Bi-magic and other generalizations of super edge-magic labelings

S.C. López¹, F. A. Muntaner-Batle² and M. Rius-Font¹

¹ Departament de Matemàtica Aplicada IV
Universitat Politècnica de Catalunya,
C/Esteve Terrades 5
08860 Castelldefels, Spain
email: {susana,mrius}@ma4.upc.edu

² Graph Theory and Applications Research Group
School of Electrical Engineering and Computer Science
Faculty of Engineering and Built Environment
The University of Newcastle
NSW 2308 Australia
email: famb1es@yahoo.es

Dedicated to the memory of professor Gary Bloom

Abstract

In this paper, we use the product \boxtimes_h in order to study super edge-magic labelings, bi-magic labelings and optimal k-equitable labelings. We establish, with the help of the product \boxtimes_h, new relations between super edge-magic labelings and optimal k-equitable labelings and between super edge-magic labelings and edge bi-magic labelings. We also introduce new families of graphs that are inspired by the family of Generalised Petersen graphs. The concepts of super bi-magic and r-magic labelings are also introduced and discussed, and open problems are proposed for future research.

1 Introduction

For most of the graph theory terminology and notation utilized in this paper we follow either [5] or [14], unless otherwise specified. In particular we may allow graphs to
have loops, however no multiple edges will be allowed unless we are in Section 4. Let $G = (V, E)$ be a graph. We say that a graph G is a (p, q)-graph if $|V| = p$ and $|E| = q$. Kotzig and Rosa introduced in [10] the concept of edge-magic labeling. A bijective function $f : V \cup E \rightarrow \{i\}^{p+q}_{i=1}$ is an edge-magic labeling of G if there exists an integer k such that the sum $f(x) + f(xy) + f(y) = k$ for all $xy \in E$. In 1998, Enomoto et al. [7] defined the concepts of super edge-magic graphs and super edge-magic labelings. A super edge-magic labeling is an edge-magic labeling with the extra condition that $f(V) = \{i\}^{p}_{i=1}$. It is worthwhile mentioning that an equivalent labeling had already appeared in the literature in 1991 under the name of strongly indexable labeling [1]. A graph that admits a (super) edge-magic labeling is called a (super) edge-magic graph.

In 2000, Figueroa et al. [8] provided a very useful characterization of super edge-magic graphs that we state in the next lemma.

Lemma 1.1 A (p, q)-graph G is super edge-magic if and only if there is a bijective function $\bar{f} : V \rightarrow \{i\}^{p}_{i=1}$ such that the set $S_E = \{\bar{f}(u) + \bar{f}(v) : uv \in E\}$ is a set of q consecutive integers.

In [7] Figueroa et al., introduced the concept of super edge-magic digraph as follows: a digraph $D = (V, E)$ is super edge-magic if its underlying graph is super edge-magic. In general, we say that a digraph D admits a labeling f if its underlying graph admits the labeling f. In this paper we will use super edge-magic digraphs in order to achieve our goals. In [4] Bloom and Ruiz introduced a generalization of graceful labelings (see [9] for a formal definition of graceful labeling), that they called k-equitable labelings. Let $G = (V, E)$ be a (p, q)-graph and let $g : V \rightarrow \mathbb{Z}$ be an injective function with the property that the new function $h : E \rightarrow \mathbb{N}$ defined by the rule $h(uv) = |g(u) - g(v)| \ \forall uv \in E$ assigns the same integer to exactly k edges. Then g is said to be a k-equitable labeling and G a k-equitable graph. In [4] the authors called a k-equitable labeling, optimal, when g assigns all the elements of the set $\{i\}^{p}_{i=1}$ to the elements of V. Both Bloom and Wojciechowski [15], [16], and independently Barrientos [2], proved that C_n is optimal k-equitable if and only if k is a proper divisor of $n \ (k \neq n)$.

From now on, we will use the notation $\text{und}(D)$ in order to denote the underlying graph of a digraph D. At this point let $D = (V, E)$ with $V \subset \mathbb{N}$ be any digraph. We define the adjacency matrix of D, and we denote it by $A(D)$, to be the matrix such that the rows and columns are named after the vertices of D in increasing order, and an entry (i, j) of the matrix is 1 if and only if $(i, j) \in E$. Otherwise, the entry (i, j) is 0.

