degree by which raw and expected (RED) sex differences followed such geograph-
ical patterns. More specifically, we evaluate whether the occurrence of RED at distinct countries can depend
on adjacent countries or country size, or else this spatial structure is independent of the spatial configuration
of neighboring countries (country location location or size). The findings from this study can shed additional
light about the geographical distribution of sex differences in chess expertise.

Keywords. Chess expertise; LISA; Sex differences; Spatial analysis.

1. Introduction

Sex differences in chess expertise tend to be large, with males scoring higher than females in the Elo chess
rating. Past reports attribute these differences either to the differential participation of males and females in
chess, or to biological and cultural factors. For instance, a previous study comparing the top-hundred ranked
male and female chess players in 24 Eurasian countries highlights that differential sex ratios explain only in
part the sex difference in chess expertise [1].

In addition, there is considerable variability across countries that might depend in geographical aspects.
Countries with narrower sex gaps in chess expertise either are Eastern European countries, or have small ter-
ritories (Georgia, Czech Republic, Romania, Hungary, Slovakia or Netherlands). On the other hand, countries
with wider sex gaps in chess expertise either are Southern European countries, or have large territories (Greece,
Russia, Bulgaria, Croatia, Portugal, or France).

In this study, we reanalyze the data in [1] in order to address the degree by which raw and expected (RED)
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sex differences follow such geographical patterns. More specifically, we evaluate the spatial autocorrelation
structure of these variables in terms of three distinct distance matrices and whether the occurrence of RED at
adjacent countries or depending on country size can be accounted for by randomness alone. This analysis is
considered bearing in mind several geographical factors: 1) the country size, 2) the proximity between coun-
tries, and 3) the proximity to the Mediterranean sea. The findings from this study can shed additional light about
sex differences in chess expertise across when considering the geographical distribution across 24 countries in
Europe.

2. Input data

There are two kinds of data for this study. First, there are three variables or attributes for each country: a) the
raw sex differences in chess expertise (R), b) the expected sex differences considering differential Male:Female
ratios by country (E), and c) the difference between the observed and estimated sex difference in chess expertise
(D). Second, there are two matrices according with each of the three geographical factors of interest. Each of
these matrices describes some sort of distance across the studied countries: a) country size differences and b)
nearest neighbor distances.

To evaluate the spatial structure of these RED measures assuming distinct distances matrices, we consider
global measures of autocorrelation (such as the Moran’s I measure) and their counterpart local version (LISA
functions) [2]. Our intention is to investigate the spatial configuration of these RED variables, and evaluate if
their expected spatial structures, in terms of the distinct distance matrices, have a global scale of interaction, or
else, they act at more local scales. Given the social an cultural differences between the analyzed countries, it is
expected the presence of some local spatial dependencies affecting the spatial structure of these RED variables.

3. Expected outcomes

According with the findings in [1], non-random spatial structures are to be expected regarding Eastern Eu-
rope countries, the proximity to the Mediterranean sea, and the country size. Therefore, and according with
these geographical factors, the countries meeting these conditions should be more similar and display a more
consistent spatial structure regarding RED.
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Abstract. This work is part of a PhD project whose main goal is to study and model point patterns that
exhibit two different types of interactions at different scales. Specifically, how observations of active fires in
mainland Portugal interact (clustering or regularity) in space (and/or time) for small and large distances (or
intervals). The data belong to the MODIS Collection 6 Active Fire, from the Fire Information for Resource
Management System (FIRMS, NASA, US). They consist in daily point detections of fire hot spots represented by
the centroid of their respective 1km2 pixel from a grid for mainland Portugal in 2001. Thus, within the spatial
statistics framework, these data are target to spatial point process statistical methodologies. As a starting point
of this work, we are presenting a brief spatial exploratory analysis of the pattern aforementioned. Exploratory
analysis usually includes functions like the inhomogeneous K-function and the inhomogeneous pair correlation
function which are presented and plotted. Their estimates showed presence of both aggregation and repulsion
behaviour at different scales. Some spatial point pattern models like empirical models (e.g., Geyer or Matrn-
thinned Cox processes) or mechanistic models (e.g., self-exciting processes) that allow capturing this behaviour
are certainly the following steps once a better understanding is achieved concerning the dynamic within the
analysed data.

Keywords. Active Fires; Exploratory Spatial Analysis; Spatial Interactions; Spatial Point Patterns.
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Abstract. We propose a local version of the spatio-temporal log-Gaussian Cox processes (LGCPs) employing
the Local Indicators of Spatio-Temporal Association (LISTA) functions into the minimum contrast procedure
to obtain space as well as time-varying parameters. We resort to the joint minimum contrast method fitting
method to estimate the set of second-order parameters for the class of spatio-temporal LGCPs. This approach
has the advantage of being usable in the case of both separable and non-separable parametric specifications
of the correlation function of the underlying Gaussian Random Field (GRF).

Keywords. Spatio-temporal point processes; Local models; Log-Gaussian Cox Processes; Minimum con-
trast; Second-order characteristics.

1. Introduction

Local extensions of spatio-temporal point process models are very welcome in many fields of study, such
as epidemiology and seismology. Indeed, one could be interested in identifying the most inhomogeneous
locations, both in space and time, to be further examined separately.
For spatial point process, [1] presents a general framework based on the local composite likelihood to detect and
model gradual spatial variation in any parameter of a spatial stochastic model, among which the Cox processes.
[2] show that their purely local models provide good inferential results by applying them to earthquake data.
Motivated by this, we propose a local version of the spatio-temporal log-Gaussian Cox processes (LGCPs)
employing the Local Indicators of Spatio-Temporal Association (LISTA) functions in the minimum contrast
procedure to obtain space as well as time-varying parameters.

In particular, we extend the joint minimum contrast method [6] to the local context, managing to estimate
a set of second-order parameters of the spatio-temporal LGCPs for each point. The joint estimation approach
has the advantage of being usable in the case of both separable and non-separable parametric specifications of
the correlation function of the underlying Gaussian Random Field (GRF).

The structure of the paper is as follows. In Section 2. the spatio-temporal log-Gaussian Cox Processes are
recalled, as well as the joint minimum contrast procedure. Section 3. contains the proposed method to estimate
local parameters, whose performance is assessed in 4. Conclusions are drawn in Section 5.
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2. Spatio-temporal LGCPs and minimum contrast estimation

Following the inhomogeneous specification in [4], a log-Gaussian Cox process for a generic point with u
and t coordinates in space and time has the intensity

Λ(u, t) = λ(u, t)exp(S(u, t))

where S is a Gaussian process with E(S(u, t)) = µ = −0.5σ2 and so E(expS(u, t)) = 1 and with variance and
covariance matrix C(S(ui, ti),S(u j, t j)) = σ2γ(r,h), with γ(·) the correlation function of the GRF, and r and
h some spatial and temporal distances. Following [5], the first-order product density and the pair correlation
function of a log-Gaussian Cox process are E(Λ(u, t)) = λ(u, t) and g(r,h) = exp(σ2γ(r,h)), respectively. We
consider a separable structure for the covariance function of the Gaussian Random Field that has exponential
form for both the spatial and the temporal components,

C(r,h) = σ
2 exp

(
−r
α

)
exp
(
−h
β

)
, (1)

where σ2 is the variance, α is the scale parameter for the spatial distance and β is the scale parameter for the
temporal one. The exponential form is widely used in this context and nicely reflects the decaying correlation
structure with distance or time. Moreover, we can consider a non-separable covariance of the GRF useful to
describe more general situations.
In general, the Cox model is estimated by a two-step procedure, involving first the intensity and then the cluster
or correlation parameters. First, a Poisson model with the same model formula is fitted to the point pattern data,
providing the estimates of the coefficients of all the terms in the model formula that characterize the intensity.
Second, the estimated intensity is taken as the true one and the cluster or correlation parameters are estimated
by one among the method of minimum contrast, Palm likelihood, or composite likelihood. The most common
technique is the minimum contrast.
Let the function J represent either the pair correlation function g of the K-function, and Ĵ stands for the cor-
responding non-parametric estimate. [6] propose a new fitting method to estimate the set of second-order
parameters for the class of spatio-temporal log-Gaussian Cox point processes with constant first-order inten-
sity function. Hereafter we will denote by θ the vector of (first-order) intensity parameters, and by ψ the
cluster parameters, also denoted as correlation or interaction parameters by some authors. In the case of a
spatio-temporal log-Gaussian Cox process with exponential covariance as the one in Equation (1), the cluster
parameters correspond to ψ = (σ,α,β), that is found by minimizing

MJ{ψ}=
∫ hmax

h0

∫ rmax

r0

{Ĵ(r,h)− J(r,h;ψ)}2drdh. (2)

With simulations, [6] show that the joint minimum contrast procedure, based on the spatio-temporal pair corre-
lation function, provides reliable estimates. Its main advantage is that it can be used in the case of both separable
and non-separable parametric specifications of the correlation function of the underlying GRF, representing a
more flexible method with respect to other available methods.

METMA X Workshop 174



N. D’Angelo et al. Local LGCPs

3. Locally weighted spatio-temporal minimum contrast

Combining the joint minimum contrast [6] and the local minimum contrast [1] procedures, we can obtain a
vector of parameters ψ̂i for each point i, by minimizing

MJ,i{ψi}=
∫ hmax

h0

∫ rmax

r0

{J̄i(r,h)− J(r,h;ψ)}2drdh, (3)

where J̄i(r,h) is the average of the local functions Ĵi(r,h), weighted by some point-wise kernel estimates. This
procedure not only provides individual estimates, but it does also account for the vicinity of the observed points,
and therefore the contribution of their displacement on the estimation procedure. Thus, consider the weights
wi = wi,σswi,σt given by some kernel estimates, where wσs and wσt are weight functions, and σs,σt > 0 are the
smoothing bandwidth. It is not necessary to assume that wi,σs and wi,σt are probability densities. For simplicity,
we shall consider only kernels of fixed bandwidth, even though spatially adaptive kernels could also be used.
Then, the averaged weighted local statistics J̄i(r,h) in Equation (3), for each point i, is

J̄i(r,h) =
∑

n
i=1 Ĵi(r,h)wi

∑
n
i=1 wi

.

In particular, we consider Ĵi(·) as the local spatio-temporal pair correlation function

Ĵi(r,h) = ĝi(r,h) =
1

4πr|W ×T |λ̂2 ∑
j 6=i

κε,δ(||ui−u j||− r, |ti− t j|−h)
ω(ui,u j)ω(ti, t j)

(4)

where ω is the edge correction factor. The kernel function κ has a multiplicative form κε,δ(||ui−u j||− r, |ti−
t j| − h) = κε(||ui− u j|| − r)κδ(|ti− t j| − h) where κε and κδ are kernel functions with bandwidths ε and δ,
respectively. Both of them are computed using the Epanechnikov kernel and the bandwidths are estimated with
a direct plug-in method.

4. Simulation study

A simulation study is carried out to assess the local estimation method proposed in Section 3. We assume
a stationary and isotropic LGCP with a separable structure of the covariance of the underlying GRF, with a
purely exponential model both in space and time as in Equation (1) and the vector of parameters given by
ψ = {σ2,α,β}. To simulate a point pattern from a homogeneous log-Gaussian Cox process, first, a realisation
S(u, t) from a spatio-temporal Gaussian Random Field is generated on a grid with dimension 50× 50× 50.
Conditioning on the realisation of the Random Field, a point pattern is obtained simulating an inhomogeneous
Poisson process with intensity given by exp(λ+ S(u, t)) where λ = log(n/|W ||T |). For each scenario, 200
point patterns are generated with n = 1000 expected number of points in the spatio-temporal window W ×T =
[0,1]2× [0,50]. We consider several degrees of clustering in the process with variance σ2 = {5,8} and scale
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Table 1: Mean (m) and quartiles of the distributions of the varying parameters estimated for the 200 spatio-
temporal LGCPs generated assuming an exponential form in both the spatial and temporal dimensions for the
GFR as in Equation (1).

True σ̂2 α̂ β̂

σ2 α β 25% 50% m 75% 25% 50% m 75% 25% 50% m 75%

5 0.05 2 5.27 6.30 6.45 7.60 0.05 0.07 0.14 0.09 1.77 2.26 2.63 2.97

0.10 4.64 5.51 5.67 6.47 0.09 0.11 0.13 0.15 1.80 2.32 2.61 3.08

0.25 3.68 4.39 4.63 5.37 0.19 0.24 0.34 0.32 1.69 2.22 2.50 2.92

0.05 5 4.36 5.43 5.54 6.58 0.05 0.07 0.12 0.09 3.36 4.43 5.03 5.93

0.10 4.13 4.96 5.14 5.97 0.09 0.11 0.14 0.15 3.40 4.45 5.09 6.17

0.25 3.29 4.10 4.27 5.02 0.17 0.24 0.40 0.34 3.04 4.21 4.89 5.90

0.05 10 4.08 5.03 5.20 6.12 0.05 0.06 0.10 0.08 5.69 7.85 8.61 10.54

0.10 3.66 4.44 4.66 5.50 0.08 0.11 0.16 0.14 5.64 8.00 8.85 11.07

0.25 3.05 3.73 3.97 4.70 0.16 0.22 0.35 0.30 5.15 7.09 8.15 9.98

8 0.05 2 7.26 8.23 8.29 9.37 0.05 0.06 0.07 0.08 2.27 2.85 3.36 3.87

0.10 6.32 7.26 7.40 8.36 0.08 0.10 0.12 0.13 2.25 2.84 3.17 3.72

0.25 5.07 5.97 6.16 7.13 0.17 0.22 0.32 0.29 1.97 2.62 2.83 3.43

0.05 5 6.72 7.64 7.76 8.83 0.05 0.06 0.08 0.08 3.35 4.43 5.05 6.11

0.10 5.73 6.74 6.91 7.99 0.08 0.10 0.13 0.13 3.29 4.29 4.82 5.81

0.25 4.79 5.61 5.81 6.69 0.15 0.19 0.29 0.26 3.01 4.17 4.58 5.59

0.05 10 6.11 7.06 7.14 8.14 0.05 0.06 0.08 0.08 5.37 7.50 8.30 10.22

0.10 5.15 6.19 6.33 7.24 0.08 0.10 0.12 0.12 4.93 7.04 7.88 9.84

0.25 4.19 5.05 5.23 6.19 0.14 0.19 0.28 0.26 4.57 6.51 7.60 9.54
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parameters in space and time, α = {0.005,0.10,0.25} and β = {2,5,10}, as done by [6]. The mean of the GRF
is fixed µ =−0.5σ2 . The results come in Table (1).

The results obtained are quite promising: indeed, even considering fixed bandwidths for the weights in the
proposed locally weighted minimum contrast, the procedure manage to provide quite precise estimates. This is
particularly evident if compared to the results in [6] and, even before, in [3], where the authors provide a num-
ber of simulation studied to assess the overall performance of the minimum contrast procedure under different
aspects, concluding that especially the variance σ estimates strongly tend to be underestimated. However, our
main goal here is not to provide an alternative to the classical global minimum contrast procedure, but instead
to estimate varying parameters. This objective is clearly achieved as we manage to obtain a whole distribution
for each parameter (of each analysed point pattern).

5. Conclusions

In this paper, we have introduced a novel local fitting procedure for obtaining space-time varying estimated
for a log-Gaussian Cox process fitted to the data. From a methodological point of view, we have resorted to
the joint minimum contrast procedure (which is appealing for its flexibility in dealing also with non-separable
covariances), extending it to the local context, and therefore allowing to obtain a whole set of covariance
parameters for each point of the analysed process.

By simulations, we have shown that the local proposal provides good estimates on average, if compared to
the global fitting alternatives. Future work regards the application of the proposed methodology to real spatio-
temporal point patterns, where it is of interest to study the characteristics of the underlying process, in relation
to the spatial displacement and the temporal occurrence of points. Some examples include seismology, forestry,
criminology, epidemiology, and so on.
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Abstract. In this paper we introduce a class of spatially correlated self-exciting spatio-temporal models for
count data that capture data model dependence, as well as dependence in a latent spatial process involving
distance-based covariates that vary naturally in space and time. We considered a B-splines procedure that
permits to handle space-time variation and non-linear dependencies. A Bayesian framework is proposed for
inference on model parameters. We analyze three distinct crime datasets in city of Riobamba (Ecuador). Our
model fits well the data and provides better predictions than more simple alternatives.

Keywords. Bayesian inference; B-splines; Crimes; Self-exciting process; Spatio-temporal patterns.

1. Introduction

Modeling time series of counts has received increasing attention since the 1950s. The conditional dis-
tribution of observed counts given past outcomes or a latent process comes from some well-known discrete
distributions, such as generalized Poisson and double Poisson distributions, that can treat overdispersion and
underdispersion, but they have some shortcomings or limitations. An alternative are integer-valued generalized
autoregressive conditionally heteroskedastic (INGARCH) models [4, 2, 7], that show flexibility in representing
a wide range of overdispersion and underdispersion cases. The stationary distribution of the INGARCH(1,1)
process is also equivalent to a stochastic process given in [4], or self-exciting point process. These processes
have shown beneficial to model the dynamics of earthquakes, epidemics, forest fires, traffic accidents, crimes,
etc.

This study is motivated by the analysis of crime data in the city of Riobamba (Ecuador) provided by three
different governmental agencies with the aim of understanding this crime behavior and its interaction with so-
ciety to further help public institutions to enhance proper actions. The overall challenge is how to appropriately
model the space-time dependence relationship between observations. Following the line of reasoning of [1], we
focus on INGARCH models for their relationship between the variance and the mean, and we further consider
spatial variation on a small scale by taking a spatial integer-valued generalized autoregressive conditionally
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heteroskedastic model due to its flexibility to describe the autocorrelation and variance with the mean propor-
tion of the data. In this framework, and following [1], we formulate a stochastic difference equation for the
intensity of the space-time process within a class of spatially correlated self-exciting spatio-temporal models
that capture both data model dependence as well as dependence in a latent spatial process. We note that the
model in [1] considers a linear regression structure in the covariates assuming these are constant in time. We
structure space-time dependency for our count data through a combination of distance-based covariates that
vary naturally in both space and time. We develop a B-splines procedure within a generalized additive model
that permits to handle space-time variation and non-linear dependencies. Our B-splines strategy is more flexible
and adapts better to the our case study.

2. Metodology

We focus on a SPINGARCH(1,1) model that overall allows to define the autocorrelation present in the
data and the mean-variance ratio with greater flexibility. We use a conditional Poisson distribution and place
spatio-temporal structure on the covariance of the latent Gaussian process. The data model Y (si, t) can be
defined conditionally on a process model X(si, t). As a result, the process model is a function of both ob-
servable spatial and/or temporal covariates and unobservable latent spatial errors. In our case, the spatio-
temporal intensity λ(s, t) provides the process model, and our full model is a stochastic difference equation
operating directly on the intensity function. Thus, crime counts in space and time, Y (si, t), are conditionally
distributed Poisson random variables for i = 1, . . . ,n, i.e., Y (si, t)|λ(si, t) ∼ Pois(λ(si, t)), with λ(si, t) repre-
senting the rate si in time t. Hence, E [Y (si, t)|λ(si, t)] = λ(si, t). We can assume that a change in crime rate
at a specific location and in a specific period is a function of particular spatial features of the location given
by αt = (α(s1, t),α(s2, t), · · · ,α(sn, t))T , together with two other factors, a natural deterioration χ, and repeated
victimization η. Thus the final model SPINGARCH(1,1) is defined through the following hierarchical structure:

Y (si, t)|λ(si, t)∼ Pois(λ(si, t)), (1)

with
E[Y (si, t)|λ(si, t)] = λ(si, t),

λt = exp(Xt + εt)+ηYt−1 +κλt−1,

Xt ∼ Gau
(

αt ,(In,n−ζC)−1
σ

2
)
,

εt ∼ Gau
(
0, In,nσ

2
ε

)
,

with Y (si, t) being defined conditionally on the intensity λ(si, t), which can be modeled using observable spatial
and temporal covariates α(si, t), as well as non-observable latent errors εt , where
λt = (λ(s1, t),λ(s2, t), . . . ,λ(sn, t))T is a Markov chain in (R+)n, and the same notation applies for Yt and
Xt . Note that In,n is the identity matrix, σ2 is the conditional variance, σ2

ε is the latent conditional variance,
and ζ controls the amount of spatial dependence in the model not captured by the covariates in αt . Large scale
spatial structure is accounted for in the latent process Xt by the spatial regression parameter αt , whereas small
scale spatial structure is accounted for by conditionally defining Xt . For the latter, a conditionally autoregressive
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(CAR) model is used (through spatially adjacent neighbors), X(si, t)|X(s j, t),s j ∈ N|si| ∼ N(µ(si, t),σ2), with
µ(si, t) = α(si, t)+ζ∑s j∈N|si|X(s j, t)−α(s j, t). If locations si and s j are neighbors, the entry (i, j) of C will be

one. Note that by adding space-time noise ε(si, t)
iid∼ N(0,σ2

ε) further variation in the spatio-temporal process is
allowed. The hierarchical model defined above depends on a set of parameters in the final level of the hierarchy
given by θ = (η,κ,σ,σε,αt ,ζ), similarly to a classical Besag-York-Mollié (BYM) model [6, 1] which defines a
fully Bayesian spatial model (see [9]). The action of the deterministic covariates depending on space or space-
time is highly non-linear onto the responses. Thus, we have used a generalized additive model (GAM) that
supports integrated smoothness estimation addressing the lack of linearity and others aspects. The relationship
between each predictor xi and the mean of the response variable, g(u), is indirect because it is calculated using
the smooth (usually splines with polynomial bases [8]) function f (xi), defined as g(u) = β0 +∑

p
i=1 fi(xi), with

ft being a smooth spatial surface in the t-th time. The generalized cross-validation criterion (GCV) was used to
estimate the smoothing parameters which provide the degree of smoothness. To define the version of smoothing
that best fits the data, we tested the joint interactions of the spatial covariates with crime.