In [7], Figueroa et al., defined the following product: let $D = (V, E)$ be a digraph with adjacency matrix $A(D) = (a_{i,j})$ and let $\Gamma = \{F_i\}^{m}_{i=1}$ be a family of m digraphs with the same set of vertices V'. Assume that $h : E \rightarrow \Gamma$ is any function that assigns elements of Γ to the arcs of D. Then the digraph $D \otimes_h \Gamma$ is defined by

1. $V(D \otimes_h \Gamma) = V \times V'$
2. \((a_1, b_1), (a_2, b_2)\) \(\in E(D \otimes_h \Gamma) \iff [(a_1, a_2) \in E(D) \land (b_1, b_2) \in E(h(a_1, a_2))]\)

An alternative way of defining the same product is through adjacency matrices, since we can obtain the adjacency matrix of \(D \otimes_h \Gamma\) as follows:

1. If \(a_{i,j} = 0\) then \(a_{i,j}\) is multiplied by the \(p' \times p'\) 0-square matrix.
2. If \(a_{i,j} = 1\) then \(a_{i,j}\) is multiplied by \(A(h(i, j))\) where \(A(h(i, j))\) is the adjacency matrix of the digraph \(h(i, j)\).

Note that when \(h\) is constant, \(D \otimes_h \Gamma\) is the Kronecker product. From now on, let \(S_n\) denote the set of all super edge-magic 1-regular labeled digraphs of order \(n\) where each vertex takes the name of the label that has been assigned to it. We also denote by \(\Sigma_n\) the set of all 1-regular digraphs of order \(n\).

The following results were introduced in [7]:

Theorem 1.1 Let \(D\) be a (super) edge-magic digraph and let \(h : E(D) \rightarrow S_n\) be any function. Then \(\text{und}(D \otimes_h S_n)\) is (super) edge-magic.

Theorem 1.2 Let \(\overrightarrow{C_m}\) be a strong orientation of \(C_m\) and let \(h : E(\overrightarrow{C_m}) \rightarrow S_n\) be any constant function. Then \(\text{und}(\overrightarrow{C_m} \otimes_h S_n) = \gcd \gcd(m, n) \cdot \text{lcm}(m, n)\).

Theorem 1.3 Let \(F\) be an acyclic graph. Consider any function \(h : E(\overrightarrow{F}) \rightarrow \Sigma_n\). Then, \(\text{und}(\overrightarrow{F} \otimes_h \Sigma_n) = nF\).

Using this product, in the original paper, Figueroa et al. were able to find exponential lower bounds for the number of non-isomorphic labelings of different types, and different families of graphs.

2 Generalizations of generalized Petersen graphs and the \(\otimes_h\)-product

The generalized Petersen graph \(P(n; k)\), \(n \geq 3\) and \(1 \leq k \leq \lceil (n - 1)/2 \rceil\), consists of an outer \(n\)-cycle \(x_0x_1 \cdots x_{n-1}x_0\) a set of \(n\)-spokes \(x_iy_i\), \(0 \leq i \leq n-1\), and \(n\) inner edges of the form \(y_iy_{i+n}\), where \(+n\) denotes the sum of two elements in the group \(\mathbb{Z}_n\). In this section we propose two possible generalizations of this family, one replacing the \(k\) step of the inner edges by a permutation and another one, increasing the number of levels. We denote by \(\mathfrak{S}_n\) the set of permutations of \(\{0, 1, \ldots, n-1\}\).
Let \(n \geq 3 \) and let \(\pi \in S_n \). The first generalization of a generalized Petersen graph considered in this paper \(GGP(n; \pi) \), consists of an outer \(n \)-cycle \(x_0 x_1 \cdots x_{n-1} x_0 \), a set of \(n \)-spokes \(x_i y_i, 0 \leq i \leq n-1 \) and \(n \) inner edges defined by \(y_i y_{\pi(i)}, i = 0, \ldots, n-1 \). Notice that, if we consider the permutation \(\pi \) defined by \(\pi(i) = i + n k \) then \(GGP(n; \pi) = P(n; k) \).

Let \(m \geq 2, n \geq 3 \) and \(\pi_2, \ldots, \pi_m \in S_n \). The second generalization of a generalized Petersen graph considered in this paper \(GGP(n; \pi_2, \ldots, \pi_m) \) is a graph with vertex set \(\bigcup_{j=1}^m \{x_i^j : i = 0, \ldots, n-1 \} \), an outer \(n \)-cycle \(x_0^1 x_1^1 \cdots x_{n-1}^1 x_0^1 \), and inner edges \(x_i^j x_i^j \) and \(x_i^j y_{\pi_j(i)}^j \), for \(j = 2, \ldots, m \), and \(i = 0, \ldots, n-1 \). Notice that, \(GGP(n; \pi_2, \ldots, \pi_m) = P_m \times C_n \), when \(\pi_j(i) = i + n 1 \) for every \(j = 2, \ldots, m \).

The graphs \(GGP(9; \pi) \) and \(GGP(5; \pi_2, \pi_3) \) are showed in Figure 1, where \(\pi \in S_9 \), \(\pi_2, \pi_3 \in S_5 \) and \(\pi = (0, 1, 8, 3, 4, 2, 6, 7, 5) \), \(\pi_2 = (0, 2, 4, 1, 3) \) and \(\pi_3(i) = i + 5 1 \).

Let \(LP_m \) be the digraph obtained from a path of \(m \)-vertices, in such a way that we can travel from one leaf to the other following the directions of the arrows, with a loop attached at each vertex.

Proposition 2.1 Let \(\overrightarrow{C_n} \) be a strong connected digraph obtained from a cycle of order \(n \) where \(n \) is odd. Then

\[
\text{und}(\overrightarrow{LP_m} \otimes \overrightarrow{C_n}) = P_m \times C_n.
\]
Proof.
By definition, \(V(\overrightarrow{LP_m} \otimes \overrightarrow{C_n}) = V(P_m \times C_n) \). Let \(a_0a_1 \cdots a_{m-1} \) and \(b_0b_1 \cdots b_{n-1} \) be directed paths respectively in \(\overrightarrow{LP_m} \) and \(\overrightarrow{C_n} \). Then, \(((a_i, b_j), (a_{i'}, b_{j'})) \) is an arc in \(\overrightarrow{LP_m} \otimes \overrightarrow{C_n} \) if and only if \((a_i, a_{i'}) \in E(\overrightarrow{LP_m}) \) and \(j' = j + n \). That is, all arcs are of the form either \(((a_i, b_j), (a_i, b_{j+n})) \) or \(((a_i, b_j), (a_{i+m}, b_{j+n})) \).

From now on, let us denote by \(\sigma_k \in S_n \) the permutation defined by \(\sigma_k(i) = i + n \).

Proposition 2.2 Let \(n \) be an odd integer and let \(\pi \in S_n \). Assume that for some \(h : E(\overrightarrow{LP_2}) \longrightarrow S_n \), we obtain that \(\text{und}(\overrightarrow{LP_2} \otimes_h S_n) = GGP(n; \pi) \). Then, there exists \(h' : E(\overrightarrow{LP_m}) \longrightarrow S_n \) such that

\[
\text{und}(\overrightarrow{LP_m} \otimes_{h'} S_n) = GGP(n; \sigma_1, \ldots, \sigma_1, \pi).
\]

Proof.
Let \(a_0a_1 \cdots a_{m-1} \) and \(b_0b_1 \) be the directed paths induced respectively in \(\overrightarrow{LP_m} \) and \(\overrightarrow{LP_2} \).

Let \(h' : E(\overrightarrow{LP_m}) \longrightarrow S_n \) be the function defined by:

\[
h'(e) = \begin{cases}
 h(b_1b_1), & \text{if } e = a_{m-1}a_{m-1}; \\
 h(b_0b_1), & \text{if } e = a_{m-2}a_{m-1}; \\
 h(b_0b_0), & \text{otherwise}.
\end{cases}
\]

Then, \(\text{und}(\overrightarrow{LP_m} \otimes_{h'} S_n) = GGP(n; \sigma_1, \ldots, \sigma_1, \pi) \).

We can introduce a slight modification in \(h' \) in order to construct for each \(l < m \), \(GGP(n; \pi_2, \ldots, \pi_m) \), where \(\pi_i = \sigma_1 \) for \(i \neq l \) and \(\pi_l = \pi \).

Proposition 2.3 Let \(n \) be an odd integer. Assume that for some \(h : E(\overrightarrow{LP_2}) \longrightarrow S_n \), we obtain that \(\text{und}(\overrightarrow{LP_2} \otimes_h S_n) = GGP(n; \pi) \). Then, for each \(l, 1 < l \leq m \) there exists \(h'_l : E(\overrightarrow{LP_m}) \longrightarrow S_n \) such that

\[
\text{und}(\overrightarrow{LP_m} \otimes_{h'_l} S_n) = GGP(n; \pi_2, \ldots, \pi_m),
\]

where \(\pi_i = \sigma_1 \) for \(i \neq l \) and \(\pi_l = \pi \).

Proof.
The result follows from Proposition 2.2 when \(l = m \). Hence, we only need to consider
the case when \(l < m \). Let \(a_0a_1 \cdots a_{m-1} \) and \(b_0b_1 \) be the directed paths induced respectively in \(\overrightarrow{LP}_m \) and \(\overrightarrow{LP}_2 \). Assume that \(\Gamma \in S_n \) and denote by \(\overline{\Gamma} \) the oriented digraph obtained from \(\Gamma \) by reversing all its arcs. Let \(h' : E(\overrightarrow{LP}_m) \rightarrow S_n \) be the function defined by:

\[
h'_t(e) = \begin{cases}
 h(b_1b_1), & \text{if } e = a_{t-1}a_{t-1}; \\
 h(b_0b_1), & \text{if } e = a_{t-2}a_{t-1}; \\
 h(b_0b_0), & \text{if } e = a_{t-2}a_{t-2}; \\
 h(b_1b_1), & \text{if } e = a_{t-1}a_t; \\
 h(b_0b_0), & \text{otherwise.}
\end{cases}
\]