3. Results

The city is divided into m = 141 administrative zones, whose centroids are denoted by
{s1,s2, . . . ,s141}. We count crimes per zone and month. We take average nearest-neighbor distances from
each crime to community police units, to surveillance cameras, to markets, to parks and to hospitals, and the
population enters the model as a spatial-only covariate of dimension m×1. Climatological variables were not
significant in our context crime events. Testing all possible combinations for a multivariate GAM we find that
the univariate GAM provides more robust predictions (see Figure 1).

Model η κ σ σε

αI
t = β0 + f2(cam)+ f4(par) 1.00 1.00 1.00 1.01

αII
t = β0 + f3(cc)+ f6(pob) 1.00 1.01 1.00 1.01

αIII
t = β0 + f1(upc)+ f2(cam) 1.00 1.00 1.00 1.02

Table 1: Final models and measure of chain equilibrium Rhat for posterior parameters.

Once the parameter αt is estimated depending on the covariates, and keeping fixed ζ = 0.99 near the edge
of the parameter space [1], the remaining parameters θ = (η,κ,σ,σε,αt ,ζ) are estimated using a Bayesian
approach. We use informative (prior) Beta distributions for η and κ, and Cauchy for σ and σε, but minimize
the impact on the posterior densities. The measures of chain equilibrium (Rhat) are the diagnostic statistics on
chain convergence (see Table 1) and for the three models are less than 1.05, so we conclude that the chains have
converged. Also we compute mean-square prediction errors (MSPE), and these are small enough, 0.45, 0.21
and 0.61 respectively.
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Figure 1: Crimes predictions using INAGRCH, SPINGARCH linear forms on the covariates and constant
over time, and SPINGARCH with B-splines on the covariates and evolving in time, for dataset I, II and III,
respectively.

4. Conclusions

This study formulates a statistical model that contains both latent spatial dependence and temporal de-
pendence in the form of a stochastic difference equation for the spatio-temporal intensity, i.e., this model is
consistent with common beliefs about how violence and crime evolve in space and time. Also our model in-
corporates the effect of exogenous covariates using non-linear B-splines evolving in time, which provides more
robust predictions. Main open ideas in this context include identifying crimes happening on the network of
streets in a city as this new support can enhance the modeling task (see [3]). We can also think of using the
Next Hit Predictor method (see [5]) in our particular context.
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temporal Epidemiology 31.

[7] Reinhart, A. (2018). A review of self-exciting spatio-temporal point processes and their applications.
Statistical Science 33, 330–333.

[8] Taylan, P (2010). On the foundations of parameter estimation for generalized partial linear models with
B-splines and continuous optimization. Computers Mathematics with Applications 60, 134–143.

[9] Thamrin, S. A. (2019). Geographical mapping of dengue fever incidence 2012-2016 in Makassar, Indone-
sia. IOP Conf. Series: Earth and Environmental Science 279, 1–8.

METMA X Workshop 183



184



A Nonparametric Boostrap Method for Heteroscedastic
Functional Data

M. Flores1,∗ , S. Castillo-Páez2 and R. Fernández-Casal3
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Abstract. The aim is to provide a nonparametric bootstrap method for data that consists of independent
realizations of a continuous one-dimensional process. The process is assumed to be non stationary, with a
functional mean and a functional variance, and dependent. The resampling method is based on nonparamet-
ric estimates of the model components. Numerical studies where carried out to check the performance of the
proposed procedure, trough the approximation of the bias and the variance of two estimators of the functional
mean.

Keywords. Resampling methods; Local linear estimation; Conditional variance; Variogram.

1. Introduction

Assume that Sn = {Yi(t)}n
i=1, for t ∈ [a,b]⊂R, is a set of n independent observations of a functional variable

Y (t) defined over R, verifying:
Yi(t) = µ(t)+σ(t)εi(t), (1)

being µ(t) and σ2(t) deterministic functions, which represent the trend and variance functions, respectively, and
εi(t) is a random error process with zero mean, unit variance and correlations

Cov
(
εi(t),εi′(t ′)

)
= δii′ρ

(∣∣t− t ′
∣∣) ,

for 1≤ i, i′ ≤ n and a≤ t, t ′ ≤ b, where δii′ = 1 if i = i′, δii′ = 0 if i 6= i′ and ρ(·) is the correlogram function.

In practice, each Yi(t) is observed in a discrete set of points t j ∈ [a,b] ⊂ R, with j = 1, . . . , p. Then, these
set of observations can be expresed as a matrix Y of order n× p, with Yi j = Yi(t j). Furthermore, if yi =

(Yi(t1), . . . ,Yi(tp))
> is the vector corresponding to the i-th row of Y, its covariance matrix Cov(yi) =Σ0 (within-

curve covariance matrix) has
(Σ0) j j′ = σ(t j)σ(t j′)ρ

(∣∣t j− t j′
∣∣) ,

for i = 1, . . . ,n. Consequently, Σ0 = DΣεD, where Σε (within-curve correlation matrix) is the covariance ma-
trix of εi = (εi(t1), . . . ,εi(tp))

>, for i = 1, . . . ,n, and D = diag(σ(x1), . . . ,σ(xn)).
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2. Nonparametric estimation

The proposed procedure starts with the nonparametric estimation of the trend, the conditional variance and
the dependence, following an iterative algorithm similar to that described in [1]. In this case, however, since
multiple realizations of the process are available, it was observed that a bias correction in the estimation of the
small-scale variability is not typically necessary.

The trend is estimated by linear smoothing of
{
(t j,Yi(t j)) : 1≤ i≤ n,1≤ j ≤ p

}
. This estimator can be

explicitly written in terms of the sample means Ȳ (t) = 1
n ∑iYi(t):

µ̂(t) = e>1
(

X>t WtXt

)−1
X>t Wt ȳ = s>t ȳ (2)

where ȳ = (Ȳ (t1), . . . ,Ȳ (tp))
>, e1 = (1,0)>, Wt = diag{Kh(t1− t), . . . ,Kh(tp− t)}, Xt is a matrix with the j-

th row equal to (1, t j− t), Kh(u) = 1
h K(u

h), K is a kernel function and h is the bandwidth parameter, which
determines the local neighborhood used to estimate the trend. This bandwidth should be selected taking the
dependence into account, for instance by using the “bias corrected and estimated generalized cross-validation”
criterion (CGCV) proposed in [2], bearing in mind that:

Cov
(
Ȳ (t j),Ȳ (t j′)

)
= 1

n σ(t j)σ(t j′)ρ
(∣∣t j− t j′

∣∣) .
The small-scale variability of the process, determined by the conditional variance and the spatial dependence

of the error process, is estimated from the residuals ri j = Yi(t j)− µ̂(t j). Estimates of the conditional variance,
σ̂2 = (σ̂2(t1), . . . , σ̂2(tp)), are obtained by linear smoothing of {(t j,r2

i j) : 1≤ i≤ n,1≤ j ≤ p}.

The dependence structure is estimated through the error semivariogram γε(u) = 1
2Var(ε(t)− ε(t + u)) =

1−ρ(u). A pilot local linear estimate is obtained by the linear smoothing of the semivariances,{(
t j− t j′ ,

1
2(ε̂i j− ε̂i j′)

2) : 1≤ i≤ n,1≤ j < j′ ≤ p
}
,

of the standardized residuals ε̂i j = ri j/σ̂(t j). In fact, as this estimator is not necessarily conditionally negative
definite (it cannot be used directly for prediction or simulation), a flexible Shapiro-Botha variogram model [3]
is fitted to the pilot estimates to obtain the final variogram estimate γ̂ε.

3. Bootstrap algorithm

The proposed boostrap procedure is as follows:

1. Form the standardized residuals matrix Ê, whose ith row is equal to ε̂i = D̂−1(yi − µ̂), where D̂ =
diag(σ̂2(t1), . . . , σ̂2(tp)) and µ̂= (µ̂(t1), . . . , µ̂(tp))

>.

2. Construct an estimate Σ̂ε of the within-curve correlation matrix from γ̂ε, and compute its Cholesky
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decomposition Σ̂ε = U>U.

3. Compute the uncorrelated standardized residuals E = ÊU−1 and scale them (by subtracting the overall
sample mean and dividing by their sample standard deviation).

4. Use the scaled values to derive an independent bootstrap sample E∗ (by resampling the rows and columns
of E).

5. Compute the bootstrap errors ε∗ = E∗U.

6. Obtain the bootstrap sample Y∗, with y∗i = µ̂+ D̂ε∗i , for i = 1, . . . ,n.

7. Repeat B times steps 4-6 to obtain the B bootstrap replicates {Y∗1, . . . ,Y∗B}.

The replicates derived from this algorithm can be used to approximate characteristics of the distribution
of a statistic under study. For instance, they can be used for approximating the standard error and bias of an
estimator.
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Castillo Páez has been supported by the Universidad de las Fuerzas Armadas ESPE, from Ecuador and the
research of Miguel Flores has been supported by the Universidad Escuela Politécnica Nacional, from Ecuador.

References

[1] Castillo-Pez, S., Fernández-Casal, R. and Garcı́a-Soidán, P. (2017). Nonparametric estimation of the
small-scale variability of heteroscedastic spatial processes. Spatial Statistics 22, 358–370.

[2] Francisco-Fernández, M. and Opsomer, J.D. (2005). Smoothing parameter selection methods for nonpara-
metric regression with spatially correlated errors. The Canadian Journal of Statistics 33, 279–295.

[3] Shapiro, A. and Botha, J.D. (1991). Variogram fitting with a general class of conditionally non-negative
definite functions. Computational Statistics and Data Analysis 11, 87–96.

METMA X Workshop 187



188



A nonparametric approach for direct approximation of the
spatial quantiles

P. Garcı́a-Soidán1,∗ and T.R. Cotos-Yáñez2
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Abstract. The approximation of the spatial quantiles has been addressed through different mechanisms. On
the one hand, the kriging techniques can be adapted to deal with this issue, by minimizing the corresponding
estimation variance. Other proposals are based on minimizing instead a generalized version of the mean ab-
solute deviation or on inverting an estimate of the spatial distribution. However, these approaches suffer from
several drawbacks, regarding their lack of optimality or the fact of not providing direct approximations of the
spatial quantiles. Thus, the current work introduces an alternative methodology for estimation of the quantiles
that tries to overcome the aforementioned issues, by proceeding similarly as done for independent data through
the order statistics. With this aim, the available observations are appropriately transformed to yield a sample
of the process at each target site, so that the resulting data are then ordered and used to derive the spatial
quantile at the corresponding location.

Keywords. Distribution function; Kriging; Order statistics; Quantile; Spatial data.

1. Introduction

The approximation of the quantiles provides a broad information about the random variable under study,
as well as allows its comparison with other variables. For independent data, this issue can be easily solved
through the order statistics, whose consistency can be checked for continuous distributions. A smoother version
is obtained by considering a kernel-type distribution estimator [3] and this procedure has been adapted for
dependent observations [4], so that the underlying spatial distribution is first approximated and then inverted
to provide the target quantile. The kriging methodology can also be employed for this purpose, by minimizing
the resulting estimation variance, although it does not necessarily lead to optimal results, when applied to non-
gaussian processes. An alternative has been suggested in [2], based on minimizing a generalized version of the
mean absolute deviation, which is not a simple task.

In view of the previous comments, the current work aims to introduce a procedure to approximate the spa-
tial quantiles, which overcomes the aforementioned drawbacks and provides direct quantile estimates. Our
proposal tries to mimic the simple mechanism, designed for independent data, which uses the order statistics
for this goal, although not applied on the original observations but on transformations of them, which represent
a sample of the variable under study.
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2. Main results

Let us assume that {Z(s) ∈R : s ∈D⊂Rd} is a stochastic spatial process, where D denotes the observation
region. We require the following model for the spatial process:

Z(s) = µ(s)+Y (s)

with function µ being the deterministic trend of Z, namely, µ(s) = E[Z(s)], for all s ∈ D, and Y representing a
strict stationary random process, with zero mean.

The goal of the current work is to introduce an approach that approximates the α-quantile of Z(s), denoted
by zα,s, for any α∈ (0,1) and s∈D. Therefore, Fs (zα,s)=α, where Fs stands for the unidimensional distribution
of Z(s), namely, Fs(z) = P(Z(s)≤ z), for all z ∈ R.

Suppose that n data Z(s1), ...,Z(sn) have been collected at the respective locations s1, ...,sn. Then, we can
take Zi(s) = Z (si)−µ(si)+µ(s), for i = 1, . . . ,n. The set of transformed observations Zi(s) represents a sample
of size n of Fs, since P(Zi(s)≤ z) = Fs(z), for all z ∈ R and i = 1, . . . ,n.

Then, a natural estimator of Fs(z) is given by the empirical distribution of the transformed data Zi(s):

F̂s(z) =
1
n

n

∑
i=1

I{Zi(s)≤z}

Under several hypotheses, involving an increasing-domain asymptotics framework, we can prove that F̂s(z)
is an unbiased and consistent estimator of Fs(z), for all z ∈ R. Thus, this estimator supports the extension to
this setting of the typical nonparametric approach employed for independent data and based on considering the
approximated α-quantile of the ordered sample.

Following the previous idea, our proposal consists of first computing the order statistics of the transformed
data Zi(s), given by Z(1)(s) < Z(2)(s) < ... < Z(n)(s), and then estimating zα,s through ẑα,s = Z(k)(s), with k
being the smallest integer satisfying that α≤ k

n .

By assuming some regularity conditions, we can check that:

ẑα,s
P−→ zα,s

for all α ∈ (0,1).

A smoother alternative for estimation of zα,s can be derived by considering a weighted distribution estimator
F̃s, instead of F̂s:

F̃s(z) =
n

∑
i=1

wiI{Z(i)(s)≤z}
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where wi =
K( s−si

h )
∑

n
i=1 K( s−si

h )
, K represents a d-dimensional kernel density and h stands for the bandwidth parameter.

Write w(k) for the weight associated to Z(k)(s) and define W(k) = ∑
k
i=1 w(i). With similar arguments as those

that can be applied to ẑα,s, we could prove that z̃α,s = Z(k)(s) provides a consistent estimator of zα,s, where k
denotes the lowest integer such that α≤W(k).

To illustrate the behavior of the proposed approaches for approximation of the spatial quantiles, numerical
studies have been developed with simulated data. With this aim, 500 samples of size 100 from bivariate gaus-
sian processes, with linear trend, have been drawn on D = [0,1]× [0,1]. The sampling locations were taken
on regular grids. In addition, exponential and spherical semivariograms were considered for the dependence
structure, with variance 0.25, range 0.25 and nugget 0.1.

For each data set, the theoretical quantiles were estimated through ẑα,s (method 1) and z̃α,s (method 2) at
locations s(1) = (0.05,0.05), s(2) = (0.25,0.25) and s(3) = (0.45,0.45). Figure 1 displays the averages of the
squared errors of the quantiles estimators that were achieved at the three target sites.

Figure 1: Averages of the squared errors of the quantiles estimators obtained for simulated gaussian data derived
from the exponential model (left panel) and the spherical model (right panel), at the three target locations s(1)

(black color), s(2) (blue color) and s(3) (green color). The dotted and continuous lines respectively represent the
results attained through methods 1 and 2.

The results depicted in Figure 1 provide small values for the averaged squared errors, except for the extreme
quantiles. It is also worth noting the similar performance that both approaches show for estimating the spatial
quantiles. These preliminary conclusions will be checked by accomplishing an extensive simulation study that
covers a greater variety of scenarios.

Alternative quantile estimates could be derived by linear interpolation of the adjacent data Z(k)(s), obtained
by either of the two proposals, similarly as done for independent observations [1]. This way of proceeding
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yields additional options for approximation of the spatial quantile, such as:

z̄α,s = (1−δ)Z(k−1)(s)+δZ(k)(s)

where δ = αn− k+1.

Acknowledgments

The first author’s research was partially funded by the Spanish Ministry of Science and Innovation project
PID2020-113979RB-C22, by the ERDF and by the Xunta de Galicia (Spain), under project ED431C 2019/25
SC7-GRC 2019 and under agreement for funding atlantTIC (Atlantic Research Center for Information and
Communication Technologies). The second author’s work has been partially supported by project PID2020-
118101GB-I00 from the Spanish Ministry of Science and Innovation (AEI/10.13039/501100011033).

References

[1] Hyndman, R. J.; Fan, Y. (1996). Sample quantiles in statistical packages. The American Statistician 50,
361–365.

[2] Journel, A. G. (1984). mAD and conditional quantile estimators. In: Verly, G.; David, M.; Journel, A. G.;
Marechal A. (Eds), Geostatistics for natural resources characterization (pp. 261–270). Dordrecht, The
Netherlands. Springer.

[3] Nadaraya, E. A. (1964). Some new estimates for distribution functions. Theory of Probability and its
Applications 15, 497–500.

[4] Ould Abdi, S. A.; Dabo-Niang, S.; Diop, A., Ould Abdi, A. (2010). Consistency of nonparametric condi-
tional quantile estimator for random fields. Mathematical Methods of Statistics 19, 1–21.

METMA X Workshop 192



Modeling Spatial Dependencies of Natural Hazards in Island
Nations using Barriers

S. Chaudhuri1 , P. Juan1,∗ , L. Serra-Saurina2 , D. Varga2 and M. Saez2
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Abstract. Natural hazards like flood, cyclone, landslide, earthquake or, tsunami have deep impacts on environ-
ment and society causing damage to both life and property. Computational modeling provides an essential tool
to estimate the damage by incorporating spatial uncertainties and local geographic and climatic conditions.
The objective of the current study is to explore the application of Integrated Nested Laplace Approximation
(INLA) with Stochastic Partial Differential Equation (SPDE) implemented using barrier model. Classical sta-
tionary models in spatial statistics inappropriately smooth over features having boundaries, holes, or physical
barriers in the study area, e.g. dispersed islands. This leads to the use of non-stationary models like barrier
model. In the present study, we have explored the differences between the classical spatial approach and the
barrier model using natural hazards data from Maldives. In the broader picture, this research work contributes
to the relatively new field of barrier models as well as to initiate and develop scientific research works on the
unique island nation of Maldives.

Keywords. Barrier mesh, INLA-SPDE, Islands, Maldives, Natural hazards.

1. Introduction

From an environmental point of view, natural hazards represent a danger to ecosystems, directly affecting
geomorphological and hydrological processes, as well as biodiversity. They also endanger human settlements
with serious consequences for society [8, 3]. Modeling natural disasters is very important to characterize
these phenomena and provide tools to overcome them. Estimating natural hazards, including spatial effects
and local conditions, both climatic and geographic, will help in management and even allow anticipation of
events [2]. Traditionally, Bayesian approach with Markov Chain Monte Carlo (MCMC) simulation methods
can be used to fit for processing generalized linear mixed model (GLMM) [4]. For approximation Bayesian
inference a computationally more efficient prediction of the marginal distributions can be achieved by using
integrated nested Laplace approximation (INLA) [6]. The analysis of spatial point processes by implementing
INLA approach can be explicitly linked between Gaussian function (GF) and Gaussian Markov random fields
(GMRF) through SPDE. We are estimating the logarithm of expected number of events (ηk) occurring at kth
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sub-region from the entire study area using the following linear predictor:

log(ηk) = β0 +
M

∑
m=1

βmzmk +
L

∑
l=1

fl(vlk) (1)

where, β0 is a scalar, which represents the intercept, β = (β1, . . . ,βM) are the coefficients of the linear effects of
the covariates z = (z1, . . . ,zM) on the response, and f = { f1(.), . . . , fL(.)} is a collection of functions defined in
terms of a set of other covariates represented as v = v(v1, . . . ,vL), different from the previous covariates [6]. In
the current study, the function used is SPDE that is used to analyze the spatial effect with the Matérn covariance
function.