Then, \(\text{und}(\overrightarrow{LP}_m \otimes h'_t S_n) = GGP(n; \pi_2, \ldots, \pi_m) \), where \(\pi_i = \sigma_1 \) for \(i \neq l \) and \(\pi_l = \pi \). □

Let \(x_0x_1 \cdots x_{m-1}x_0 \) be the outer cycle of \(P(m; k) \) with spokes \(x_iy_i \), \(0 \leq i \leq m - 1 \), and inner edges \(y_iy_{i+m} \). We denote by \(\overrightarrow{P(m; k)} \) the oriented graph obtained from \(P(m; k) \) by orienting the edges of the outer cycle from \(x_i \) to \(x_{i+m} \), the inner edges from \(y_i \) to \(y_{i+m} \), and the spokes from the outer cycle to the inner one.

Proposition 2.4 Let \(m, n \) be two positive integers such that \(\gcd(m, n) = 1 \) with \(n \) odd. Then,

\[
\text{und}(\overrightarrow{P(m; k)} \otimes \overrightarrow{C_n}) = P(mn; k + mr),
\]

where \(r \) is the smallest positive integer such that \(k + nr = 1 \).

Proof.

Let \(v_0v_1 \cdots v_{n-1}v_0 \) be the cycle \(\overrightarrow{C_n} \), where each vertex is identified with the corresponding label of a super edge-magic labeling of \(\overrightarrow{C_n} \). Then,

\[
V(\overrightarrow{P(m; k)} \otimes \overrightarrow{C_n}) = \{(x_i, v_j), (y_i, v_j)\}_{i=0, \ldots, m-1}^{j=0, \ldots, n-1}
\]

and \(E(\overrightarrow{P(m; k)} \otimes \overrightarrow{C_n}) = \{(x_i, v_j), (x_{i+m}, v_{j+m})\}_{i=0, \ldots, m-1}^{j=0, \ldots, n-1} \).

By Theorem 1.2 the digraph induced by the vertices of the form \((x_i, v_j) \) is a cycle of length \(mn \) with a strong orientation. By the definition of the Kronecker product, we have \(mn \) spokes of the form \(((x_i, v_j), (y_i, v_{j+n})) \) and inner edges of the form \(((y_i, v_j), (y_{i+m}, v_{j+n})) \). Let us see now that \(d((x_i, v_{j-n}), (x_{i+m}, v_j)) = k + nr \), where \(r \) is the smallest positive integer such that \(k + nr = 1 \). By definition of \(\overrightarrow{P(m; k)} \) there
is a directed path of length \(k \) from \(x_i \) to \(x_{i+k} = k \). Thus \(d((x_i, v_j), (x_i, v_{j+n_m})) = m \) and hence,
\[
d((x_i, v_{j-1}), (x_{i+k}, v_j)) = d((x_i, v_{j-1}), (x_{i+k}, v_{j-1+k})) + d((x_{i+k}, v_{j-1+k}), (x_{i+k}, v_j)) = k + d((x_{i+k}, v_{j-mr}), (x_{i+k}, v_j)) = k + mr.
\]

2.1 (Super) edge-magic GGP

Since every digraph \(LP_m \) admits a super edge-magic labeling (just label the vertices of the path following the arrows in increasing order) we can apply Theorem 1.1 to extend the class of graphs that are super edge-magic, by adding every GGP that can be obtained from the \(\otimes_h \)-product of the \(LP_m \) with \(S_n \). For instance, next we propose an alternative proof for the following theorem found in [6] and [8].

Theorem 2.1 [6, 8] Let \(m, n \) be two integers, \(n \) odd. Then \(P_m \times C_n \) is super edge-magic.

Proof.

Since, by Theorem 1.1 \(LP_m \otimes C_n \) is super edge-magic and by Proposition 2.1 \(und(LP_m \otimes C_n) = P_m \times C_n \), the result follows.

Theorem 2.2 The Petersen graph is super edge-magic. Moreover,

(i) for each \(m \geq 2 \), \(1 < l \leq m \) and \(1 \leq k \leq 2 \), the graph \(GGP(5; \pi_2, \ldots, \pi_m) \), where \(\pi_i = \sigma_1 \) for \(i \neq l \) and \(\pi_l = \sigma_k \), is super edge-magic.

(ii) for each \(1 \leq k \leq 2 \), the graph \(P(5n; k + 5r) \) is super edge-magic, where \(r \) is the smallest positive integer such that \(k + n5r = 1 \).

Proof.

Let \(a_0a_1 \) be a directed path in \(LP_2 \). Let \(C_5 \) be the directed cycle defined by \(1 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 1 \) and \(C_1 \cup C_4 \) the digraph \(1 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 1 \) with a loop labeled 2. We can obtain the Petersen graph from \(LP_5 \otimes_h \{C_5, C_1 \cup C_4 \} \), where \(h \) is defined by \(h(a_0a_0) = h(a_1a_1) = C_5 \) and \(h(a_0a_1) = C_1 \cup C_4 \). By Theorem 2.1 \(P(5; 1) \) is super edge-magic. Thus, applying Proposition 2.3 together with Theorem 1.1 we obtain (i). Similarly, by Proposition 2.4 and Theorem 1.1 we obtain (ii).
3 Edge bi-magic

A \((p, q)\)-graph \(G = (V, E)\) is said to have an edge bi-magic labeling if there exists a bijective function \(f : V \cup E \rightarrow \{i\}_{i=1}^{p+q}\) such that for each edge \(uv \in E\), \(f(u) + f(uv) + f(v) \in \{k_1, k_2\}\), where \(k_1, k_2\) are two distinct constants. In this case, the graph is said to be edge bi-magic. If we add the extra condition that \(f(V) = \{i\}_{i=1}^{p}\) then we say that \(f\) is a super edge bi-magic labeling and \(G\) a super edge bi-magic graph. In this section, we study the complete graphs that are edge bi-magic and we introduce a new classes of (super) edge bi-magic graphs. In particular, we generalize the class of edge bi-magic graphs that was given by Rajan et al. in [11]. We also prove that the product introduced in [7] is useful for providing new families of edge bi-magic graphs.

The next theorem gives necessary conditions for a complete graph to be edge bi-magic, provided that the magic constants are of the same parity. It is similar to Theorem 2.11 in [13]. See also [12].

Theorem 3.1 Suppose that \(K_p\) has an edge bi-magic labeling with magic constants \(k_1, k_2\) such that \(k_1 + k_2\) is an even integer. The number \(\nu\) of vertices that receive even labels satisfies the following condition:

\[(i)\] If \(p \equiv 0\) or \(3 \pmod{4}\) and \(k_1\) is even then \(\nu = \frac{1}{2}(p - 1 \pm \sqrt{p + 1})\).

\[(ii)\] If \(p \equiv 1\) or \(2 \pmod{4}\) and \(k_1\) is even then \(\nu = \frac{1}{2}(p - 1 \pm \sqrt{p - 1})\).

\[(iii)\] If \(p \equiv 0\) or \(3 \pmod{4}\) and \(k_1\) is odd then \(\nu = \frac{1}{2}(p + 1 \pm \sqrt{p + 1})\).

\[(iv)\] If \(p \equiv 1\) or \(2 \pmod{4}\) and \(k_1\) is odd then \(\nu = \frac{1}{2}(p + 1 \pm \sqrt{p + 1})\).

Proof.
The proof is similar to the one given in Theorem 2.11 in [13]. It is only relevant the fact that \(k_1\) and \(k_2\) are of the same parity.

Lemma 3.1 Let \(G\) be a super edge bi-magic graph of order \(p > 4\) without loops. Then, its size is at most \(4p - 10\).

Proof.
Let \(G\) be a super edge bi-magic graph of order \(p > 4\) without loops and let \(f\) be a super edge bi-magic labeling of \(G\). Consider the set \(S_E = \{f(u) + f(v) : uv \in E(G)\}\). Then if we allow repetitions in \(S_E\), we have that

\[S_E \subset \{3, 4, \ldots, 2p - 1\} \cup \{5, \ldots, 2p - 3\}.

Therefore, the size of a super edge bi-magic graph without loops is at most \(4p - 10\).
Observation 3.2 This upper bound is tight. Figure 3 shows an edge bi-magic labeling of K_5. Using Lemma 3.1 we obtain that the graph K_n is not super edge bi-magic for $n > 5$.

![Figure 3: A super edge bi-magic labeling of K_5](image)

The next lemma gives a characterization of super edge bi-magic graphs in terms of arithmetic progressions. In some sense, it is a similar result to Lemma 1.1 for the case of super edge-magic labelings given by Figueroa et al. in [8].

Lemma 3.2 A graph labeling of G is super edge bi-magic if and only if, the set of sum labels of adjacent vertices (including repetitions) can be partitioned into two sets S and S' and there exists an integer r such that $S \cup (S' - r)$ is a set of consecutive integers.