The current study is conducted to explore and model occurrence of natural hazards in the island nation of
Maldives. The country consists of 1200 dispersed islands on both sides of the equator. A stationary model can
not be aware of the coastline and the island boundaries and will inappropriately smooth over the features. This
might result to an unrealistic assumption [1]. In the recent research work by [1] a new non-stationary model
was constructed for INLA having syntax very similar to the stationary model. The model, named as barrier
model has been designed considering water (Finnish Archipelago Sea) as normal terrain and it is aware of the
distinct coastlines and boundaries considered as physical barriers. In the present study, we have explored the
barrier model in a converse mode where water body acts as barriers for the dispersed islands and natural hazards
are the sample events considered precisely on the land area of the islands.

2. Data sets

Republic of Maldives is located on the south-western region off the coast of India in the Arabian Sea of the
Indian Ocean. The Maldivian archipelago consists of about 1190 coral islands grouped into 26 natural atolls.
Out of which 188 islands are inhabited [5].

The natural hazards dataset of Maldives for the year 2004, contains 190 records of tsunami affected islands,
all being inhabitat islands and provides the number of direct and indirect affected people for individual island.
The dataset is published by open data sharing platform, Humanitarian Data Exchange (HDX) managed by
the United Nations Office for the Coordination of Humanitarian Affairs (OCHA) under a Creative Commons
Attribution 4.0 International license. It is noteworthy to mention that natural hazards like cyclone, typhoon,
storm, flood and water shortage can also be accessed from the same open portal. We have used tsunami data as
a showcase for the current study.

3. Methodology and Results

Traditionally spatio-temporal modeling using INLA-SPDE is performed by generating a SPDE mesh for
the entire study region [7]. In that case, the model result might be unpreventably generalised as it is going to
estimate predicted values for the regions where there is no chance of incidents to happen. We construct some
spatial polygon covering our study area, then, we define our study area, as a manually constructed polygon,
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Figure 1: Study area: Republic of Maldives is one of the smallest countries in Asia and the Pacific having the
chain of coral islands across an archipelago more than 800 kilometers long and 130 kilometers wide.

Figure 2: Figure on left shows the locations of tsunami affected regions of individual atolls which includes
enclosed lagoon or basin, forereef, subtidal reef, pass reef flat and land on reefs. The figure on the right shows
the same affected locations precisely on inhabited land on reefs areas.

and intersect this with the coastal area. Since we have a polygon for land, we take the difference instead of an
intersection, finally, we construct the mesh we are going to use. The new polygon is where our model assumes
there to be land, hence we use this polygon also for plotting the results.
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Figure 3: As showcase, the southernmost atoll of Maldives, Addu atoll has been considered for the current
study. Both figures display the tsunami affected regions for Addu atoll. Figure on left depicts both the lagoon
and reef areas of the atoll, while figure on right shows only land on reefs areas.

Figure 4: Figure on left represents SPDE triangulation with tsunami affected regions (highlighted in yellow)
for the entire region. Figure on right is the same triangulation generated using barrier model where land on
reefs are considered as normal terrain and the water bodies (ocean and lagoons) act as physical barriers. In
the first case the number of triangulations in the SPDE mesh is 10490 while the barrier model generates 3073
triangulations.

In spatial modelling, classical models are unrealistic when they smooth over holes or physical barriers. Bar-
rier model is more realistic with both sparse data and complex barriers and computational cost is the same as
for the stationary models [1]. The current study explore the application of barrier model and relate with spatial
dependencies of natural hazards. Barrier models can be appropriate tools to model different types of environ-
mental phenomena that have a clear anisotropic behavior.
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Abstract. Diabetic neuropathy is a disorder characterized by impaired nerve function. The number of epi-
dermal nerve fibers (ENFs) per epidermal surface decreases dramatically, and the two-dimensional spatial
arrangement of ENFs becomes more clustered as the neuropathy advances. The entry, branching and termina-
tion points of epidermal nerve fibers obtained from the feet of healthy controls and subjects at the earliest stage
of the neuropathy are treated as realizations of multitype, marked three-dimensional point processes. The main
interest is studying and comparing the complete ENF tree structure between the two groups. For this purpose,
three dimensional point process models allowing interactions between the end points within cylindrical regions
centered at each point are developed and fitted to the data in the two groups. Due to the anisotropic nature of
the data, goodness of fit evaluation of the model is performed using the cylindrical K function.
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Abstract. Wildlife-vehicle collisions present an important coexisting problem between human populations
and the environment. These type of accidents are a serious problem for the life and safety of car drivers, cause
property damage to vehicles, and affect wildlife populations. We present a new approach based on algorithms
used to obtain minimum paths between vertices in weighted networks to obtain the optimal (safest) route be-
tween two points (departure and destination points) in a road structure based on wildlife-vehicle collision point
patterns. We have adapted the road structure into a mathematical linear network and analysed it using some
graph theory methodologies. This new approach has been illustrated with a case study in the region of Cat-
alonia, North-East of Spain. This example shows the usefulness of our new approach to identify optimal path
between pair of vertices based on weights associated to each edge.

Keywords. Point patterns; Road safety; Spatial analysis; Wildlife-vehicle collisions

1. Introduction

Wildlife-vehicle collisions (WVC) present an important coexisting problem between human populations
and the environment. These type of accidents are a serious problem for the life and safety of car drivers, cause
property damage to vehicles [4], and are a real peril to wildlife populations [3]. As this type of accidents do
not occur randomly neither in space nor in time, in the past decades there has been a growing interest in the
analysis and the modelling of such type of events [5], in particular for identifying areas with a high occurrence
of accidents (hotspots) [7]. A tentative way to investigate such space events, implies the analysis of point lo-
cations (in this case WVC) distributed on linear structures (road configurations). As the occurrence of WVC
are affected by several ecological, biological, and meteorological covariates together with some structural road
characteristics, one may expected that distinct road sections will have distinct probabilities of having a WVC
assuming the covariates surrounding this road area. This suggests the possibility of using weighted graphs
to model the risk of WVC, and to define distinct path configurations to optimize this risk. Weighted graphs,
based on WVC information, could be considered to find the safest road path between two vertices (a departure
and a destination point). our main aim in this paper is to develop a new approach adapting algorithms used to
obtain minimum paths between vertices in weighted networks to model road traffic safety based on WVC point
patterns.

201



P. Llagostera et al. Optimal path selection for road traffic safety

2. Linear network and point patterns

We represent the road configuration as a linear network L as defined in [1]. Based on this linear configu-
ration and on the point pattern of WVC on L, we obtain an estimator of the rate or intensity function of the
point pattern of WVC on L, assuming the diffusion estimator proposed by [6] and implemented in the Spatstat
R package [2] as a tentative kernel intensity estimator. Based on this intensity function, we obtain the average
intensity value for each edge of L as the integral of this intensity function over a edge. Now each line segment
has a weight that represents the average of WVC. This value will be considered as the weight for each line
segment to evaluate the risk of having a WVC. For instance, if we consider a constant point intensity, longer
line segments are expected to have more accidents than shorter ones, and therefore, the shortest path between
two prescribed points on L will result also in the safest one.

3. Algorithms used to obtain minimum paths between vertices in weighted net-
works

Several algorithms have been proposed to calculate the minimum path between two vertices in a weighted
network, and probably the most used are the Dijkstra algorithm, the Bellman-Ford algorithm, the Floyd-
Warshall algorithm and the Johnson algorithm. These algorithms are defined to explore weighted networks
in search of the path between two points (usually vertices) that has minimum cost. This cost is usually defined
as the total sum of the weights associated with the edges of each path. Here a path is defined as a set of unique
edges that connects distinct vertices starting from a vertex origin and ending with a vertex destination. In this
work, we consider two distinct problem. First, we calculate the total number of possible paths between two
points (vertices) and, second, rank the top K-best paths between them, based on a given criterion. To accom-
plish with the first question we consider an adaptation of the well-known algorithm called Depth First Search
(DFS) from the igraph R library, and for the second problem, we use the Yen’s algorithm [8].

Figure 1: Left and centre: location of the study area together with the location of 6590 roadkills during the
period 2010−2014 and the underlying road network in Catalonia (North-East of Spain), given in km. Right: a
magnification of the study region around the city of Lleida (40 km × 40 km) with the location of 491 roadkills.
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Figure 2: Right: resulting point intensity (roadkills) for the roadkill point pattern based on the diffusion estima-
tor with a bandwidth value around 750 meters. Left: weighted network structure based on the average number
of wildlife-vehicle collisions for each linear segment.

S

B

S

B

Figure 3: Right: Linear structure of the study region together with the resulting shortest path for the ori-
gin/destination points, Soses (S)/Bell-lloch d’Urgell (B) (blue line). Left: resulting safest path for this pair of
origin/destination points (green line).

4. Analysing the Wildlife-vehicle collision dataset

We analyse the spatial structure of a dataset containing 491 WVC occurred in a squared area (40 km × 40
km) around the city of Lleida, North-East of Spain (see Figure 1) during the period 2010-2014. This study
area involves 459.050 km of roads for three distinct road categories, namely, highways and paved roads. The
Department of Territory and Sustainability of the Autonomic Government of Catalonia (https://web.gencat.cat)
provided the roadkill records and the road structure for this study. To illustrate the performance of our new
approach, we consider one possible scenario assuming this wildlife-vehicle collision data. Figure 2 shows the
resulting point density based on the diffusion estimator with a bandwidth value around 750 meters chosen to
provide a good visual fitting to the point pattern, together with the weighted network structure based on the
average number of wildlife-vehicle collisions for each edge. We modify the DFS and the Yen’s algorithm to
find the safest paths between two real town locations Soses and Bell-Lloc d’Urgell (see Figure 3 for town loca-
tions). Other pair of vertices on L could have been considered. Figure 3 shows the safest path between this pair
of origin/destination points together with the shortest path between these two locations. This highlights that the
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safest path is not the shortest one between these two locations. Note that this safest path is the best road route
over 607.416 paths obtained by combining the 410 vertices and 437 edges of this linear network configuration.

5. Future work

The next step in our work is to consider traffic flow information in our optimization procedure. Traffic flow
information, such as, vehicle traffic volume is crucial to full understand WVC. For instance, two roads with
similar intensity of accidents, the road with higher traffic volume is, probably, safer than that with a lower
traffic volume. For the same occurrence of accidents the road with a higher traffic volume has less accidents
per vehicle than the road with lower traffic volume.
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Abstract. Event Studies (ES) are statistical tools that assess whether a particular event of interest has caused
changes in the level or volatility of one or more relevant time series. We are interested in ES analyses applied
to multivariate time series characterized by high spatial dependence. An example of such structures of data are
the concentrations of air pollutants observed on geo-referenced monitoring networks located on specific terri-
tories. Recent literature showed that cross-sectional dependence is capable of dramatically compromising the
performance of ES statistics if not properly adjusted. The objective is to show how the use of spatio-temporal
geostatistical models to perform ES applied to georeferenced data, instead of the classical univariate regression
models, allows to highlight in a very accurate way the actual effect of shocks due to the events of interest. In
particular, we compare ES statistics (both adjusted and non-adjusted with respect to spatial cross-correlation)
obtained through three models: 1) Hidden Dynamics Geostatistical Model or HDGM (spatio-temporal model);
2) multiple linear regression (purely temporal model); 3) multiple linear regression with ARIMA errors (purely
temporal model). The models are applied to the case study of air quality in Lombardy (Northern Italy), one of
the most critical areas for pollution in Europe. The results show that the HDGM is capable of modelling the
concentrations and the correlation between stations in a much more precise way than regression models, with
the direct consequence of much more reliable and realistic estimates of ES statistics.

Keywords. Event Studies; Geostatistics; HDGM; Air quality; Spatial cross-sectional dependence.

1. Event Studies statistics and intervention analysis

Event studies [3], hereafter ES, are statistical tools used to assess whether a particular event of interest has
caused changes in the level or volatility of one or more relevant time series. ES can be directly connected with
branches of statistics devoted to the impact assessment of policies or unexpected shocks, as well as intervention
analysis. However, while statistical intervention analyses are common tools in studying the air quality and the
impact of pollution mitigation policies [4, 6], event studies are only recently receiving attention in pollution-
related fields such as energy and oil commodity markets [5, 9, 10].
ES are tools grounded in the offline hypothesis testing methods of [1], in which a without change scenario
(i.e., no abrupt changes occurred in the observed data) is compared to a with change scenario (i.e., the data
were statistically significantly affected by some shock or event). In ES, the idea is to segment the available
observations over time into two windows: a first part is used to estimate the parameters of the regression model
(i.e. the estimation window), while the second part is used to quantify the effect of the intervention without
re-estimating the model (i.e. the event window). The estimation window must be unaffected by the intervention
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to produce unbiased parameter estimates.

2. Addressing the spatial cross-sectional dependence in ES

We are interested in ES analyses applied to multivariate time series characterized by high spatial (cross-
sectional) dependence. An example of such structures of data are the concentrations of air pollutants observed
on geo-referenced monitoring networks located on specific territories. As discussed by [7], the presence of high
cross-sectional dependence immediately leads to strong biases in classical ES test statistics and misidentifying
of the outcomes of the events of interest. Considering the case of airborne pollutants measured through ground
monitoring networks, cross-sectional dependence is a direct consequence of the spatial correlation existing the
sampling points in space. Indeed, it is reliable to assume that control units located at close distances record
similar values under the same environmental conditions.

To address the spatial cross-correlation issue, we adopt a twofold adjustment with respect to classical event
studies frameworks: first, we use a linear mixed spatio-temporal regression model called Hidden Dynamics
Geostatistical Model (HDMG) [2] to model the relationship between observed concentrations and several ex-
ogenous factors, such as meteorology and calendar effects, and at the same time to model the spatio-temporal
dynamics between observations. This model will be compared with purely temporal regression models (i.e.,
not adjusted for spatial dependence); second, we apply and compare a series of sixteen ES test statistics, both
parametric and nonparametric, some of which directly adjust for cross-sectional dependence.

3. Hidden Dynamics Geostatistical Model and ES statistics

We consider that the data are driven by a spatio-temporal process {Y (s, t) ∈R : s ∈ D, t = 1, . . . ,T}, where
D is the spatial domain and t represents a discrete point of time. HDGM is composed by a random effects
term w(s, t) modelling the spatial and temporal dependence, and by a fixed effects term v(s, t) accounting for
all exogenous regressive effects. That is,

Y (s, t) = v(s, t)+w(s, t)+ ε(s, t) (1)

with ε(s, t) being the error vector that is assumed to be independent and identically distributed across space
and time with mean zero and a constant variance σ2

ε . The random effects term w(s, t), which accounts for the
spatio-temporal dependence in the random process Y (s, t), can be defined using a Markovian process for all
the temporal dependencies and interactions and having a spatial Matrn covariance function. The maximum
likelihood estimates is computed using the EM algorithm, which is implemented together with the parameter
variance-covariance matrix computation in D-STEM software [8].

Let Ω0 = T0 + 1,T0 + 2, ...,T1 be the set of time indexes included in the estimation window, and Ω1 =
T1 + 1,T1 + 2, ...,T2 be the time indexes at which we want to test the presence of abnormal movements on the
residuals (i.e. the event window). By abnormal residuals (ARst), we define the residuals of the regression of the
dependent variable Y (s, t) calculated using the event window Ω0 at each location s, i.e. ARst =Y (s, t)−Ŷ (s, t).
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The fitted values Ŷ (s, t) are the value of Y (s, t) that would be expected if the event did not take place. By the
term cumulated abnormal residuals (CARs,τ) we mean the cumulative sum of abnormal residuals (ARst) in a
given time window. The null hypothesis of the ES is that CARs,Ω1 during the event-window have null mean
value (i.e. no abrupt change during the event window), whereas the alternative hypothesis is that the cumulated
abnormal residuals in the event-window have negative mean value (i.e. reduction over the event window). The
event study is performed considering a set of sixteen test statistics, as in the study of [7], some of them directly
adjusted for cross-sectional dependence.

Figure 1: Abnormal residuals for NO2 from HDGM for the whole sample at the 84 monitoring sites. The solid
yellow lines are the pre-event and during-event average NO2 concentrations, respectively.

4. Application: air quality and COVID-19 in Lombardy

We present an empirical application of ES analysis concerning the effect of the lockdown restrictions im-
posed on air quality in the Lombardy region (Italy) in response of COVID-19 disease spread in 2020. The aim
is to test whether traffic and mobility restrictions have affected the average levels of nitrogen oxide concentra-
tions by exploiting several test statistics applied to daily concentrations of NO2 at 84 ground monitoring stations
from the 9th March to 18th May 2020. Figure 1 shows the estimated abnormal residuals using the HDGM over
the whole window. The plot highlights that the HDGM is able to predict very well the spatial and temporal
dynamics of the concentrations (i.e. absence of seasonality or patterns in the residuals and cross-correlation on
average equal to 0.07), allowing to clearly emphasize the mitigating effect of the lockdown (vertical shift from
March 2020). The results support the hypothesis of a generalized reduction of the average nitrogen dioxide
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Spatial dep. Statistic HDGM lm regARIMA

Value Signif. Value Signif. Value Signif.

Adjusted P1 -16.90 *** -13.94 *** -1.94 **

Adjusted P2 -46.25 *** -13.84 *** -1.94 **

Not-adjusted cross t test -21.40 *** -15.36 *** -9.56 ***

Not-adjusted crude dep t test -29.03 *** -14.14 *** -1.75 **

Not-adjusted T skew -20.35 *** -21.41 *** -13.38 ***

Not-adjusted Z patell -229.84 *** -88.58 *** -10.68 ***

Adjusted Z patell adj -72.21 *** -15.55 *** -1.83 **

Not-adjusted Z BMP -29.49 *** -21.14 *** -10.59 ***

Adjusted Z BMP adj -8.74 *** -2.92 *** -1.41 *

Adjusted T grank -11.26 *** -2.57 *** -1.71 **

Not-adjusted Z grank -14.95 *** -15.06 *** -9.61 ***

Adjusted Z grank adj -5.65 *** -2.57 *** -1.71 **

Adjusted CumRank -30.45 *** -12.91 *** -2.11 **

Adjusted CumRank mod -31.40 *** -13.31 *** -2.17 **

Adjusted CumRank t -78.48 *** -14.44 *** -2.17 ***

Not-adjusted CumRank Z -108.96 *** -81.36 *** -12.39 ***

Adjusted CumRank Z adj -41.13 *** -13.84 *** -2.18 **

Adjusted CorradoTuckey -46.24 *** -13.83 *** -1.94 **

Table 1: Test statistics for NO2. H0: CARΩ1 = 0 (i.e. the average of cumulative abnormal residuals is null
during the event period) VS H1: CARΩ1 < 0 (i.e. the average of cumulative abnormal residuals reduced during
the event period).
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concentrations in the region. Indeed, for all the model considered, all the implemented ES statistics unani-
mously suggest that the lockdown restrictions caused significant reductions of NO2 concentrations all over the
region (see Table 1). Regarding cross-correlation, the adjusted test statistics show smaller estimates, compared
to the unadjusted statistics, and are more consistent with the corresponding probability distributions.

References

[1] Basseville, M. and Nikiforov, I. (1993). Detection of Abrupt Change Theory and Application, volume 15.

[2] Calculli, C., Fasso, A., Finazzi, F., Pollice, A., and Turnone, A. (2015). Maximum likelihood estimation
of the multivariate hidden dynamic geostatistical model with application to air quality in apulia, italy.
Environmetrics, 26(6):406417, 2015.

[3] Campbell, J.Y., Lo, A.W., MacKinlay, AC., and Whitelaw, R.F. (1998). The econometrics of financial
markets. Macroeconomic Dynamics, 2(4):559562.

[4] Cujia, A., Agudelo-Castaneda, D., Pacheco-Bustos, C., and Calesso-Teixeira, E. (2019). Forecast of pm10
time-series data: A study case in caribbean cities. Atmospheric Pollution Research, 10(6):20532062.

[5] Demirer, R. and Kutan, A.M. (2010). The behavior of crude oil spot and futures prices around opec and
spr announcements: An event study perspective. Energy Economics, 32(6):14671476.

[6] Grange, S.K. and Carslaw, D.C. (2019). Using meteorological normalisation to detect interventions in air
quality time series. Science of The Total Environment, 653:578588.

[7] Pelagatti. M. and Maranzano, P. (2021). Nonparametric tests for event studies under cross-sectional de-
pendence. Quarterly Journal of Finance Accounting, 59.

[8] Wang, Y., Finazzi, F., and Fasso, A.,(2021). D-stem v2: A software for modeling functional spatio-
temporal data. Journal of Statistical Software, 99(10):1 29.

[9] Zha, D., Zhao, T., Kavuri, A.S., Wu, F., and Wang, Q. (2018) An event study analysis of price ad- justment
of refined oil and air quality in china. Environmental Science and Pollution Research, 25(34):34236 34246.

[10] Zhang, X., Yu, L., Wang, S., and Lai, K.K. (2009). Estimating the impact of extreme events on crude oil
price: An emd-based event analysis method. Energy Economics, 31(5):768778.

METMA X Workshop 211



212



Risk analysis of a log-Gaussian Cox process under scenarios of
separability and non-separability

A. Medialdea1,∗ , J.M. Angulo1 and J. Mateu2

1Department of Statistics and Operations Research, University of Granada, Granada, Spain; amedialdea@ugr.es,
jmangulo@ugr.es 2Department of Mathematics, University Jaume I, Castellón, Spain; mateu@mat.uji.es
∗Corresponding author

Abstract. Log-Gaussian Cox processes define a flexible class of spatio-temporal models which allow the
description of a wide variety of dependency effects in point patterns. In this context, the analysis of a spatio-
temporal point pattern, corresponding to observed forest fires in Nepal, is performed under two scenarios of
separability and non-separability of the spatial and temporal dimensions. The predictive performance of each
model is compared graphically using risk maps.

Keywords. Conditional simulation; log-Gaussian Cox process; non-separability; risk maps; spatio-temporal
point process.

1. Introduction

Log-Gaussian Cox processes define a class of doubly stochastic Poisson processes useful to model point
patterns which are environmentally driven. The clustering structure observed in these patterns can be described
by the inclusion of random heterogeneities in an unobservable intensity function. Typically, spatio-temporal
point processes have been modeled considering a separable structure of space and time dimensions. Here, we
propose a model which combines a non-separable structure for the first-order intensity function and a non-
separable correlation structure for the underlying random field, allowing to reflect the interaction of spatial and
time dimensions present in the pattern.

2. Statistical model

We consider a two dimensional spatial region S corresponding to Nepal and discrete times T = {1,2, ...,T}
divided in daily intervals from 2012-02-01 to 2016-04-26, retaining the last six days for testing the model. The
point process formed by the occurrence of forest fires in S×T is assumed to follow a log-Gaussian Cox process
driven by an intensity function which, according to the specifications in [1], takes the form:

Λ(u, t) = λ(u, t)exp{G(u, t)} ,

where G is a Gaussian process with E [G(u, t)] = µ, E [exp{G(u, t)}] = 1 and variance-covariance matrix
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Cov(G(u, t) ,G(v,s)) =C (‖u−v‖, |t− s|) =C (r,h).

Separable and non-separable spatio-temporal scenarios have been considered as shown in table 1.

Scenario Deterministic intensity Covariance model

Separable λ(u, t) = λ(u)µ(t) C (r,h) = σ2
(

1+
( r

α

)γs +
(

h
β

)γt
)

Non-separable λ(u, t) = λt (u)µ(t) C (r,h) = σ2
(

1+
( r

α

)γs +
(

h
β

)γt
)δ

Table 1: Deterministic intensity functions and covariance models of the Gaussian random fields assumed to
model the LGCP for the separable and non-separable scenarios. Iaco-Cesare covariance model has been con-
sidered for both cases, with δ = 1 for the separable scenario.

The temporal intensity µ(t) represents the expected number of forest fires that occurred in the spatial domain
S in the time interval t. Under both separable and non-separable assumptions it is estimated through a gener-
alized linear model, using precipitation, wind speed and temperature as linear regressors; we use the month
of the year as a dummy variable taking as reference January and include a seasonal component in the model
corresponding to a periodicity of a year. Figure 1 shows the observed and predicted number of forest fires.
The spatial component λ(u) describes the spatial variation in the intensity of the forest fires. Its estimation

Figure 1: Observed daily forest fires (black line) and fitted (red lines) from adjusted general linear model.

for the separable scenario is performed through a linear point process model using as regressors some climate
covariates such as precipitation, wind speed and temperature. The estimation of λt (u) for the non-separable
scenario is performed using weighted kernel density estimation, implemented in spatstat and based on the
method proposed by [5] and [3]; for a time period T , a day t and a location u, we have

λt (u) =
∑h∈T ∑

yh
i=1 w(h, t)KN (u,uh,i,s)

∑h∈T ∑
yh
i=1 w(h, t)

,
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with w(h, t) being the product of the temporal and spatial covariates weights for the uh,i forest fire and KN (u,uh,i,s)
the Jones-Diggle corrected network kernel function with bandwidth s.

The variance and covariance parameters of the covariance models are estimated following the procedure
proposed in [4], by minimizing the quadratic distance between the empirical and parametric forms of the pair
correlation function g(r,h) with respect of the vector of parameters θ,∫ rmax

r0

∫ hmax

h0

{ĝ(r,h)−g(r,h;θ)}2 dhdr,

where rmax = 1/4 · lagmaxs
, hmax = 1/4 · lagmaxt

, with lagmaxs
and lagmaxt

being the maximum space and time
lags, respectively (see [2]). We use an Epanechnikov kernel to compute the spatial component and a box kernel
for the temporal component, setting r0 and h0 slightly greater that the spatial and temporal bandwidths. The
estimates for the separable and non-separable covariance models are shown in table 2.

Scenario σ̂2 α̂ β̂ γ̂s γ̂t δ̂

Separable 0.04 1.26 11.77 1.99 0.89

Non-separable 6.78 58.55 158.83 0.42 1.21 6.38

Table 2: Parameter estimates of the covariance families for the separable and non-separable scenarios.

3. Conditional inference and risk maps

Estimations of the intensity function have been performed using the deterministic models considering six
future time periods, whilst for the stochastic component 100 point patterns have been simulated for each time
through conditional inference. The predictive accuracy of each model has been compared graphically by means
of risk maps, as shown in figure 2, using the Value-at-Risk (VaR) measure computed over the quadrat counts of
the simulated points patterns through a sliding window.

4. Conclusions

A comparative analysis of separable and non-separable LGCP models is presented for describing and pre-
dicting the spatio-temporal structure of forest fires occurred in Nepal from 2012-02-01 to 2016-04-26. The
results of the deterministic component of the model, which is responsible of the spatio-temporal structure of
the underlying intensity, show an improvement in the spatio-temporal dynamics for non-separable models. As
a consequence, for this model, the spatio-temporal interaction allows to observe an increase of the number of
forest fires from April to June with more incidence in areas with high wind speed and mild temperatures, and
decreasing in areas with high precipitations and extreme temperatures. As for the stochastic component, the
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(a) Time: 2016-04-21

(b) Time: 2016-04-22

(c) Time: 2016-04-23

(d) Time: 2016-04-24

(e) Time: 2016-04-25

(f) Time: 2016-04-26

Figure 2: Value-at-Risk (VaR) of conditional points patterns for six future time periods. Separable scenario is
shown on the left, non-separable scenario at the center and the observed events on the right.

goodness of fit of each covariance model has been tested using and envelope of the non-parametric spatio-
temporal K-function showing a better performance for the non-separable scenario.
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Abstract. The assumption of stationarity simplifies tackling inference problems for spatial data. However, an
appropriate characterization of the correlation structure of the underlying process is usually required and this
issue is particularly complex in the multivariate scenario. For instance, under second-order stationarity, the
main difficulties are due to the number of covariance functions that must be estimated, as well as to the rela-
tionships among them, which convey that the characterization of these functions cannot be accomplished in an
independent way. Different approaches have been suggested in the statistics literature to overcome the afore-
mentioned drawbacks, although, to our knowledge, none of these proposals aims to solely involve the direct
covariances to address the estimation of the whole dependence structure. This is the main goal of the current
work, which intends to explore the suggested alternative for approximation of symmetric cross-covariances
and, additionally, to quantify the error committed in the estimation, when proceeding in this way. In fact, the
resulting error directly depends on the correlation degree between the variables involved.

Keywords. Covariance; Multivariate process; Stationarity.

1. Introduction

Prediction of a spatial variable at unsampled locations can be enhanced by including data from other vari-
ables, correlated with the target one. However, the incorporation of auxiliary variables demands taking appro-
priate decisions, regarding the characteristics of the underlying process and the tools selected to model them.
Thus, under stationarity of the involved variables, the prediction goal could be tackled through the cokriging
techniques [3], although they demand an adequate characterization of the dependence structure, which is a spe-
cially complex task in the multivariate scenario [4]. On one hand, a drawback is the number of functions that
must be estimated for the specification of the underlying correlation. For instance, if p−1 secondary variables
are considered for prediction of the main one and the assumption of second-order stationarity is supposed for
the multivariate process, estimation of p(p+ 1)/2 direct and cross-covariance functions is needed. An addi-
tional inconvenience is that the aforementioned covariances cannot be obtained in an independent way, because
of the relationships among these functions.

To address the above-mentioned problems, different strategies to model the multivariate correlation have
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been introduced in the statistics literature. An interesting review of the main proposals is presented in [2]. As
far as we know, the proposed tools are not focused on solely involve the direct covariances in the estimation
of the whole correlation structure, which is the aim of the current work. The implementation of approaches of
this kind is supported by the fact that the approximation of the direct covariances is quite simpler than that of
the cross-covariances, particularly for heterotopic data. Taking this into account, we suggest estimating each
cross-covariance through an appropriate linear combination of the direct covariances of the involved variables.
This way of proceeding requires that the target cross-covariance be symmetric, since this property holds for the
direct covariances. A further step of our research is to provide a measure of the error committed in the proposed
approximation of each cross-covariance, which turns out to be dependent on the correlation degree between the
corresponding variables, as expected.

2. Main results

Denote by {Z(s) = (Z1(s), ...,Zp(s)) : s ∈D⊂Rd} a p-variate stochastics process that satisfies the second-
order stationarity assumption, so that:

(a) E[Zi(s)] = µi, for all s ∈ D and some µi ∈ R, for all i = 1, ..., p.

(b) Cov[Zi(s),Z j(s+ t)] =Ci j(t), for all s,s+ t ∈ D and some function Ci j, for all i, j = 1, ..., p.

Functions Cii and Ci j are referred to as direct covariance and cross-covariance, respectively, for i, j = 1, ..., p,
with j 6= i.

It follows from condition (b) that:

Cov[Zi(s),Z j(s)] =Ci j(0) = σi j

Var[Zi(s)] =Cii(0) = σii = σ
2
i

for all s ∈ D and for all i, j = 1, ..., p.

The behavior of the cross-covariances differs from that of the direct covariances [1]. For instance, Cii is a
symmetric function, whereas Ci j may not satisfy this property, for i 6= j. However, C ji(t) = Ci j(−t), for all t,
even under asymmetry of function Ci j. This yields that the total specification of the dependence structure of the
p-variate process requires the estimation of p covariance functions Cii and (p2− p)/2 cross-covariances Ci j.

On the other hand, there are some relationships among the direct and cross-covariances, such as the one
given below:

Ci j(t)2 ≤ σ
2
i σ

2
j

derived from the Cauchy-Schwarz inequality. Then, the characterization of the different covariance functions
cannot be accomplished in an independent way.

Several mechanisms have been proposed to specify the multivariate correlation structure, based on using
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nonparametric or parametric techniques. The former methods are typically employed in a first step of the esti-
mation process and then followed by parametric approaches, which encompass the application of the maximum
likelihood or the least squares methods on valid models, specifically designed to account for the relationship
among the variables. However, we suggest using a different strategy that solely requires the approximation of
the direct covariances, so that the remaining functions are derived from them and the resulting error can be
quantified. To derive our approach, the cross-covariance functions will be assumed to be symmetric.

For the latter purpose, write:
Ci j(t) = αCii(t)+βC j j(t)+Ri j(t)

for some parameters α,β ∈ R. Our aim is to determine optimal values for α and β in the latter relation, thus
leading to a negligible error term Ri j(t).

By exploring distinct alternatives, we obtain that Ci j(t) = Di j(t)+Ri j(t), with:

Di j(t) =
ρi j(0)

1+ρi j(0)2

(
σ j

σi
Cii(t)+

σi

σ j
C j j(t)

)
(1)

where ρi j(0) =
Ci j(0)
σiσ j

, |Ri j(t)| ≤ σiσ jei j and ei j =
1−ρi j(0)2

1+ρi j(0)2 .

Table 1 displays some values of ei j, for a selection of cross-correlation degrees. According to these results,
when the cross-covariance Ci j is approximated through Di j, given in (1), the maximum error committed rep-
resents less than 22% of the maximum variability of the variables involved, provided that the cross-correlation
between the variables (in absolute value) amounts to 80%. The aforementioned error decreases to 10.5% of the
maximum variability, for |ρi j(0)| equaling 90%.

|ρi j(0)| ei j

0.9 0.1050

0.8 0.2195

0.7 0.3423

Table 1: Values of ei j for different cross-correlation degrees.

In view of the above results, for strongly correlated variables Zi and Z j, an accurate approximation of the
cross-covariance Ci j can be derived from Di j and, therefore, from Cii and C j j. Then, the practical implementa-
tion of this approach demands obtaining appropriate specifications of the two direct covariances, together with
estimates of Ci j(0), σi and σ j.
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Constant developments in analytical methods and tools including statistical and machine learning models,
highlight the need for systematically revising the predictive performance of different spatial-temporal model-
ing techniques within the field of ecological research. This study compares different statistical and machine
learning models for predicting fungal productivity biogeographical patterns from climatic data as a case study
for the thorough assessment of the performance of alternative modeling approaches in order to provide accurate
and ecologically-consistent predictions [1]. Specifically, we evaluated and compared two statistical modeling
techniques, namely, geographically weighted regression and generalized linear mixed-effects models, and four
techniques based on different machine learning algorithms, namely, artificial neural networks, random forest,
extreme gradient boosting and support vector machine. In addition, this study aims to be a starting point to
study fungal productivity from a spatial and temporal perspective; a field little studied to date and, at the same
time, of great relevance due to the important role played by fungi in natural ecosystems. We evaluated our
models based on a robust, systematic methodology combining random, spatial and environmental blocking to-
gether with the assessment of the ecological consistency of spatially-explicit model predictions according to
the current scientific knowledge.

We found that fungal productivity predictions were sensitive to the modeling approach and the number of
predictors used (Figure 1). In the same vein, the importance assigned to different predictors varied between
modeling approaches. Random forest and extreme gradient boosting (both decision tree-based models) per-
formed the best in the prediction of fungal productivity in both in sampling-like environments as well as in
extrapolation beyond the spatial and climatic range of the modeling data (increasing prediction accuracy by
more than 10% compared to other machine learning approaches, and by more than 20% compared to statistical
models). Moreover, the spatial estimates of the decision tree-based models resulted in higher ecological consis-
tence across the landscape. We therefore recommend the use of these models for further research involving the
biogeographical patterns and spatial-temporal prediction of fungal productivity. We show that proper variable
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selection is crucial to create robust models for extrapolation in biophysically differentiated areas, a task that
becomes more evident when trying to predict complex environmental patterns shaped by a large number of
drivers. This allows for reducing the dimensions of the model predictors space, resulting in higher similarity
between the modeling data and the new environmental conditions. Finally, when dealing with models trained
with data sampled annually on the same set of plots (a common case in fungal productivity studies), envi-
ronmental cross-validation is more suitable than spatial or random cross-validation, resulting in more realistic
characterization of the prediction error, also within the context of changing environmental conditions due to
global change [2].

RF
(15 vars.)

XGB
(15 vars.)

SVM
(15 vars.)

ANN
(15 vars.)

GWR
(5 vars.)

RF
(5 vars.)

XGB
(5 vars.)

SVM
(5 vars.)

ANN
(5 vars.)

GLMM
(5 vars.)

0 100 200 300 400

Fungal productivity (kg  ha−1 yr−1 )

Figure 1: Landscape-level prediction of total annual fungal productivity, using random forest (RF), extreme
gradient boosting (XGB), support vector machine (SVM), artificial neural network (ANN), generalized linear
mixed models (GLMM) and geographically weighted regression (GWR), trained/fitted with 5 and 15 variables
(number of variables is shown between brackets). Modified from [1].
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Abstract. The problem of features detection under present of clutter in point process on linear networks es-
tablishes a methodological and computational challenge with multiple kind of applications as traffic accidents
among other. Previous works related to the same topical but developed in more simpler geometries tackles the
issue of the clutter removal through the distance of nearest-neighbour and show good results with high clas-
sification rates. We extend this procedure to the linear networks motivated by the classification of the traffic
accidents on the road network of a city. Simulations demonstrate the performance of the method.

Keywords. Linear network; Linear Point process; classification; Feature and Clutter; EM-algorithm.

1. Introduction

Traffic accidents are one of the 10 leading causes of death worldwide and are the first cause of death for
people between 15 and 29 years of age. According to the World Health Organization (WHO), 2.5% of deaths
were caused by a traffic accident and approximately a third left people injured, these injuries being an impor-
tant cause of disability worldwide. For this reason, it is necessary to implement new tools for the analysis
of this phenomenon, based on which strategies can be formulated to improve road safety and encourage the
formulation of public policies to face the high mortality rate in the country due to traffic accidents [7].

The spatial statistics has suffered an extraordinary methodological and computational breakthrough over the
past in the last two decades centered on generalization and extension of its own bases to geometric spaces more
complex that allow a better statistical analysis of new kinds of spatial data. Identifying features in the presence
of clutter is of great interest in spatial point pattern analysis. Unlike the planar case, which is primarily straight-
forward, identifying features on networks through visual inspection is far from direct since the complexity of
this domain [2]. We extend and implement computationally to the linear networks the methodology proposed
by [4], which model the Kth nearest neighbor distances of points as a mixture distribution and estimated its
parameters using the EM algorithm to classify them as clutter or feature.
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2. Procedure for clutter removal on linear networks

The extension of the approach in [4] to the linear networks is consider assuming that the clutter and features
are distributed as two homogeneous Poisson point process on a linear network. Features are limited to a sub-
network and overlaid to the clutter which is generate on the whole network (see Figure 1), the resulting process
is a Poisson point process with piece-wise constant intensity on the linear network.

Figure 1: Clutter point pattern (black points) and feature point pattern (red points) are simulated from ho-
mogeneous Poisson point process with intensities λc = 0.013 and λ f = 0.068, respectively, on linear network
chicago of the package spatstat.data.

2.1 Distances distribution

Let bL(u,r) the disc with center u and radius r inside the network, and |bL(u,r)| the length of this disc. For
all u ∈ L and x ∈ [0,∞), We propose the following approach for Kth nearest neighbour distribution on the linear
network

P(DL
K ≥ x) =

K−1

∑
j=0

e−λx(λx) j

j!
= 1−FDL

K
(x), (1)

where P(DL
K ≥ x) is the probability that the Kth nearest neighbour point falls out of bL(u,x) with |bL(u,x)|= x,

for more detail and fundamentals about point process on linear network see [2]. Therefore, the density fDL
K
(x)
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is

fDL
K
(x) =

λ (λx)K−1 e−λx

Γ(K)
, (2)

hence DL
K ∼ Γ(K,λ). Thus, the maximum likelihood estimation of λ given the observed values of DL

K is

λ̂ =
K

∑
n
i=1 di

, (3)

where di is the ith observed Kth nearest neighbour distance.

2.2 Mixture modeling

We assume that the clutter and feature come from two types of processes to be classified through a mixture
of the corresponding Kth nearest neighbour distances. That is, based on Eq. (2), it is assumed that

DL
K ∼ pΓ(K,λ1)+(1− p)Γ(K,λ2), (4)

where λ1 and λ2 are intensities of two superimposed homogeneous Poisson processes on the linear network
and p is the constant related to the DL

K distribution. The parameters λ1, λ2 and p are estimated using an EM
algorithm [6], where the Gamma distribution in equation (2) is accommodated in the expectation step and the
maximum likelihood estimation of λ given in equation (3) in the maximization step. The previous development
involves a proper value of K in advance chosen. However, we implemented this automatic option using an
entropy-type measure of separation introduced in [5] through a segmented regression models [8].