Proof.
In order to prove the necessity assume that there exists a super edge bi-magic labeling of G. Let k and k' be the two magic constants and let S (resp. S') be the sums of the labels of adjacent vertices with magic sum k (resp. k'). Thus $(k - S) \cup (k' - S')$ forms a set of consecutive integers (the labels of the edges). Hence, so do the sets $(S - k) \cup (S' - k')$ and $S \cup (S' - (k' - k))$. Let us prove the converse. Let $S \cup (S' - r) = \{a_1 < \cdots < a_q\}$ and assume first that $a_1 \in S$. We have that $a_i + p + q - i + 1 = k$ is constant. For each $1 \leq i \leq q$ we assign to the corresponding edge the label $p + q - i + 1$. Thus, for each $a_i \in S$ we have $a_i + p + q - i + 1 = k$, whereas if $a_i \in S' - r$ we obtain that $a_i + r + p + q - i + 1 = k + r = k'$. We proceed similarly in case $a_1 + r \in S'$. \qed

3.1 Some constructions of (super) edge bi-magic graphs

Let $G = (V, E)$ be a graph and let $S \subset V$. We denote by $G \ast_S u$ the graph obtained from G by adding a new vertex u and the edge set $\{uv \ : \ v \in S\}$ and by $G \wedge_S \{u_i\}_{i=1}^{[S]}$ the graph obtained from G by adding a leaf $v_i u_i$ to each vertex of $v_i \in S$. More in
general, we write $G \land S \{u^j_i\}_{i=1,\ldots,|S|}$ to denote the graph obtained from G by adding leaves $v_i u^j_i$, $j = 1, \ldots, n_i$ to each vertex of $v_i \in S$.

Proposition 3.1 Let $G = (V, E)$ be a (p, q)-graph with a (super) edge-magic labeling f. Let $S \subseteq V$ be a subset of vertices such that $\{f(v)\}_{v \in S}$ is a set of consecutive integers. Then, the graph $G * S u$ is (super) edge bi-magic.

Proof.
Let $G * S u = (V', E')$ and assume that $s = \max\{f(x) | x \in S\}$. We consider the labeling $f' : V' \cup E' \longrightarrow \{i\}_{i=1+|S|+1}$ such that

$$f'(x) = \begin{cases}
 f(x) + 1, & \text{if } x \in V \cup E; \\
 1, & \text{if } x = u; \\
 p + q + 2 + i, & \text{if } x = uv, v \in S, \text{and } f(v) = s - i.
\end{cases}$$

Then, f' is a (super) edge bi-magic labeling of $G * S u = (V', E')$ with magic constants $k_1 = k + 3$ and $k_2 = p + q + s + 4$, where k is the magic sum for f. \hfill \Box

The graph $PY(n)$ is the graph obtained from the cylinder $C_3 \times P_n$ by adding a new vertex and joining it to the three vertices of the cycle on the top.

Corollary 3.1 (Theorem 1,[11]) The graph $PY(n)$ is edge bi-magic.

Proof.
Recall that $\text{und}(LP_n \otimes \vec{C}_3) = C_3 \times P_n$. In particular, it admits a (super) edge-magic labeling, with the vertices of the cycle on the top labeled with $\{1, 2, 3\}$. Thus, the construction of Proposition 3.1 produces an edge bi-magic labeling of $PY(n)$. \hfill \Box

Proposition 3.2 Let $G = (V, E)$ be a (p, q)-graph with a (super) edge-magic labeling f. Let S be a subset of vertices such that $\{f(v)\}_{v \in S}$ is a set of consecutive integers and $|S|$ is odd. Then, the graph $G \land S \{u^i_i\}_{i=1}^{|S|}$ is (super) edge bi-magic.

Proof.
Let $G \land S \{u^i_i\}_{i=1}^{|S|} = (V', E')$ and assume that $s = \max\{f(x) | x \in S\}$ and that the new edges are $v_i u_i$ where $f(v_i) = s - i + 1$. We consider the labeling $f' : V' \cup E' \longrightarrow \{i\}_{i=1+|S|+1}$ such that

$$f'(x) = \begin{cases}
 f(x) + |S|, & \text{if } x \in V \cup E; \\
 \frac{|S|-1}{2} + \frac{i+1}{2}, & \text{if } x = u_i \text{ and } i \text{ odd}; \\
 \frac{i}{2}, & \text{if } x = u_i \text{ and } i \text{ even}; \\
 p + q + |S| + l, & \text{if } x = v_i u_i, \text{ and } i = 2l - 1; \\
 p + q + |S| + \frac{|S|+1}{2} + l, & \text{if } x = v_i u_i, \text{ and } i = 2l.
\end{cases}$$

10
Then, f' is a (super) edge bi-magic labeling of $G \land_S \{u_i\}_{i=1}^{|S|}$ with magic constants $k_1 = k + 3|S|$ and $k_2 = p + q + s + \left(5|S| + 13\right)/2$, where k is the magic sum of f.