3. Simulation study

We explored several simulation scenarios considering different clutter and features shapes as well as combi-
nations of parameters with very effective results of the proposed classification method. In order to save space,
we just present one of the cases consider in the simulation study which corresponds to linear network chicago
of the package spatstat.data [3]. The street network has 338 intersections, 503 uninterrupted segments and
a total length of 31,150 feet. The sub-network has 39 intersections, 53 uninterrupted segments and a total length
of 2,991 feet [1].

We show the results of the classification method for different linear networks in terms of true-positive rate
(TPR), false-positive rate (FPR), and accuracy (ACC), averaged over 100 simulated point patterns with E[nc]
and E[n f ] expected number of points for clutter and feature, respectively. In addition, the λc and λ f intensities
are reported for clutter and feature, respectively. The accuracy is the proportion of correct predictions (both true-
positives and true-negatives) among the total number of cases examined. The simulated point pattern on this
linear network is shown in Figure 1. We consider the detection with K equal to {5,10}, and the automatically
selected.
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K

Stage λc λ f E[nc] E[n f ] Rate 5 10 K̂

1 0.032 0.100 1000 300 TPR 0.996 0.998 0.997

FPR 0.001 0.001 0.001

ACC 0.642 0.638 0.651

2 0.032 0.067 1000 200 TPR 0.986 0.994 0.991

FPR 0.003 0.001 0.002

ACC 0.590 0.546 0.568

3 0.032 0.033 1000 100 TPR 0.927 0.979 0.992

FPR 0.007 0.002 0.001

ACC 0.516 0.409 0.337

4 0.016 0.017 500 50 TPR 0.898 0.979 0.983

FPR 0.010 0.002 0.002

ACC 0.538 0.405 0.325

5 0.064 0.017 2000 50 TPR 0.749 0.865 0.959

FPR 0.006 0.003 0.001

ACC 0.445 0.377 0.239

6 0.128 0.017 4000 50 TPR 0.684 0.765 0.846

FPR 0.004 0.003 0.002

ACC 0.425 0.379 0.312

Table 1: Results of the classification method for the chicago linear network averaged over 100 simulated
Poisson point patterns with two different intensities.
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From the Table 1 for λc < λ f in stages 1 and 2, it is clear that the classification method performs well in
terms of true- and false-positive rates for K = 5, K = 10 and K̂. Similarly, this happens for λc ≈ λ f in stages 3
and 4. For λc > λ f in stages 5 and 6, the classification method works well for K̂, but in K = 5 and K = 10 both
have a very low performance than K̂. The estimated K automatically improve in terms of TPR with respect to
K = 5 and K = 10 as the classification method is reducing its performance, and so K̂ became a good estimate
of the K to be selected. In any case, K̂ is a good indication of the magnitude of the K to be selected.

4. Conclusions

We have extend a simple and intuitive method for estimating in a linear networks differing densities in a
point process. It can be applied without input about the shapes of the feature which is a strength when the shape
of the feature is not known. The simulation study shows that the performance of the classification procedure is
fairly good under the assumption that the feature is a Poisson process overlaid with a clutter Poisson process.
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Abstract. In this work, a nonparametric procedure to approximate the conditional probability that a non-
stationary geostatistical process exceeds a certain threshold value is proposed. On the contrary to traditional
methods, the proposed approach does not require the assumption of constant mean and variance. For this,
the process is nonparametrically modeled using an iterative algorithm. The local linear estimator is used to
estimate the trend. Moreover, the variability is modeled estimating the conditional variance and the variogram
from corrected residuals to avoid the bias. From these estimates, conditional bootstrap replicas are generated
combining an unconditional bootstrap algorithm with kriging prediction. The performance of the proposed
procedure is analyzed by simulation and with its application to a real data set.

Keywords. Conditional simulation; Local linear estimation; Heteroscedasticity; Bootstrap.

1. Introduction

Suppose that the spatial heteroscedastic process
{

Y (x),x ∈ D⊂ Rd
}

, can be modeled as follows:

Y (x) = µ(x)+σ(x)ε(x),

where µ(·) and σ2(·) correspond to the deterministic functions of trend and variance, respectively, and ε(·) is
a second order stationary process with zero mean, unit variance and correlogram ρ(u) = Cov(ε(x),ε(x+u)),
x,x+u ∈ D. The goal is, from n observations of the process Y = (Y (x1), ...,Y (xn))

t at the sample locations
x1, . . . ,xn, nonparametrically estimate the conditional probability

rc(xe,Y) = P(Y (xe)≥ c|Y),

where xe is an (unobserved) estimation location.

It must be taken into account that the spatial dependence of the process Y depends on the variance and the
correlogram of ε, since Cov(Y (x) ,Y (x+u)) = σ(x)σ(x+u)ρ(u). In addition, the covariance matrix of the
observations Y can be expressed as:

Σ = DRD,
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where R is the covariance matrix of the errors ε= (ε(x1), . . . ,ε(xn))
t and D = diag(σ(x1), . . . ,σ(xn)).

As usual, instead of estimating the dependence of the error from the covariogram (or from the correlogram),
the error semivariogram is used,

γε(u) = 1
2Var(ε(x)− ε(x+u)) = 1−ρ(u).

The first step of the proposed procedure consists of the nonparametric modeling of the process, for which a
slight modification of the iterative algorithm proposed in [5] is applied to obtain nonparametric estimates of
µ(·), σ2(·) and γ(·). The local linear estimator (e.g. [3]) is used to derive these approximations, in order to
avoid possible misspecification problems. The next step consists in using these estimates in the bootstrap al-
gorithm described in [4] to generate unconditional replicates. Finally, in the conditional bootstrap algorithm,
the unconditional replicates are combined with the kriging prediction at the estimation locations to obtain the
conditional bootstrap samples.

2. Nonparametric heteroscedastic estimation

The local linear estimator of the trend is obtained by the linear smoothing of {(xi,Y (xi)) : i = 1, . . . ,n}, and
can be expressed as:

µ̂H(x) = et
1
(
Xt

xWxXx
)−1 Xt

xWxY = st
xY,

where e1 is a vector with 1 in the first entry and 0 in the others, Xx is a matrix whose i-th row is equal to
(1,(xi−x)t), Wx = diag{KH(x1−x), . . . ,KH(xn−x)} , KH(u) = |H|−1K(H−1u), K is a d-dimensional kernel
function and H is the bandwidth matrix, which controls the shape and size of the local neighborhood used
to estimate µ(x). It is recommended to use the “bias corrected and estimated generalized cross-validation”
(CGCV) criterion, proposed in [3], to select this bandwidth.

On the other hand, the estimation of spatial dependence is usually carried out from the residuals r = Y−SY,
where S is the smoothing matrix, whose i-th row is equal to st

xi
. However, it is known that estimates based on

these residuals underestimate the variability of the spatial process. Indeed,

Var(r) = Σ+SΣSt −ΣSt −SΣ = Σr.

Likewise, the covariance matrix of the standardized residuals ε̃= D−1r is given by:

Var(ε̃) = R+B = Σε̃, (1)

where B = D−1 (SΣSt −ΣSt −SΣ)D−1.

From (1), it can be verified that:

Var
(

r(xi)/
√

1+bii

)
= σ

2(xi),

Var (ε̃(xi)− ε̃(x j)) =Var (ε(xi)− ε(x j))+bii +b j j−2bi j,
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where r(xi) is the i-th term of the vector r, bi j is the (i, j)-th element of the matrix B and ε̃(xi) = r(xi)/σ(xi) is
the i-th component of ε̃.

From these results, joint nonparametric estimates for the variance and the variogram are obtained using the
following iterative algorithm:

1. Obtain µ̂H(x) and calculate the corresponding residuals r.

2. Assuming homoscedasticity, D̂ = I is taken, where I is the identity matrix, to then obtain a pilot estimator
of the error semivariogram γ̂0

ε , using the linear smoothing of(
||xi−x j||,(r(xi)− r(x j))

2
)
.

3. Obtain a pilot estimate of R̂ from γ̂0
ε by fitting a valid Shapiro-Botha variogram model (e.g. [6]).

4. Calculate Σ̂ = D̂R̂D̂ and B̂ = D̂−1
(
SΣ̂St − Σ̂St −SΣ̂

)
D̂−1.

5. Obtain the estimator σ̂2 by linear smoothing of
(
xi,r2

i /(1+ b̂ii)
)

and update D̂ = diag(σ̂(x1), . . . , σ̂(xn)).

6. Compute ε̂ = D̂−1r and get an updated version of the variogram estimator γ̂ε by linear smoothing of(
||xi−x j||,(ε̂(xi)− ε̂(x j))

2− b̂ii− b̂ j j +2b̂i j
)
, where b̂i j es el (i, j)-th element of the bias matrix B̂ and

ε̂(xi) the i-th component of ε̂.

7. Estimates σ̂2 and γ̂ε are rescaled so that V̂ar(ε) = 1.

8. A new estimate of R̂ is obtained from a Shapiro-Botha model fitted to the rescaled version of γ̂ε and steps
4-8 are repeated until convergence is obtained.

This procedure is a slight modification of the one proposed in [2], in the sense that valid variogram models are
used instead of nonparametric estimates (in steps 3 and 8) and step 7 is added.

3. Heteroscedastic unconditional bootstrap

The following iterative procedure, a modification of the one proposed in [1], allows generating unconditional
bootstrap replicates Y ∗NS(x

e
α) for the different estimation locations {xe

α : α = 1, . . . ,n0}:

1. Using the procedure described in the previous section:

(a) Obtain µ̂H(x), the corresponding residuals r, σ̂2(x) (from the final step) and the pilot and final
semivariogram estimates γ̂0

ε and γ̂ε̂, respectively.

(b) Construct the matrix R̂0 from the pilot variogram γ̂0
ε (assuming homoscedasticity), and find the

matrix L0 such that R̂0 = L0Lt
0, using the Cholesky decomposition.

(c) Compute R̂α corresponding to xe
α using γ̂ε, and construct Lα such that R̂α = LαLt

α.

(d) Construct the “uncorrelated” errors e = L−1
0 r and standardize them.
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2. Generate the unconditional bootstrap replicas as follows:

(a) Obtain the independent bootstrap residuals of size n0 from e, denoted by e∗.

(b) Compute the unconditional bootstrap residuals ε∗NC = Lαe∗.

(c) Construct the unconditional bootstrap replicas Y ∗NC(x
e
α) = µ̂H(xe

α)+ σ̂(xe
α)ε
∗
NC(x

e
α), α = 1, . . . ,n0,

being ε∗NC(x
e
α) the i-th component of the vector ε∗NC.

Note that these unconditional bootstrap replicates do not necessarily coincide with the observed values at the
observation locations (e.g. [2], Section 7.3.1). Therefore, it is not recommended to use this algorithm to
approximate the conditional probability. However, for the conditional bootstrap algorithm, it would not be
necessary to obtain replicas of the entire process (step 2-c), only of the heteroscedastic errors

δ
∗
NC(x

e
α) = σ̂(xe

α)ε
∗
NC(x

e
α)

4. Heteroscedastic conditional bootstrap

To generate the conditional bootstrap replicates, a similar procedure to that proposed by [2] was used. This
procedure combines unconditional spatial simulation techniques with kriging methods. The proposed approach
consists of the following steps:

1. Generate the unconditional bootstrap replicates using the procedure described in the previous section,
both at the estimation locations δ∗NC(x

e
α), α = 1, . . . ,n0, as well as in the sample locations δ∗NC(xi), i =

1, . . . ,n.

2. Using simple kriging, obtain the predictions δ̂(xe
α) and δ̂∗NC(x

e
α) from the observed residuals r(xi) and the

unconditional heteroscedastic errors δ∗NC(xi), respectively.

3. Calculate conditional bootstrap heteroscedastic errors δ∗CS(x
e
α) = δ̂(xe

α)+
(

δ∗NC(x
e
α)− δ̂∗NC(x

e
α)
)

.

4. Construct the conditional bootstrap replicates Y ∗CS(x
e
α) = µ̂H(xe

α)+δ∗CS(x
e
α).

5. Repeat steps 1 to 4 a large number B of times, to get Y ∗(1)CS (xe
α), . . . ,Y

∗(B)
CS (xe

α).

6. Finally, the conditional probability is estimated by: r̂c(xe
α,Y) = 1

B

B
∑
j=1

I
(

Y ∗( j)
CS (xe

α)≥ c
)

, where I(·) rep-

resents the indicator function.
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Abstract. Scientific tools capable of identifying the distribution patterns of species are important as they
contribute to improve knowledge of causes of species fluctuations which can contribute to improve the species
management, and consequently conserve biodiversity. Species distribution data often implies residual spa-
tial autocorrelation and temporal variability, so both time and space are important components to study the
evolution of species distribution from an ecological point of view. This study aims to estimate the spatio-
temporal distribution of sardine (Sardina pilchardus) in the western and southern Iberian waters, relating the
spatio-temporal variability of the biomass indicator with the environmental conditions. With this objective, a
hierarchical two-part model is suggested capable of dealing with data specificities, namely zero-inflated, and
with different sources of uncertainty. This work proposes to incorporate environmental covariates with time-
lags, not under the usual approach of being fixed, but considering kernel weights.

Keywords. Environmental effects; Geostatistics; Hurdle model; Sardina pilchardus; Species Distribution
Model.

1. Introduction

Improving knowledge about biodiversity and species abundance has become an important scientific and so-
cietal issue. Scientific tools capable of identifying species distribution patterns are necessary for understanding
the causes of these species fluctuations, and for taking decisions on measures that contribute to the conservation
of biodiversity.

Species distribution data often implies residual spatial autocorrelation, that is, the observations are not con-
ditionally independent. In this scope, spatial autocorrelation often arises due to the non-consideration of impor-
tant environmental factors such as climate conditions that influences the species distribution or intrinsic factors
such as competition, dispersal, and aggregation. Consequently, the application of spatial and non-spatial meth-
ods can lead to different conclusions. Temporal scale could also be an important component to consider in
the modelling process, since species abundance varies in both time and space and there is also an ecological
interest to study the evolution of species distribution [2].
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The purpose of the presented study is to estimate the spatio-temporal distribution of sardine (Sardina
pilchardus, Walbaum 1792) in western and southern Iberian waters, relating the spatio-temporal variability
of the biomass indicator with the environmental conditions. Furthermore, this work will lead to the identifi-
cation of the main drivers of sardine spatial dynamics and the understanding sardine dynamics over time and
space.

Sardine is one of the most relevant pelagic species for Portugal and Spain due to its high socioeconomic
importance by representing one of the main targets of the seine fishing. Several studies have been developed in
order to understand the sardine distribution, its habitat, and its relationship with the environmental conditions,
however the knowledge on sardine distribution in the western and southern Iberian waters is limited. Indeed,
environmental and oceanographic conditions differ from marine regions and thus, study the spatio-temporal
distribution of species in different regions can improve the knowledge on the species and how the species be-
haves under different conditions.

2. Material and Methods

2.1 Data

Acoustic data of sardine was obtained during Portuguese spring acoustic surveys (PELAGO) conducted by
the Portuguese Institute for the Sea and Atmosphere (IPMA) in the western and southern Iberian waters from
2000 to 2020 (gap in 2012). Over this period, a total of 19920 hauls were carried out. Each haul is identified by
a pair of coordinates (longitude and latitude); sector and zone. Our variable of interest is a biomass indicator
(name of variable used hereafter), that was obtained from the acoustic energy. Daily environmental data was
obtained for the region and time of study, particularly satellite derived sea surface temperature, chlorophyll-a
concentration, bathymetry, and intensity and direction of surface ocean currents.

2.2 Spatio-temporal species distribution model

Species Distribution Models are investigated to relate sardine presence/absence and biomass with environ-
mental conditions, aiming at predicting its distribution in unobserved locations and for the unobserved year of
2012. The estimation and prediction of a process and of the parameters that govern the process often define the
main objective in the characterization of the phenomena, so a flexible structure is necessary to accommodate
complex relationships between the data and process models, incorporating several sources of uncertainty.

In our case, the response variable, species biomass, is indexed in time and space, and in order to incorporate
possible temporal, spatio-temporal and smoothing effects we use a two-part model. The two-part model is a
hierarchical model where the species biomass distribution is given by the product of the species occurrence
distribution and the species biomass distribution under occurrence. Given the hierarchical framework, the
problem is decomposed into a series of levels linked by simple rules of probability. The Bayesian paradigm
comes suitable for these complex spatial models since it might more easily handle with inference and prediction.
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Consequently, numerical approximations are required to do inference, which can be computational challeging
when applied to most realistic problems. In this sense, the integrated nested Laplace approximation (INLA)
is used to approximate the posterior marginals of latent Gaussian Field (GF) [3]. However, INLA cannot be
applied when dealing with continuous GFs, as the parametric covariance function needs to be specified and
fitted based on the data. The Stochastic Partial Differential Equation (SPDE) manages to solve this problem
since the GF with a Matérn covariance structure is replaced by a Gaussian Markov random field, which is a
discretely indexed GF.

Let Yst be the spatio-temporal distributed biomass process at year t and location s ∈ D ⊂ R2, where D
represents the region of study, the Portuguese mainland coast. Zst denotes the occurrence sub-process, taking
the value 0 if no species was observed in location s at year t, and 1 otherwise. Given the semi-continuous
nature of the data, the occurrence process is assumed to come from a Bernoulli distribution, while the biomass
process given the occurrence, Yst |(Zst = 1), requires a semi-continuous distribution as Gamma or log-Normal
distributions. In our case, we use the Gamma distribution. Therefore, the model is given by the following:

log(µsti) = α1 +
p

∑
j

f (K(X jsti,c, l))+ γt +Wst

logit(πsti) = α2 +
p′

∑
j

f ′(K′(X ′jsti,c, l))+ γ
′
t + kWst (1)

The link function used to model the mean of the biomass indicator µsti under occurrence is the logarithm, while
for the probability of occurrence πsti is the logistic function, where i identifies the ith day of the survey in year
t. K(.) and K′(.) represent weighted averages of environmental covariates X jsti observed at day i of year t with
daily time lags of c− l, · · · ,c+ l, where the weights were determined by using the gaussian kernel function.
The f (.) and f ′(.) denote smoother functions such as thin plate and cubic regression splines. The α1 and α2
are regression coefficients. The γt and γ′t refer to unstructured yearly effects specified by means of a Gaussian
exchangeable prior with mean zero and precision τγ and τγ′ , respectively. The Wst represents the spatio-temporal
structure of the model. In our case, this latent process changes in time (year) with a first-order autoregressive
structure and the spatial covariance is defined based on the Matérn function.

The use of the parameteres c (the mode of the Gaussian kernel) and l (the distance between the mode and the
minimum of the Gaussian kernel) is motivated by the fact that the impact of the environmental conditions on
sardine biomass and distribution can not be observed at the moment but in the nearest future. Futhermore, the
use of various past moments allow a more complex, complete and realistic approach. Various combinations of
c and l were tested for each covariate, except for bathymetry (which is considered a static covariate). The eval-
uation of the goodness of fit of the model by the Deviance Information Criterion (DIC) and the log-conditional
predictive ordinates (LCPO) made possible to select the covariates.

3. Results

For the south coast, bathymetry and intensity are shown to be important to explain both sardine occurrence
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and biomass, while temperature and chlorophyll-a also help to explain the biomass. Shallow locations favour
both sardine occurrence (especially bathymetry between 22m and 46m) and biomass (bathymetry between 22m
and 56m). Calmer locations (intensity between 0.08m/s and 0.11m/s) also favour sardine occurrence, while
intensity presents different effects on biomass depending on the direction of ocean currents (north, south, or
east). Strong currents towards the north influence negatively the biomass, but positively towards the south and
east, being even more favourable when they move towards the east. The biomass is also higher for colder
temperatures (between 14.4◦C and 15.3◦C with a maximum at 14.8◦C) and where the chlorophyll-a varies
between 10mg/m3 and 25mg/m3, being harmful for values of chlorophyll-a below 2mg/m3.

The distribution maps allow to identify unfavourable and recurrent areas for the sardine and evaluate its
evolution over two decades. Besides the great changes observed in these areas, in the last years persistent un-
favourable areas can be identified.

4. Conclusions

This work provides a deep study of spatial distribution and abundance of sardine over 20 years. These re-
sults are relevant to assist in the elaboration of spatially explicit management plans for sardine. Indeed, although
great changes were observed during the 20 years, some indicators of habitat selection and the persistence of
unfavourable areas are pointed out and should be considered for the species conservation. In short, the study
show that spatial modelling can play a key role in ecology, and especially in marine ecology.
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Abstract. The spatial distribution and abundance of the black scabbardfish, a deep-water species, in Portugal,
is mostly unknown. The available data relies on the commercial fisheries information. It is known that commer-
cial fishing takes place where fishermen expect to find the higher catches of the species, leading to the choice
of fishing locations that are not randomly but preferentially selected. The aim of this study is to do a species
distribution modeling for the black scabbardfish (BSF) species in Portugal using geostatistical methods that
addresses this question. The BSF captures are further analysed, under different scenarios, using a Bayesian
approach and INLA methodology, considering stochastic partial differential equations (SPDE) for geostatisti-
cal data jointly with a with a Log-Cox point process model. The two best cases are presented, first considering
the point process with covariate depth and response with spatial effect, and second one considering the same
structure for the point process but incorporating in the response the covariate group of tonnage.

Keywords. Preferential sampling; Geostatistics; Point process; SPDE; INLA.

1. Introduction

Addressing the problem of improving knowledge about the abundance of certain fish species is a determin-
ing factor for ensuring the sustainability of commercial fisheries and protecting the biodiversity of species that
are of high interest for consumption. The available data on this area is based to on the choice of fishing locations
that are not random but preferentially selected, which is referred to as preferential sampling. The sampling sites
are deliberately chosen in areas where fishermen tend to look for a specific species in areas where they are be-
lieved to find it. As consequence, is a growing need to explore the problem of building mathematical/statistical
models that take into account the problem of preferentiality, making it possible to produce maps of abundance
that are more consistent and less biased. That will allow the responsible institutions to rely on concrete data
to define more precise quotas, a scientific and societal important challenge to fulfill the mission of the fishing
organizations. The black scabbardfish (BSF) species, on the portuguese coast, constitutes an important com-
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mercial resource. Georefereced data about the location of the fishing hauls and the corresponding captures has
been made available by the Portuguese Institute of Sea and Atmosphere (IPMA), for a number of differently
sized vessels belonging to the fishing fleet. It is intended to use available information combined with environ-
mental covariates, to predict where a species is likely to be present in unsampled locations for management and
conservation purposes. A previous study was conducted considering a classical geostatistical approach trough
different regression models with fixed, structured and unstructured random effects under a Bayesian approach
[1]. Taking into account the available preferentially sampled data, standard geostatistical methods might have
yielded biased results. The information of capture sites of the species under analysis should be accounted for
in the modelling process of the [3, 7]. The aim of this study is to perform species distribution modelling to
the BSF data using geostatistical methods that takes this preferentiability into account. The BSF captures are
further analysed, under different scenarios, using a Bayesian approach and INLA methodology, considering
stochastic partial differential equations (SPDE) for geostatistical data jointly with a with a Log-Cox point pro-
cess model. The two best cases are presented, first considering the point process with covariate depth and
response with spatial effect, and second one considering the same structure for the point process but incorpo-
rating in the response the covariate group of tonnage.

2. Data

The data considered in this study is a comprehensive data set of geo-referenced captures of black scabbard-
fish from commercial fisheries, along the Portuguese coast, between the 2002 and 2013. Several other variables
have also been registered along with the captures as, for example, the vessel tonnage and identification, the
speed and also the depth at which the capture has been made. A subset of the original data was taken for this
data analysis: the fishing area with latitude minor than 39.3, captures that have occurred from September to
February for the years between 2009 to 2013, resulting in a total set of 732 observations. The locations of the
data are displayed in figure 1. Due to a skewed original data, a Box-Cox transformation of BSF data (Y ) was
carried out, according with the expression Y ∗ = Y λ−1

λ
, with λ = 1

2 , so that the response follows approximately a
Normal distribution.

Figure 1: BSF data locations.
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3. Geostatistical Inference under preferential sampling

The preferential sampling model is considered as a two part model that share information, the observed
species captures and the intensity of the point process, reflecting the sampling intensity through space [6, 7].
The observed locations (x1, ...,xn), are assumed to come from a non-homogeneous Poisson process, whereby
species distribution are described based on a trend function that may depend on covariates with corresponding
intensity (the number of points per unit area). Log-Gaussian Cox Process (LGCP) are a specific class of Cox
processes in which the logarithm of the intensity surface, λi, is a Gaussian random field. The observed captures
Y =(Y1, ...,Yn) is linked to the intensity of the underlying spatial field S(x). S(x) is a stationary Gaussian Process
with mean zero, variance σ2, and a Matérn correlation (correlation shape parameter fixed k = 1.5, correlation
range φ and nugget variance τ2), S(x)∼N(0,Σ). Using an approximate stochastic weak solution of a Stochastic
Partial Differential Equation that is a continuous Gaussian field with a Matérn covariance structure, inference
in made considering stochastic partial differential equations (SPDE) models for geostatistical data and INLA
(Integrated Nested Laplace Approximation) methodology, mainly through the package R-INLA [5, 8]. The
first step is the triangulation of the considered spatial domain by building a mesh that covers the study region,
the constrained refined Delaunay triagulation. The SPDE model was defined considering penalized complexity
priors (PC Priors) for the model parameters, range r and marginal standard deviation σ, of the spatial effect,
(P[r < 30] = 0.2, P[σ > 10] = 0.01) [4]. The two best models (model comparison was performed using the
DIC) were:

Model 1: Point process with covariate depth (D) and response with spatial effect,

Yi|S∼ Normal(µi,τ
2), i = 1, ..,n,

Yi|(S,X = x)] = β
y
0 +βyS(xi)+ ei,

ei ∼ N(0,τ2),

λi = exp(βpp
0 +β

pp
1 Di +S(xi))

(1)

Model 2: Point process with covariate depth (D) and response with covariate group of tonnage (PRT ) and
spatial effect,

Yi|S∼ Normal(µi,τ
2), i = 1, ..,n,

Yi|(S,X = x)] = β
y
0 +β

y
1PRTi +βyS(xi)+ ei,

ei ∼ N(0,τ2),

λi = exp(βpp
0 +β

pp
1 Di +S(xi))

(2)

where β
pp
0 is the correspondent intercept, S(xi) spatial effect of the model, where the observed locations are

modelled by a LGCP, X |S, i = 1, ...,n (index of i-location). For βy > 0 the response values are higher where
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there are more observation. For model 1 the estimated value of βy was 1.24, and for model 2 was 0.24. Figure
2 shows the posterior predicted mean of the spatial effect for model 1 and 2, respectively.
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Figure 2: Posterior predicted mean of the spatial effect, model 1 (left) and model 2 (right).

4. Conclusion

The spatial outputs obtained with the preferential model better absorb the variability of BSF captures pro-
viding a more realistic pattern of BSF distribution. This approach allows a better knowledge of BSF spatial
distribution, assuming that the selection of the sampling locations depends on the values of the observed species.
The modelling could be extended in order to include important environment factors, that may be important in
the estimation or by incorporating a term for the temporal effect moving on to a spatio-temporal approach [2, 6].
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Abstract. Arboviral diseases pose a major challenge for public health in Brazil. This project focuses on
Dengue and Zika virus, which share the same virus family and vector. Thanks to the multiple data sources,
this study aims to deliver a spatio-temporal Bayesian hierarchical model for examining the interactions among
climate, diseases distribution and environmental conditions. Hence, the objectives are to (i) to jointly examine
the spatial distribution and temporal variability of the arboviral diseases in relationship to climatological fac-
tors, in presence of changes in the local environmental conditions, and (ii) to predict the probability of outbreak
of the diseases with quantified uncertainty. The data are fitted with fixed or random effects M model. Intrin-
sic conditional autoregressive prior (iCAR), Leroux prior (LCAR) and proper conditional autoregressive prior
(pCAR) are considered to account for the spatial dependence. Random walk of first order (RW1) is applied for
the temporal dependence. Here we present preliminary results obtained from monthly data in the state of Bahia
in Brazil during Jan 2015 - Jun 2019. The posterior mean of the spatial risk shows different clustering for the
diseases. This study provides insights into the discussion of the interactions between global climate changes
and arboviral diseases epidemics.

Keywords. Arboviral diseases; Bayesian hierarchical model; inlabru package; Spatio-temporal; Remote
sensing

1. Background and Aim

Arboviral diseases and their complications constitute a major threat for public health in Brazil, as the dis-
eases are spreading widely and expanding into geographic regions outside transmission zones. We consider
two mosquito-borne diseases: Dengue and Zika virus; the major vector and virus family of which are Aedes
aegypti and Flaviviridae respectively. The majority of the current understanding of Dengue and Zika virus
spreading in Brazil is obtained by considering them separately within a time frame, rather than modelling the
multi-dimension of the spatial and temporal patterns of the two diseases jointly. Here, we will focus on a joint
spatio-temporal modelling approach for studying the interrelations between climate, disease distribution and
socio-environmental conditions and the synchrony that these systems express.
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2. Methods

By taking advantage of multiple data sources, including satellite-derived information on environmental con-
ditions and ecosystem, re-analysis climate data and census-based socioeconomic data, we develop a hierarchical
spatio-temporal modelling approach for Dengue and Zika cases obtained from the Brazilian Ministry of Health
at municipality level from 2015 to mid-2019. The model, grounded within a Bayesian framework, allows us:
(i) to jointly examine the spatial distribution and temporal variability of the arboviral diseases in relationship
to climatological factors, in presence of changes in the local environmental conditions, and (ii) to predict the
probability of outbreak of the diseases with quantified uncertainty. The Bayesian inference is performed using
the integrated nested Laplace approximation (INLA) [5] via the inlabru extension package in R [1], consider-
ing a recent computation-efficient multivariate proposal for areal data, called M models [3, 6].

2.1 Model Framework

We present a Poisson hurdle model to fit the data. This consists first to adopt a Bernoulli distribution if there
is an occurrence of disease and then to specify a Poisson distribution for the number of disease cases. For i-th
municipality (i = 1, ..., I), t-th time point (t = 1, ...,T ) and j-th disease ( j = 1,2), the observed Bernoulli and
Poisson responses (Y bin

itj and Y poi
itj ) are modelled as follows using the inlabru package:

Y bin
itj =

{
0, if there is no disease case,
1, otherwise,

Y bin
itj ∼ Bin(nitj = 1, pitj)

Y poi
itj =

{
NA, if Y bin

itj = 0,
Nitj, otherwise,

(Y poi
itj |Y

bin
itj = 1)∼ Poi>0(λitj)

where Nitj is the number of disease cases; the probability pitj and the mean λitj are linked to the linear predictor

by p(ηbin
itj ) =

exp(ηbin
itj )

1+exp(ηbin
itj )

, and λitj = Eit exp(ηpoi
itj ) respectively, where Eit is equal to the monthly expected dis-

ease cases; hence, exp(ηpoi
itj ) refers to relative risk. Since the linear predictors, ηbin

itj and η
poi
itj , share the same

formulation, we henceforth drop the superscript. Thus the link predictors, ηitj, are defined as

ηitj = α j + f1(Xit1)+ΣqβqXitq +θki j + γt j +δkit j, (1)

where α j is the intercept for the j-th disease; f1(Xit1) is a nonlinear smoothed function with first-order random
walk prior (RW1) [2] for mean air temperature at 2m above the Earth’s surface, ΣqβqXitq are the q-th covariates’
linear (fixed) effects, namely the Normalized Difference Vegetation Index (NDVI), total precipitations, dew
point temperature, and socio-economic variables, and θki j, γt j and δkitj are random effects capturing spatial
pattern, temporal trends and spatio-temporal interaction respectively for the ki-th microregion, which groups
several neighbouring municipalities. Relaxing to a lower spatial resolution is to compromise the computational
cost.

To account for the correlation between spatial patterns and temporal trends of both diseases, we adopt the
recently proposed multivariate M model [6]. We first denote Θ = {θki j : i = 1, ..., I; j = 1,2}, Γ = {γtj : t =
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1, ...,T ; j = 1,2}, and ∆ j = {δkitj : i = 1, ..., I; t = 1, ...,T ; j = 1,2}. Hence, we have Θ = ΦθMθ for spatial
random effects, Γ = ΦγMγ for temporal random effects, and vec(∆ j) ∼ N(0,σ2

δ j
Q−

δ
) for spatio-temporal in-

teractions, where Mθ and Mγ matrices’ columns are the random effects accounting for spatial and temporal
dependencies respectively. Each ∆ j captures the spatio-temporal interaction within the j-th disease, and Q−

δ
is

defined depending on the type of space-time interaction [4].

Bernoulli Poisson

Covariate Mean SD 2.5% 50% 97.5% Mean SD 2.5% 50% 97.5%

tp -0.020 0.050 -0.117 -0.020 0.078 -0.400 0.011 -0.422 -0.400 -0.378

dew -0.108 0.083 -0.272 -0.108 0.054 0.035 0.020 -0.005 0.035 0.074

NDVI -0.114 0.025 -0.163 -0.114 -0.064 -0.603 0.007 -0.616 -0.603 -0.590

T AGUA 0.059 0.025 0.011 0.059 0.108 -0.170 0.007 -0.184 -0.170 -0.156

IDHM -1.498 0.042 -1.580 -1.498 -1.416 0.683 0.008 0.668 0.683 0.697

Table 1: Posterior estimates and the 95% Credible Intervals of the standardised covariates related to climate and
socio-environmental variables in the state of Bahia. tp, dew, NDVI, T AGUA and IDHM refer to total precipitation,
dew point temperature, the normalized difference vegetation index, the population living in households with
running water and Human Development Index respectively.

We have considered intrinsic conditional autoregressive prior (iCAR), Leroux prior (LCAR) and proper con-
ditional autoregressive prior (pCAR). Here, we evaluate spatial models with the LCAR built on the scale of the
Brazilian micro-regions. The covariance matrix of the separable spatial or temporal structure can be estimated
via M′

θ
Mθ with a Wishart prior, i.e. M′

θ
Mθ ∼Wishart(J,σ2

θ
IJ) and M′γMγ ∼Wishart(J,σ2

γ IJ). The fixed effects
M model (FE) assumes N(0,σ2) prior with a large σ for the elements in M; while a random effects M model
(RE) makes inference on σ [6].

3. Results

As a pilot study, we have looked into the epidemiological monthly data in the state of Bahia during Jan 2015
- Jun 2019 with the FE models without interaction terms. The spatial structure of Dengue and Zika virus cases
are consistent across the occurrence probabilities and relative risks with slight deviance in certain microregions,
see Figure 1. This ascertains the close biological relationships between Dengue and Zika virus. The fixed effect
parameters in both likelihoods shown in Table 1 are as expected. For example, the higher NDVI, the lower the
diseases occurrence probability and relative risks since mosquito-borne diseases is more commonly found in
urban areas, typically with lower NDVI. The extension of the model to the rest of Brazil is currently ongoing,
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Figure 1: Posterior mean of the microregion-specific spatial pattern in the state of Bahia, the occurrence prob-
ability of disease, p(ηbin) (A and B), and the exceedance probabilities, P(exp(θpoi

ki j ) > 1|Y) (C and D), for
Dengue and Zika virus FE model with LCAR spatial and RW1 temporal priors.

as well as the evaluation of the predictive capability of the model.

4. Conclusions

The pilot study shows the spatio-temporal link between Dengue and Zika virus in the state of Bahia regard-
ing the climatological factors via a Poisson hurdle model. The future extension to the entire Brazil will shed
light on the ongoing debate about the interaction between global changes and arboviral disease epidemics, and
offer methodological tools which can be useful in supporting early warning systems.
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Abstract. In forestry science, researchers often have to deal with spatial datasets. In particular, experiments
are often carried out in small plots that are sparsely distributed within a larger area. Within each plot the
experiment is exactly replicated. Naturally, spatial dependencies within each plot, but also between plots, have
to be considered. However, the distances within a plot and between plots are in different ballparks rendering a
classical spatial model unsuitable. In this paper, we introduce multiple approaches to model this kind of data
following the three guiding principles of comprehensibility, usefulness for small samples, and reduced compu-
tational complexity. We discuss an effective MCMC-based estimation procedure and present an application to
biomass data from Northern Germany.

Keywords. Gaussian random field; MCMC; multi-resolution; replicates; spatial regression

1. Introduction

Geophysical processes often yield datasets that are spatially irregular, showing a multi-resolution character
over space where data are collected at different intensities in different parts of the domain. In such cases,
spatial models that assume the same dependence structure over the whole space are not able to capture the true
complexity of the dependence structure. The issue of how to model irregular spaced data has typically been
handled by adding multiple spatial effects to a regression model, potentially subsequently, and with increasingly
finer resolution [4, 3] - the so called multi-resolution models. Whenever ones talks about spatial models,
computational feasibility is a crucial point. Multi-resolution models have been successful in spatial statistics
due to their ability to flexibly capture dependence at multiple spatial scales while being computationally feasible
[2].

In this paper, we consider a design very common to forestry experiments. In these experiments, for a given
spatial domain, several identically sized plots are considered. These plots are sparsely distributed over a larger
domain. Within each plot, data collection is more intensive. Due to the irregular intensity of the data collection,
a single-resolution model will most likely miss important features of the data. This paper aims at developing a
spatial multi-resolution model that reflects this irregularity.

We are guided by a set principles that the final model must satisfy: (1) easily understandable, (2) ability to
estimate within plot behavior for relatively “small” respective sample sizes, (3) reduced computational com-
plexity. To guarantee Principle (2) is satisfied, we use a mother-children cell resolution with two resolutions
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and assume all children (i.e., plots) to have the same spatial model. Thus, children cells are treated as replicates
of each other. This concept can be easily extended to spatio-temporal models. Thus far, we limit the proposed
models to identical sampling designs for all plots. However, limitation can easily be lifted by using a basis
function approach. Finally, the principle of reduced computational complexity indicates a computational cost
of factorizations smaller than O(n3) for a sample size of n.

2. The models

Consider a spatial domain S ⊂ R2. Within S , data is available at m equally sized areas Si, i = 1, . . . ,m. The
areas Si do not overlap and do not need to cover S entirely. We assume each area has the same number of
observations yi j, j = 1, . . . ,n at the same locations within a plot. More precisely, let si j be location j in area i.
We consider the model equation

yi j = x(si j)
′β+ γ(si j)+ ε(si j) (1)

where x(·) is a p-sized covariate vector and β is the associated coefficient vector. The latent variable γ(·) is a
Gaussian random field (GRF). Moreover, ε(·) ∼ N(0,σ2) is an i.i.d. non-spatial error or nugget stochastically
independent from γ(·).

The GRF is a spatial process {γ(s) : s ∈ S} for which all finite-dimensional distributions of the process are
Gaussian. A natural candidate for γ is one that assumes a single spatial resolution, i.e. a global scale, such
that γ ∼ N (0,Σ), where Σ is a global covariance matrix. For example, Σ can arise from the exponential
covariance function

C(s,s′) = τ
2 exp

(
−κ||s−s′||

)
, (2)

where τ2 represents the marginal variance of the spatial field and κ is related with the spatial range ρ. In this
paper, we assume that all spatial covariance matrices can be linked to an exponential covariance function.

However, besides not being able to capture different levels of spatial variation in a global covariance func-
tion, this model would not respect Principle (3) of reduced computational complexity, since the computational
complexity of factorizations is O(k3) where k is the number of rows in Σ. In what follows, we present three
models fit our data problem and satisfy the three guiding principles presented. The models differ in the way
the GRF γ is specified. We elaborate how the models presented satisfy the third principle in Section 3. For the
sake of simplicity, herein we write γ(si j) as γi j.

M1: interacting resolutions model. In M1, the latent variable γ follows γ ∼N (0,Σb⊗Σw) where Σb and
Σw are covariance matrices representing the between plots and within plots correlations, and consequently are
of size m and n, respectively. Both are linked to differently parametrized exponential correlations functions.
Hence, M1 models two spatial resolutions that interact. The spatial dependence structure within each area Si is
not independent of all the other areas, but it depends on the spatial structure of the neighboring areas as well.

M2: independent resolutions model. In M2, we consider the superposition of two stochastically indepen-
dent spatial processes γb and γw. The prior distribution of γb = (γb

11, . . . ,γ
b
1n,γ

b
21, . . . ,γ

b
mn)
′ is given by γb ∼

N (0,Σb⊗In) and the prior distribution of γw = (γw
11, . . . ,γ

w
1n, γw

21, . . . ,γ
w
mn)
′ is given by γw ∼N (0,Im⊗Σw).
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The spatial effect is composed of two latent variables, i.e., γi j = γb
i j + γw

i j .