Proposition 3.3 Let $G = (V, E)$ be a (p, q)-graph with a (super) edge-magic labeling f. Let S be a subset of vertices such that $f(v_i) = s - d(i - 1)$ for each $v_i \in S$ with $d \geq 1$. Then, the graph $G \land_S \{u_i\}_{i=1}^{|S|}$, where $n_{2l-1} = d - 1$ and $n_{2l} = 1$, is (super) edge bi-magic.

Proof.
Let $G \land_S \{u_i^j\}_{i=1}^{|S|} = (V', E')$. Let $r = (d - 1)\left[\lceil|S|/2\rceil + \lfloor|S|/2\rfloor\right]$. We consider the labeling $f' : V' \cup E' \longrightarrow \{i\}_{i=1}^{p+q+2r}$, such that

$$f'(x) = \begin{cases} f(x) + r, & \text{if } x \in V \cup E; \\ (l - 1)d + j, & \text{if } x = u_{2j-1}^j; \\ ld, & \text{if } x = u_{2l}^j; \\ p + q + r + ld - j, & \text{if } x = v_{2l-1}v_{2l}^j; \\ p + q + r + ld, & \text{if } x = v_{2l}v_{2l}^j. \end{cases}$$

Then, f' is a (super) edge bi-magic labeling of $G \land_S \{u_i^j\}_{i=1}^{|S|}$ with magic constants $k_1 = k + 3r$ and $k_2 = p + q + d + 2r + s$, where k is the magic sum of f.

3.2 (Super) Edge bi-magic graphs obtained using \otimes_h-product

We present a simplified proof of the main result found in [7]. Recall that S_n denotes the set of all super edge-magic 1-regular labeled digraphs of odd order n.

Theorem 1.1 Let D be a (super) edge-magic digraph and let $h : E(D) \rightarrow S_n$ be any function. Then the graph $\text{und}(D \otimes_h S_n)$ is (super) edge-magic.

Proof.
As in the original paper, we rename the vertices of D and each element of S_n after the labels of their corresponding edge-magic and super edge-magic labelings respectively. We also define the labels as in Theorem 3.1. of [7]:

1. If $(i, j) \in V(D \otimes_h S_n)$ we assign to the vertex the label: $n(i - 1) + j$.
2. If $((i, j), (i', j')) \in E(D \otimes_h S_n)$ we assign to the arc the label: $n(e - 1) + (3n + 3)/2 - (j + j')$, where e is the label of (i, i') in D.

Notice that, since each element Γ of S_n is labeled with a super edge-magic labeling, by Corollary 1.1 in [7] we have

$$\{(3n + 3)/2 - (j + j') : (j, j') \in E(\Gamma)\} = \{1, 2, \ldots, n\}.$$
Thus, the set of labels in \(D \times_h S_n \) covers all elements in \(\{1, 2, \ldots, n(|V(D)| + |E(D)|)\} \). Moreover, for each arc \(((i, j), (i', j')) \in E(D \times_h S_n)\), coming from an arc \(e = (i, i') \in E(D) \) and an arc \((j, j') \in E(h(i, i'))\), the sum of labels is constant and equal to:

\[
n(i + i' + e - 3) + (3n + 3)/2. \tag{1}\]

That is, \(n(\text{val}_f - 3) + (3n + 3)/2 \). We also notice that, if the digraph \(D \) is super edge-magic then the vertices of \(D \times_h S_n \) receive the smallest labels. □

Using this proof we can extend the previous result to the case of edge bi-magic digraphs.

Theorem 3.3 Let \(D \) be a (super) edge bi-magic digraph and let \(h : E(D) \to S_n \) be any function. Then the graph \(\text{und}(D \times_h S_n) \) is (super) edge bi-magic.

Proof.
Let \(k_1 \) and \(k_2 \) be the valences for a (super) edge bi-magic labeling of \(D \). From the proof of Theorem 1.1, it is clear that for each arc \(((i, j), (i', j')) \in E(D \times_h S_n)\), coming from an arc \((i, i') \) in \(D \) labeled with \(e \), the induced sum \((1) \) belongs to \(\{n(k_1 - 3) + (3n + 3)/2, n(k_2 - 3) + (3n + 3)/2\} \). □

4. **k-equitable**

In this section, we use the \(\times_h \)-product in order to construct \(k \)-equitable labelings of new families of graphs. In this case, the input elements are \(k \)-equitable digraphs and a 1-regular super edge-magic digraphs. But, instead of applying the product directly, we have to use what we call the rotation of a super edge-magic digraph.