M3: spatially correlated random intercept model. In M3, as in M2, the latent variable γ results from the
superposition of two GRFs. However, M3 is simpler as each plot has a common spatially correlated random
intercept, i.e., γi j = γb

i + γw
i j. Therefore, γb

i acts as a random intercept for area Si. Prior γb = (γb
1, . . . ,γ

b
m)
′ is

normally distributed, e.g., γb ∼ N (0,Σb) and the prior on γw = (γw
11, . . . ,γ

w
1n,γ

w
21, . . . ,γ

w
mn)
′ is given by γw ∼

N (0,Im⊗Σw). The GRFs γb and γw are stochastically independent.

The difference between the three models is most obvious when considering the covariance between two
locations γi j, γkl . Precisely, for the three models, Cov(γi j,γkl) is given by

(Σb)i,k (Σ
w) j,l︸ ︷︷ ︸

M1


(Σb)i,k +(Σw) j,l i = k, j = l,
(Σb)i,k i 6= k, j = l,
(Σw) j,l i = k, j 6= l,
0 i 6= k, j 6= l︸ ︷︷ ︸

M2

{
(Σb)i,k +(Σw) j,l i = k
(Σb)i,k i 6= k︸ ︷︷ ︸

M3

.

Multi-resolution spatial models typically assume that spatial models for different resolutions are independent.
This is similar to M2 and M3, where we add the two spatial effects γb, for the m areas, and γw, for the n locations
within each area. In M3, locations of different plots are solely correlated via the correlated random intercept
whereas in M2 there is additional correlation if they are at the same location within a plot. In contrast, we see
that the two spatial resolutions interact in M1.

3. Estimation

We base the estimation of the model parameters on Markov chain Monte Carlo (MCMC) using the software
Liesel [5]. We consider a likelihood with marginalized γ and ε because of its typically better MCMC mixing
properties [1]. However, this is computationally not feasible for M3 as we explain below. We use an Hamilto-
nian Monte Carlo (HMC) based update step for all parameters with variance and range parameters sampled in
the log space. In our application, the number of areas m and the number of observations within one area n is
relatively small.

Efficiency considerations for M1 and M2. In M1 and M2, we can exploit a method introduced by [6] to
decrease the computational costs for evaluating the marginal likelihood from O(n3m3) to O(n3+m3). Consider
M1, where the likelihood with marginalized γ and ε is given by y|β,κ,σ2 ∼N

(
X ′β,σ2Imn +Σb⊗Σw

)
. The

evaluation of its probability density function (pdf) requires the calculation of the determinant and inverse of
Σb⊗Σw +σ2Imn which is a mn×mn matrix, thus it has computational complexity of O(n3m3). These tasks
can be accomplished more efficiently by further exploiting the properties of the Kronecker product.

Instead of considering the marginal pdf from above, we consider the marginal pdf of the rotated data
vec(UT

wY Ub) where Ub originates from the eigenvalue decomposition Σb = UbSbU
T
b , similar Uw, and Y
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is n×m matrix where each column corresponds to the data from one plot and each row corresponds to the
same location in one plot. Consequently, the operator vec(Y ) = y defines the inverse operation, namely con-
catenating the columns. The rotated data can be interpreted having the covariance matrix Sb⊗Sw +σ2Imn for
which the inverse is easily computable (for details refer to [6]). Similarly, the computational complexity can be
reduced for M2.

Efficiency considerations for M3. The covariance matrix in the marginal likelihood of y in M3 does not
allow to take advantage of the results found in [6]. Therefore, we use an alternating updating scheme consider-
ing γb as model parameters updated with a Gibbs step while the remaining parameters are still updated with an
HMC step. Consequently, all matrix decompositions can be done in O(n3) or O(m3).

4. Empirical examples

In a proof of concept, we considered data generating processes following the exact model specifications.
We can show that we reliably recover the model parameters. However, as discussed above variance parameter
and range parameter of the GRF are not identifiable, so we consider their ratio, instead.

For our application, we study live biomass data collected in equally sized plots in Northern Germany. Within
these plots the relative locations are identical. We compare the performance of our models and show their abil-
ity to capture spatial variation on different resolutions.
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Abstract. The spatial data misalignment problem occurs when data at different spatial scales need to be com-
bined. In this work, we propose an ensemble-based approach for the analysis of spatially misaligned data that
combines multiple statistical approaches including melding and downscaler models, and propagates uncer-
tainty from individual models for better uncertainty quantification. A simulation study is conducted to assess
the predictive performance of the models proposed. The ensemble-based approach is also used to predict fine
particulate matter emissions (PM2.5) in the UK using data obtained from monitoring stations and satellite-
derived environmental indicators. Results show that the proposed ensemble-based approach to combine multi-
ple spatially misaligned data provides better predictions than individual models and can help decision-making
in a wide range of disciplines.

Keywords. Spatial modeling; Spatial misalignment; Gaussian random process; Air Pollution.

1. Introduction

In recent years, spatial data from satellite imagery, monitoring stations, and surveys have been collected in
large quantities and at high spatial resolutions. The analysis of these data is crucial for decision-making in many
disciplines such as the environment, climate and epidemiology. An ongoing challenge when analyzing these
type of data is the spatial data misalignment problem which occurs when data at different spatial scales need to
be combined. In this work, we propose a new ensemble-based approach for the analysis of spatially misaligned
data that combines multiple statistical approaches including melding and downscaler models. This approach
allows us to combine data at different resolutions to predict the variable of interest at points, areas and spatially
continuous surfaces. Our approach improves prediction and propagates uncertainty from individual models for
better uncertainty quantification. The predictive performance of the individual models and the ensemble-based
approach are assessed by conducting a simulation study. Specifically, we generate spatial processes that can
appear in real settings, fit the individual and ensemble approaches using measurements at several configurations
of generated spatial data, and assess the performance of the approaches using spatial cross-validation designs.
The new approach is also used to predict fine particulate matter emissions (PM2.5) in the UK using data ob-
tained from monitoring stations and satellite-derived environmental indicators. Our results show that the new
proposed ensemble-based approach result in a better final prediction. Moreover, the ensemble approach also
shows robustness and generalization and avoids extremely deviant predictions. We believe our approach can

259



R. Zhong and P. Moraga An ensemble-based approach for the analysis of spatially misaligned data

enhance the reliability of predictions of outcomes obtained by combining multiple spatially misaligned data
and can help decision-making in a wide range of disciplines.

2. Methodology

The ensemble-based approach for the analysis of spatially misaligned data combines the outputs of two
individual approaches, namely melding and downscaler approaches. The combination is done by the meta-
learning method. The meta-learning uses algorithms to learn a second-level model (meta-learner) from the
first-level models’(base-learner) outputs and generate the final predictions [4]. In our work, a stacked regression
with spatial-varying coefficients is trained as meta-learners. The idea is to evaluate the performances of the
base-learners on the spatial cross-validation designs to determine the coefficients in the combination. The
model is as follows:

Y (xi) = β̃0(xi)+ β̃1(xi)Y1(xi)+ β̃2(xi)Y2(xi)+ ε(xi),

where Y1(x) and Y2(x) represent the outputs of the melding and downscaler approaches, respectively, and ε(x)∼
N(0,σ2). The ensemble-based approach propagates uncertainty from individual models for better uncertainty
quantification.

The base learner, melding and downscaler approaches are specified as follows. The melding approach
assumes that underlying all point and areal level data, there is a spatially continuous variable that can be
modeled using a Gaussian random field process S = {S(x) : x ∈ D ⊂ R2} with E[S(x)] = 0 and stationary
covariance function Cov(S(x),S(x′)) = Σ(x− x′). Conditionally on S, Y (x)|S(x) ∼ N(µ(x)+ S(x),τ2), where
µ(x) represents the large scale structure [1]. Then, point data observed at a finite set of sites xi ∈D, i= 1,2, . . . , I
can be expressed as

E[Y (xi)] = µ(xi)+S(xi).

Areal data arise as block averages in blocks B j ∈ D, j = 1,2, . . . ,J,

E[Y (B j)] = |B j|−1
∫

B j

(µ(x)+S(x))dx, |B j|> 0,

where |B j|=
∫

B j 1dx denotes the area of B j.

The downscaler approach relates Y (xi), the point data at location xi, to the areal data Y (Bi), where Bi is the
area that contains xi [2]. Specifically,

Y (xi) = β̃0(xi)+ β̃1(xi)Y (Bi)+ ε(xi).

Here, ε(x) ∼ N(0,σ2). β̃0(x) and β̃1(x) are spatially varying coefficients that can be expressed as a sum of an
overall term and a spatial Gaussian random field as follows, β̃0 = β0 +β0(x), β̃1 = β1 +β1(x).

Inference is performed by using the integrated nested Laplace approximation (INLA) and the stochastic
partial differential equation (SPDE) approaches with the R-INLA package [3].
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Figure 1: Fine particulate matter (PM2.5), UK.
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3. Simulation

We assess and compare the performance of the individual and ensembled-based approaches via simulation.
First, we simulate a number of spatial processes that may reproduce some of the situations that can appear in
real settings. Then, we take measurements of the simulated processes at different configurations of generated
point and areal data. Then, we fit each of the models using the measurements taken at the generated data, and
assess the performance of the models in each of the simulated scenarios using error measurements and coverage
probabilities and using spatial cross-validation designs.

4. Application

The ensemble-based approach proposed allows us to combine spatially misaligned data in a wide range of
applications. In this work, we use it to predict fine particulate matter (PM2.5) in the UK using data obtained
from monitoring stations and satellite-derived environmental indicators (Figure 1).
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Abstract. Urban forests and trees are the main providers of ecosystem services for more than 50% of the
world’s population currently living in cities. However, there is currently a large information gap on urban
trees worldwide, making it difficult to quantify these services accurately. Therefore, taking advantage of new
computational technologies and remote sensing we have developed a tool for detection and mapping of urban
trees. Our tool, based on convolutional neural networks and computer vision, allows to know how many and
where are the trees in the cities. We use ground level and high resolution aerial images as input data, finding in
them a massive source of information that allows us to simulate the traditional urban forest inventory. We have
achieved an accuracy of 85% of the mapping of the trees visible in the images with an accuracy of 1 meter at
the center of the canopy. This research is a breakthrough for urban forestry science, due to its applicability and
ability to generate standardized information.

Keywords. Deep learning; Computer vision; Remote sensing; Urban forests

1. Introduction

Urban trees have been in the focus of attention in recent years, as they provide ecosystem service to the
urban society that represents more than 50% of the world’s total population [16]. However, there is a gap in
knowledge about urban forests and urban trees worldwide that prevents us from knowing precisely what the
supply capacity of these services is [6]. This gap is mainly related to two factors: first, as in natural forests, the
cost, and expertise to conduct a forest inventory are very high [6]; and second, urban trees, unlike natural areas,
are scattered throughout the city [7, 12].

Through spatial analysis and taking advantage of remote sensing data, the scientific community has made
progress in characterizing individual trees [14]. These data sources include high-resolution satellite imagery
[13], aerial imagery [4, 11], aerial LiDAR (Light Detection and Ranging) data [1, 9] and most recently ground
level images. Although advances in spatial analysis using Geographic Information Systems (GIS) have enabled
the advancement of remote sensing in urban areas, ground level imagery requires new processing techniques.
Computer vision and artificial intelligence offer a promising alternative to the processing of these images in a
scalable, generalizable and fast way [7]. Our research is based on the customization of deep learning models,
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enabling the geopositioning for the detection and classification of street trees through the analysis of ground
level images, and mapping through triangulation process.

2. Methods

This approach is based on transfer of learning from two deep learning models: You Only Look Once (Yolo)
[10] version 5x [5] and DeepForest [15]. These models are complex convolutional networks created for object
detection and classification.

Figure 1: Flowchart of automatic urban tree mapping

The first algorithm used was YOLO, an open-source system which is fast from a computational processing
point of view, because it was originally developed for video analysis [10]. Yolo-v5x was re-trained with 4500
ground level images that contain more than 25000 individual labeled trees. The model achieved a precision of
85% and a recall of 80% in the detection of urban trees in a ground level image.

The second model used for tree detection from above, in RGB satellite or aerial images, is DeepForest
[15]. DeepForest is a model created and trained for the detection of canopies in natural environments, for this
reason the training was shorter and simpler. We labeled 500 aerial images with 10000 individual trees for the
specialization of this model in the detection of urban trees, reaching an accuracy of 80% and a recall of 75%.

To complete the mapping of urban trees, we have used a triangulation process based on the assignment of
degrees within a circumference to each of the pixels of the ground level images (Figure 1), simulating a circum-
ference at the point where the photograph was taken (known from the image metadata). This allows us to relate
both images and obtain a total view of the tree (Figure 2). The model was tested in a 74 hectare plot in the city
of Lleida (Catalonia), Spain, where the results obtained were contrasted with the official forest inventory.

3. Results

The tool test results are divided into two functionalities. First, the urban tree count. The model achieved a
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Figure 2: Representation of degrees assignment to ground level and satellite images. a) Tree detection on
satellite image and degrees assignment. b) Tree detect in four individual ground level images representing a
circumference with degrees assignment.

count accuracy of 85% of the trees visible in the images with an accuracy of 1.2 meters in the assignment of
coordinates to the center of the canopy.

The second result obtained is related to the ability to relate the trees detected in the ground-level with the
satellite images, assigning a unique coordinate to each one. In this case the model reached an accuracy of 76%
in the detection and improved average distance difference to the tree center, assigning the tree coordinate with
an accuracy of 1 meter.

Figure 3: Example window of tree mapping results. Red dots represent the original forest inventory, yellow
dots represent predicted the centroid of trees.
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4. Discussion

Although there is research focused on the characterization of urban trees with traditional remote sensing
data such as satellite imagery and LiDAR, the gap of forest inventory automation still remains, since it requires
the incursion of ground level data. Some authors have started to use ground level imagery such as [7, 3] in
urban vegetation characterization. However, mass data mapping has only been addressed by [3] and [8]. Both
achieved accuracies above 75% in detecting and mapping urban trees. However, the accuracies achieved with
respect to the distance to the center of the canopy are higher than 2.5 meters (average distance in traditional
forest inventory). The spatial distribution of urban trees allows for coverage analysis [16], per capita trees [2],
and others analysis. Therefore, this study represents a breakthrough in the automatic mapping of urban trees.
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Abstract. Spatial and spatio-temporal point processes for criminological applications are popular in liter-
ature due to crimes’ clustering and context-dependent nature. Notably, most approaches use Log-Gaussian
Cox processes (also called doubly stochastic) to model crime event data since the technique accounts for
spatio-temporal dependence, covariates inclusion, and clustering phenomena. However, events with complex
dispersion processes (e.g. crimes or derived emergency calls) cannot be trivially introduced into point pro-
cess frameworks, mainly when data are recorded in continuous space but discrete-time. To account for events’
complex temporal dynamics while consider discrete-time series in spatio-temporal data, we model emergency
calls using a hybrid model between Log Gaussian Cox processes and Stochastic Integro-Differential Equations
(LGCP-driven-SIDE). We show the advantages of the LGCP-driven-SIDE approach for inference and predic-
tion using data from 112 emergency calls in Valencia from 2010 to 2020. The model accurately measures the
influence of covariates, models the data’s spatio-temporal dynamics, and predicts the system’s future behaviour.

Keywords. Emergency calls; Log Gaussian Cox Processes; Spatio-temporal dynamics; Stochastic integro-
differential equation.

1. Introduction

Emergency calls arise when immediate action is required to deal with incidents such as accidents, wildfires,
crimes or medical assistance. Typically, emergency calls provide information not only about the description of
the incident but also about their location and time; the latter characteristics are essential for prompt response
[1]. Authorities leverage the spatial and temporal behaviour of the emergency calls to allocate resources and
infrastructure for effective response, high-risk event areas identification (e.g. crimes, traffic accidents), and
contingency strategies development. As emergency calls often mirror crimes, spatio-temporal studies adapt
popular point process methodologies for crime data to analyse distress signals. A popular approach are the
Log-Gaussian Cox processes (LGCP). LGCP have several appealing properties that facilitate model estima-
tion, interpretation and simulation [2]. Moreover, the intensity is an stochastic process that allows capturing
stochastic spatial and space-time dependence [3]. Although specifying the spatio-temporal structure of data in
LGPC is a straightforward task, the temporal dynamics of crime phenomena can not be trivially introduced;
complex dispersion processes such as advection and diffusion [4, 5] need to be carefully incorporated into the
modelling framework. To account for a system’s complex temporal dynamics and to reinforce the discrete-time
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series definition in LGCP, [6] introduced stochastic integro-difference equations (SIDE). Given that crimes (and
thus, emergency calls) exhibit similar patterns in space and time as as conflict events, and they are recorded in
discrete-time format, in this paper, we exploit [6] methodology to analyse the dynamics of 112-emergency calls
in Valencia, Spain for ten years (2010 - 2020). This work aims to understand and forecast the spatio-temporal
character of emergency calls in Valencia to guide mitigation strategies and policy responses to criminal activity.
First, we model the emergency calls throughout the city neighbourhoods from 2010 to 2019, considering the
data spatio-temporal behaviour and related geographical covariates. Then, we validate the model by predicting
the emergency incidents for 2020.

2. Log-Gaussian cox processes and stochastic integro-differential equations

We chose the Log-Gaussian Cox process (LGCP), e.g., the logarithm of the event intensity is assumed
to be a Gaussian Process, to model the emergency calls data. A discrete time division is considered as a
discrete-time series of continuous-space LGCPs since the temporal range is discrete. Formally, let k ∈ K ,
K = {1, . . . ,K} denote a discrete-time index set and {zk(s)}, zk(s)∼GP

(
µk(s),σ2

kΨk(s,r)
)
, a set of temporally

correlated spatial Gaussian Processes (GPs), each with mean µk(s) and covariance function σ2
kΨk(s,r). For

each k, the point process intensity function is defined as λk(s) = exp(zk(s)). The mean function of zk(s) can be
associated to explanatory variables to reduce prediction uncertainty. Let d(s) be a vector of spatially referenced
covariates and bT the corresponding regression coefficients; the intensity of the LGCP at time k then is given by
λk(s) = exp

(
bT d(s)+ zk(s)

)
. The temporal dynamics of the intensity functions through zk(s) can be defined

under the stochastic integro-difference equation (SIDE) framework. The SIDE is a flexible modelling tool
that represents temporal dynamic effects such as diffusion and dispersal. Formally, the SIDE associates the
spatio-temporal dependent variable zk(s) to zk+1(s) through the following integral equation

zk+1(s) =
∫

D
kI(s,r) f1(zk(r))dr+ ek(s), (1)

where kI(s,r) is the mixing kernel in the integral and ek(s) ∼ GP(µQ(s),kQ(s,r)) is an added disturbance,
modelled as a Gaussian field with mean µQ(s) and covariance function kQ(s,r), and D is the spatial do-
main under investigation. The nonlinear mapping f1(·) distorts the field in the sedentary stage; the identity
f1(zk(r)) = zk(r) is adopted here. We can further decompose the kernel, the mean disturbance and the field
through basis functions representation to reduce the computational burden and facilitate the inference between
the LGCP and the SIDE. Then,

zk(s) = φ(s)T xk,

µQ(s) = φ(s)Tϑ,

kI(s,r) = φ(s)T ΣIφ(r),

kQ(s,r) = φ(s)T ΣQφ(r),
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where φ(s) ∈ Rn is the vector of basis functions, xk ∈ Rn and ϑ ∈ Rn are weights which reconstruct the
spatio-temporal field and the disturbance mean respectively and where ΣI ∈ Rn×n and ΣQ ∈ Rn×n reconstruct
the kernel covariance function and the disturbance covariance function, respectively. Under this decomposition,
the SIDE (Eq. 1) can be rewritten as

xk+1 = A(ΣI)xk +wk(ϑ,ΣQ), (2)

where A(ΣI) ∈ Rn×n and wk ∈ Rn is a Gaussian colored noise term with mean E[wk] = ϑ and covariance
cov[wk] = ΣQ. The states XK = x0:k = {xk}K

k=0 and the unknown parameters θ = {ϑ,ΣI,Σ
−1
Q } need to be

estimated from the data Yk = {yk}K
k=1 where each yk is the set of coordinates of the logged events at the k-th

time point.

3. Spatio-temporal dynamics of 112 emergency calls

Distances to banks, ATMs, bars, cafes and restaurants were included as the deterministic component of the
intensity λk(s) since they displayed significant association with the averaged spatial intensity of the emergency
calls in Valencia. We found that emergency calls happen near economic facilities; offenders will find victims
in these areas, which may represent a monetary benefit. While bars and cafes gather many potential victims,
emergency calls are located away from these places. This is because bars and cafes have enhanced security
systems as they are prone to crimes such as robbery and assault. Our findings indicate that emergency calls
occur close to restaurants. Criminals particularly target restaurants for robbery, burglary and theft as these
accumulate large sums of cash in daily operations.

Figure 1 display the weekly average fractional growth and decay of emergency calls in Valencia. As ex-
pected, most of the city has experienced an increase in emergency calls. Despite The city centre neighbourhoods
having the highest number of events, these areas have not witnessed a significant increase in emergency calls.
Contrarily, areas with sparse events report the neighbourhoods that have become 112 calls hot-spots over the
study period. The intensity of emergency calls has decreased sparsely across Valencia.

Since we have accurately modelled the spatio-temporal dynamics of the emergency calls dynamics in Valen-
cia, we can now estimate their behaviour in the future. We predicted the number of emergency calls in Valencia
for the first 40 weeks of 2020. We do not predict the counts for the entire 2020 as data was not available
after October. We transformed the counts into logarithms to stabilise the variances. Table 1 shows the Pearson
correlation coefficients between the predicted and true counts and log counts. The coefficients show a strong
correlation (0.87 for counts and 0.89 for log counts) between the estimated and reported values, demonstrating
the model’s predictive power.

Figure 2 shows the scatter plot between the log median prediction of the model and the log reported cases
for 2020. Note how the circles concentrate around the ideal prediction indicating how closely our predicted
data mirrors the observed data. However, although the median value closely resembles the actual value, the
error bar plot shows that the median estimates for some neighbourhoods are highly uncertain. A high amount
of uncertainty is linked to the existence of multiple zero observations in some neighborhoods.
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Figure 1: Posterior mean fractional growth/decay of emergency calls per week in Valencia (2010-2019).

Prediction ρ p− value)

counts vs predicted counts 0.8724 < 0.001

log counts vs predicted log counts 0.8994 < 0.001

Table 1: Pearson correlation coefficient between the SIDE model predictions and ground true values (counts
and log counts) for the first 40 weeks of 2020.

Figure 2: Scatter plot and error bar plot (99% confidence intervals) between the log median predictions and
log actual values for 2020. Each circle represents a neighbourhood in Valencia. The red line refers to the ideal
prediction.
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Abstract. Geostatistics is concerned with the estimation and prediction of spatially continuous phenomena
using data obtained at a discrete set of spatial locations. In geostatistics, preferential sampling occurs when
the locations are not independent from the spatial process of interest, and common geostatistical approaches
may yield wrong inferences if preferential sampling is not taken into account. In this work, we briefly review
common geostatistical models and inference procedures for a preferential sampling setting. We conduct a simu-
lation study to assess the performance of different models in different scenarios and demonstrate that although
models that take preferential sampling into account may be needed in some situations, they may perform worse
than the usual geostatistical approaches when they are used to solve problems that do not do preferential sam-
pling. In summary, although preferential sampling is important, careful consideration of the obtained data is
needed to determine the most appropriate modeling approach for each studied problem.

Keywords. Spatial Statistics; Geostatistics; Preferential Sampling; INLA; Air Pollution.

1. Introduction

Many different problems in spatial statistics can be seen as problems that belong to the geostatistics domain,
that is, problems that are characterized by the study of an underlying spatial process that has been observed at
a discrete set of locations. For instance, one can be interested in studying how air pollution is distributed in a
given region. For these problems, it is usually assumed that the sampling process is independent of the process
of interest. However, this may not always be the case, and in situations where this assumption does not hold,
we say we have preferential sampling, as in [1].

Trying to accommodate the dependence between the sampling process and the process of interest into the
modeling approach is not trivial, and methods that take this dependence into account to obtain valid inferences
have been developed [1, 2]. Before, models that account for preferential sampling were fitted by rewriting the
likelihood function in a way that it could be seen as an expectation, which allowed people to approximate it
by Monte Carlo methods [1]. However, more recently, a Bayesian approach relying on the Integrated Nested
Laplace Approximation (INLA) and Stochastic Partial Differential Equation (SPDE) methods started to be em-
ployed.
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2. Geostatistical Model

Geostatistics refers to the analysis of a data set sampled from a spatially continuous domain, say A , at a
discrete set of locations {xi}i∈I , such that I = {1,2, · · · ,n}, for n ∈ N, of a process S(·), where xi ∈ A , ∀i. For
most of the applications, A is usually a subset of Rd , with d = {1,2}. Moreover, if we let X = (X1, · · · ,Xn) be
a random vector representing the locations where the process S(X) = (S(X1), · · · ,S(Xn)) is observed, and if the
distribution of X is determined in such a way that X is not stochastically independent from S(X), then we say
we are dealing with preferential sampling, as in [1].

A geostatistical model to predict a spatially continuous process can be defined as follows. Suppose that
Yi denotes the observed value of a noisy version of a spatial process S(xi) at some given location xi, for i ∈
{1, · · · ,n}, in the following manner:

Yi = µ+S(xi)+ εi, (1)

where εi are independent Gaussian zero-mean random variables with Var(εi) = σ2
ε . Also, S(xi) can be assumed

to have zero mean; in this case, E(Yi) = µ, for all i ∈ {1, · · · ,n}. Moreover, let x = (x1, · · · ,xn) be a realization
from X = (X1, · · · ,Xn) and S(x) = (S(x1), · · · ,S(xn)) a realization from S(X) = (S(X1), · · · ,S(Xn)). In this case,
although Model (1) is fairly common, it usually assumes that X is stochastically independent from S(X), which
is not reasonable in many situations when preferential sampling is presented and can yield invalid inferences.

To allow for the stochastic dependence between X and S(·), we will consider, based on [1], the following
additional assumptions for Model (1): (a) S is a stationary and isotropic Gaussian random field with mean zero,
variance σ2, and covariance function r(h;θ) = corr(S(x1),S(x2)), for h 6= 0, such that h is the Euclidean dis-
tance between x1 and x2, (b) X |S∼ Poisson Process(λ(x)) with intensity λ(x) = exp{α+β ·S(x)}, for α,β ∈R,
and (c) conditional on S and X , Y = (Y1, · · · ,Yn) is a vector of independent Gaussian random variables, such that
Yi ∼ Normal(µ+S(xi),σ

2
ε), ∀i ∈ {1, · · · ,n}.

2.1 Inference

Since the original paper that introduced the preferential sampling idea was published by [1], people have
been working on this class of problems using different approaches. Here, we will present two, namely the
original idea, and the a method that uses INLA and the SPDE techniques.

1. Start by recalling that, if we consider Model (1) and if we want to predict the value of the process in,
say, x0, we can use, for instance, the Best Unbiased Linear Predictor (BLUP), namely Kriging. However,
in order to do this, we have to be able to estimate the parameters of the model. In particular, if S(x)
is a Gaussian random field with a covariance structure described by Σ(θ), this can be done through the
Maximum Likelihood method.

However, if X and S(X) are not independent, then the likelihood function L(θ), given the data, is

L(θ) = [X ,Y ] =
∫
[X ,Y,S]dS =

∫
[Y |S,X ][X |S][S]dS. (2)
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Therefore, to determine θ that maximizes L(θ), one has to solve the integral in Equation (2). And for
this problem, [1] has proposed a way to approximate

∫
[Y |S,X ][X |S][S]dS using a Monte Carlo method.

Finally, from the approximated likelihood function, they could estimate the parameters by determining θ

that maximizes LApprox.(θ).

2. An alternative approach to estimate the model parameters and make prediction for Model (1) is to use
the INLA and SPDE approaches, which can be easily implemented with the R-INLA package [5]. In
a nutshell, INLA is a method for approximating Bayesian inference in latent Gaussian models [4]. In
particular, models are of the form

yi|S(xi),θ∼ π(yi|S(xi),θ), for i ∈ {1, · · · ,n}
S(x)|θ∼ Normal(µ(θ),Q(θ)−1)

θ∼ π(θ),

where y = (y1, . . . ,yn) is the vector or observed values, x = (x1, . . . ,xn) is a Gaussian random field, and
θ = (θ1, . . . ,θk), for some k ∈N, is a vector of hyperparameters. µ(θ) and Q(θ) represent the mean vector
and the precision matrix, respectively.

From the above formulation, notice that our Model (1) satisfies all described conditions to be classified
as a latent Gaussian model, and therefore we can take advantage of the the INLA method. To fit Model
(1) model using INLA, we will take an SPDE approach. As showed in [6], a Gaussian random field with
Matérn covariance matrix can be expressed as a solution to the following SPDE:

(κ2−∆)α/2(τS(x)) = W (x),

where ∆ is the Laplacian, W (s) is a Gaussian white-noise random process, α controls the smoothness of
the random field (in particular, α = ν+ d/2, such that ν is the smoothness parameter from the Matérn
model and d is the dimension), τ controls the variance, and κ is a scale parameter. Based on this result,
[3] proposed a new approach to represent a Gaussian random field with Matérn covariance, as a Gaussian
Markov Random Field (GMRF), by representing a solution to the SPDE using the finite element method.
This representation implies a sparse precision matrix for the spatial effects, allowing the implementation
of fast computational methods to do inference.

3. Simulation

In this section, we conduct a simulation study to compare the performance of different geostatistical models
that account and do not account for preferential sampling under different scenarios. In our simulation study,
we consider the unit square [0,1]× [0,1] as the study region, and simulate values from a Gaussian process S(·)
with mean µ ∈ R and Matérn covariance function.

We wish to assess the performance of the models in scenarios that have been simulated with and without
preferential sampling, and to acomplish this, we generate n points xi, such that i = 1, · · · ,n, where we obtain
measurements of the simulated processes. In preferential sampling scenarios, points are a realization from
X |S∼ Poisson Process(λ(x)) with intensity λ(x)= exp{α+β ·S(x)}, such that β> 0. On the other hand, in non-
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preferential sampling scenarios we consider X ∼ Poisson Process(λ(x)) with constant intensity λ(x) = exp{α},
that is, we set β = 0.

Different scenarios for the data generation procedure were considered, but here we will present just two
of them: one corresponding to a non-preferential sampling setting (β = 0) and another one to a preferential
sampling setting (β > 0). In all cases, we set µ = 0 and σ2

ε = 1. Also, after generating data, we fitted Model
(1) under the assumption that X and S(X) are independent (A1), and we fitted Model (1) under the assumption
that X and S(X) are dependent (A2). Both models were fitted with R-INLA [5].

For instance, Figure 1 shows simulated scenario under preferential sampling with the corresponding predic-
tions made based on models A1 and A2. Visual inspection suggests better results for model A2.

Figure 1: Simulated S and X |S processes (left) and predictions using models A1 (center) and A2 (right).

3.1 Results

For the 2 simulated scenarios, we predicted the processes values on the region of interest using a model that
do not account, and a model that do account for preferential sampling, namely models A1 and A2, respectively.
Then, we assessed the performance of the models by using the Mean Squared Error (MSE), which can be
computed as MSE = n−1

∑
n
i=1(yi− ŷi)

2, such that yi and ŷi correspond to the observed and predicted values,
respectively, at location xi, i = 1, · · · ,n. We simulated m = 50 data sets from each of the 2 scenarios and
computed the mean and quantiles of the MSE values to have stable results (Table 1).

Scenario Mean (and SD) of MSEA1 5th and 95th perc. of MSEA1 Mean (and SD) of MSEA2 5th and 95th perc. of MSEA2

Non-pref. sampl. 3.16 (0.33) 2.70—3.75 3.59 (0.48) 3.03—4.50

Pref. sampl. 5.63 (1.07) 4.19—7.80 3.44 (0.59) 2.80—4.80

Table 1: Computed statistics for the MSEs for models A1 and A2 in the two scenarios.

From Table 1, we can see that, for the scenario in which preferential sampling was not considered for the
data generation procedure, A1 performed slightly better than A2; however, for data generated with preferential
sampling, model A2 performed much better than model A1 (with respect to the MSE). In this regard, some
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knowledge of the sampling process may be needed in order to choose an appropriate model for our problem.
Thus, although preferential sampling may play an important role in the modeling procedure, careful consider-
ation of the obtained data is required to determine the appropriate technique.
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Abstract. Geostatistics infers about a spatially continuous phenomenon, sampled in a finite number of lo-
cations, where it usually measured with error. Preferential sampling exists whenever there is stochastic de-
pendence between the spatial and sampling processes. Ignoring this problem drives to incorrect and biased
estimates. Thus, identifying this problem is very important, but not always easy to implement and understand.
In this work, a quite simple test, easy to implement, is presented for this purpose overcoming the previous
concerns, based on the correlation between the number of sampled points and the values of the corresponding
measures. Simulation studies were run, both on regular and irregular shaped regions, given different levels of
preferentiability, including or not a relation with a covariate. These results were quite encouraging, although
some issues still need to be better worked out, which became clearer when the test was applied to a real set of
fish capture data.

Keywords. MLC test; Preferential sampling; Geostatistics.

1. Introduction

A common geostatistical model is:

Yi = µ+S(xi)+ εi, xi ∈D, i = 1, . . . ,n, (1)

where YYY = (Y1, . . . ,Yn), Yi ∈R, i = 1, . . . ,n, are imperfect observations of the true surface of the phenomenon of
interest {S(x) : x ∈D ⊆ R2}, taken in locations XXX = (X1, . . . ,Xn), according to some sampling scheme, XXX = xxx;
S is modeled as a stationary Gaussian process with constant mean (zero) and variance (σ2) and correlation
function depending only on the distance between locations as, for example, the Matérn family of flexible
correlations functions, [3]; µ ∈ R is a constant mean parameter, εi are i.i.d. random errors with E[εi] = 0 and
Var(εi) = τ2, the nugget variance.
Model (1) assumes that the sampling process XXX is independent of the spatial process S, but it happens frequently
that the choice of the sampling locations is done in a preferential way, according to the gradient of what is being
measured, [2]. This is the case of fishery data, for which sampling locations are defined by the fishermen’s
desire to maximize capture.
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Ignoring the problem of preferential sampling drives to misleading inferences [2], incorrect estimates [5] and
large biases in the prediction of the spatial process S [7], since common statistical methods condition response
inference on fixed locations [6]. Therefore, prior to inference, one should test whether preferential sampling is
a problem in data to use [4].
Taking preferential sampling effect into account in modelling was first considered in [2], by joint modeling
the observations YYY in (1) and the locations XXX , conditionally on their mutual dependence on S. X |S is taken as
Log-Gaussian Cox model for point patterns with intensity function

λ(x) = exp(α+βS(x)). (2)

Preferentiability, if any, is captured by magnitude of the parameter β, but this does not really set up a test to
conclude about this problem, it is more an indication about it. Tests for assessing wether the sampling locations
selected to monitor a spatial process depend stochastically on the process they are measuring have been pro-
posed previously, as [6] and works herein referred, usually based on marked point processes and hence beyond
reach to most researchers in practice.
It is presented in this work a very simple test for preferential sampling, based on the correlation between the
number of sampled points and the values of the corresponding measures. It is straightforward to implement and
the first results here presented, based on simulations and also real data, are quite interesting.

2. MLC Test

This section presents a test for the null hypothesis of stochastic independence between the sampling loca-
tions XXX selected to monitor a spatial process {S(x), x ∈D} and the process itself.
The idea of this test is that if there is dependence between sampling locations and spatial process (and thus its
measures), it is expected that, considering a partition of the area of interest, the number of sampled points in
each partition division is correlated with the mean value of the corresponding measures.
Therefore, considering the domain of interest D , the sampling locations XXX = (X1, . . . ,Xn) and the observations
YYY = (Y1, . . . ,Yn), the test considers a regular partition of D formed by d equal sized squares and computes the
number NP, j of sampling points within the jth square, j = 1, . . . ,d, and the mean value of the observations
within the jth square, Ȳj, j = 1, . . . ,d. The test proceeds by performing a Spearman correlation test between the
number of points in each cell {NP, j} and the average measures in each cell {Ȳj,}, corrected for ties. The use of
the Spearman correlation test do not restrict measures YYY to be Gaussian or even of a continuous type. This test
was named Means and Locations Correlation test, MLC test.
The square side size is data dependent and it is proposed here, as a rule of thumb, for regularly shaped regions,
to be h

12 , where h is the maximum distance between all the n points. This is an open question, has been con-
sidered in other contexts requiring grid definitions in spatial statistics, and needs to be further studied, maybe
under MAUP or the sampling theorem.

3. Simulation Study
The first simulation study presented considers an almost regularly shaped domain of interest where it was
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Figure 1: Realization of a spatial process with µ = 4 and preferential and non preferential simulated data.

Figure 2: Considered grids and first simulated data set, grid side sizes: 0.44, 0.5, 0.25 and 0.1.

simulated a true realization s∗(x) of a spatial process described by a Matérn field with κ = 1, σ2 = 2.5 and
scale parameter φ = 0.7, [3]. Additionally, the true field mean was allowed to be µ = 4 or given by the spatial
covariate Euclidean distance to coast. Based on the same field realization, 100 points were sampled with and
without preferability, β = 2 and β =−2 for preferability and β = 0 for non-preferability, from joint models (2)
with intensity given by (βs∗(x)) for locations, and (1) with Gaussian mean given by (s∗(x)) and nugget variance
τ2 = 0.2. In Figure 1 is a field realization and simulated data for no covariate case. Five different grids were
considered for the test, varying the grid side size: h

12 , where h is the maximum distance between all the n points,
0.5; 0.25; 0.1; and 0.05 - Figure 2 for grids and first data set. For all the grids considered, the test rejected at a
10% significance level the preferential sampling hypothesis only for the non preferential simulated data, both
with and without covariate.

Next, a single grid side size was fixed to h
12 , where h is the maximum distance between all the n points.

Using this rule, 50 different spatial patterns s∗k(x), k = 1, . . . ,50, were generated from the same spatial process
defined before. Also, the true field mean was allowed to be µ = 4 or dist(x). Then the degree of preferability
was allowed to vary through a choice of β values in {−2,−1.5,−1,−0.5,0,0.5,1,1.5,2}, for simulating 100
points of data, as before, with a point intensity process here given by

(
βs∗k(x)

)
, in a total of 50 replicas for each

combination (β,s∗k(x)). The preferential sampling hypothesis was not rejected, at a 10% significance level, for
almost 100% replicas for β∈ {−2,−1.5,−1.0,1,1.5 and 2}, for both with and without covariate. For β =−0.5
and β = 0.5 these values dropped to 90%. For β = 0, the test rejected the preferential sampling hypothesis for
all replicas, as expected.
The second simulation study presented is based on a real data set of captures of Black Scabbardfish off the
Portuguese coast, a deep water species that by that reason has its captures confined into a very irregular shaped
region, posing an extra challenge to perform tests that depend on the geometry of the regions. The real data set,
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Figure 3: A realization of a spatial process with µ = 4 and preferential and non preferential simulated data, left
to right corresponding to β =−2, β = 0, β = 0.5 and β = 2.

Figure 4: Black scabbardfish location of captures off the southern Portuguese coast from 2009 to 2013.

corresponding to captures in a period of 5 years, comprehended data on a total of 733 observed locations and
estimated a preferential parameter β of 0.5 for model (2).
In the simulation study, 50 different spatial patterns s∗k(x), k = 1, . . . ,50, were generated from a spatial process
defined by a Matérn field with κ = 1, σ2 = 1.5 and scale parameter φ = 15 and true field mean of µ = 4.
Allowing the degree of preferability to vary, for β values in {−2,−0.3,0,0.3,2}), 100 points were simulated
accordingly as before, using a nugget variance of τ2 = 0.01. See Figure 3 for field realization and simulated
data for one of the replicas and for the different values of β considered.
The preferential sampling hypothesis was not rejected, at a 10% significance level, for almost 100% replicas
for β ∈ {−2, and 2}. For β = −0.5 and β = 0.5 these values dropped to 90%. For β = 0, the test rejected the
preferential sampling hypothesis for all replicas.

4. Real Data and Discussion

Finally the MLC test was performed to the real data already mentioned, provided by the Instituto Português
do Mar e da Atmosfera (IPMA) on Black Scabbardfish captures in a period of 5 years, as described in [1] and
displayed in Figure 4. As stated before, a degree of preferentiality was estimated as β = 0.5, for model (2).
Three different grid side sizes were chosen: to be h

12 = 12.0 or h
24 = 6.0, where h is the maximum distance

between all the n points; and a size defined by a point density criterion of value 2.4. The MLC test resulted in
the non rejection of the preferential sampling assumption for the case of h

24 and rejection on the other cases.

The test for preferential sampling presented in this work is very simple to implement and the simulation
results obtained are quite promising, even for quite irregular shaped regions. More simulation studies are run-
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ning and also the theoretic properties of the test are being studied. There are still some issues to address, as the
question of grid size, how to handle the borders of the regions of interest, and evaluation of test performance in
the presence of isotropy and non stationarity.
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