4.1 **Rotations of super edge-magic digraphs**

Let \(M = (a_{i,j}) \) be a square matrix of order \(n \) and let \(M^R = (a_{i,j}^R) \) be the matrix obtained from \(M \) where \(a_{i,j}^R = a_{n+1-j,i} \). Graphically this corresponds to a rotation of the matrix by \(\pi/2 \) radians clockwise (see Example 4.1). We say that \(M^R \) is the rotation of the matrix \(M \). Note that the digraph corresponding to \(M^R \) may contain loops and double arcs. Therefore, in this section we may work with digraphs for which their underlying graphs contain multiple edges. Recall that, if we write \(S_n \) then \(n \) is odd.

\[
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}.
\]

Example 4.1
Lemma 4.1 Let $D \in S_n$, and assume that each vertex is named after the label of a super edge-magic labeling. Let $A = (a_{i,j})$ be its adjacency matrix. If $a_{i,j}^R = 1$ then

$$|i - j| \leq \frac{n - 1}{2}.$$}

Proof. By Corollary 1.1 in [7], if $A = (a_{i,j})$ is the adjacency matrix of $D \in S_n$ and $a_{i,j} = 1$ then $(n + 3)/2 \leq i + j \leq (3n + 1)/2$. Hence, since $a_{i,j}^R = a_{n+1-j,i}$, if $a_{i,j}^R = 1$ it follows that $(n + 3)/2 \leq n + 1 - j + i \leq (3n + 1)/2$. Therefore, $-(n - 1)/2 \leq i - j \leq (n - 1)/2$ and we obtain the result. \qed

A digraph S is said to be a rotation super edge-magic of order n, if its adjacency matrix is the rotation matrix of the adjacency matrix of a super edge-magic 1-regular digraph of order n. We denote by RS_n the set of all digraphs that are rotation super edge-magic of order n. The following corollaries are easy observations.

Corollary 4.1 Let S be a digraph in RS_n and let k be an integer. If $|k| \leq \frac{n - 1}{2}$ then there exists an unique arc $(i, j) \in E(S)$ such that $i - j = k$.

Proof. Let $D \in S_n$ be the digraph where S is coming from. Let $A = (a_{i,j})$ be the adjacency matrix of D, where every vertex takes the label of a super edge-magic labeling of D. Note that, since A comes from a super edge-magic labeling of a 1-regular digraph, every secondary diagonal (\neq) contains at most a 1, and the diagonals that contains the 1’s are consecutive. Moreover, in each main diagonal (\downarrow) of A^R appears at most a 1 and the diagonals that contain the 1’s are consecutives. \qed

Corollary 4.2 For each digraph D and each constant function $h : E(D) \rightarrow RS_n$ one of the weakly connected components of $D \otimes_h RS_n$ is isomorphic to D.

Proof. Let S be a digraph in RS_n. By Corollary 4.1 we know that S contains a loop. Let (j, j) be a loop in S. Then the subdigraph of $D \otimes_h RS_n$ induced by the vertices of the form (i, j) for $i \in V(D)$ is isomorphic to D. \qed

Observation 4.2 Inheriting the notation used in this section, let A be the adjacency matrix of a super edge-magic digraph D of order n. We have that, $A^R = A^t P$, where A^t is the transpose of A, and $P = (p_{i,j})$ where $p_{i,j} = 1$ if $i + j = n + 1$ and $p_{i,j} = 0$, otherwise. Clearly, $(A^R)^t$ is the adjacency matrix of some digraph in RS_n. That is, there exists a (maybe) different super edge-magic labeling of D, such that if B is its induced adjacency matrix then $B^t P = (A^R)^t$. Thus, $B = PA^t P$.

13
Example 4.3 Let D be the super edge-magic digraph $1 \to 5 \to 3 \to 4 \to 1$ and a loop in 2. Its adjacency matrix A is $A = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$ which has rotation matrix $A^R = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$. Then, $(A^R)^t = B^t P$ where $B = PA^t P$. That is, B is the adjacency matrix of a super edge-magic digraph obtained reversing the arcs of D and by interchanging the labels by σ, where σ is the permutation on $\{1, \ldots, n\}$ defined by $\sigma(i) = n + 1 - i$. In our example, the super edge-magic digraph defined by B is $1 \to 5 \to 2 \to 3 \to 1$ and the loop in 4.

Observation 4.4 Let M^{3R} be the matrix obtained from M by rotating $3\pi/2$ radians in the clockwise sense the columns of M. That is, $M^{3R} = PA^t$. Note that, this different rotation of the adjacency matrix of a super edge-magic labeled digraph has the same properties of M^R.

4.2 Main theorem

Let D be a k-equitable digraph where the vertices are identified by the labels of a k-equitable labeling of D. Let us consider the induced labeling on $V(G \otimes_h RS_n)$ that assigns the label $n(i - 1) + j$ to the vertex (i, j). One can easily see that all labels are distinct and that, in case the labeling of D is optimal, all elements in $\{1, \ldots, n \cdot |V(D)|\}$ are used. Moreover, by the product definition of \otimes_h, $|n(i - i') + (j - j')|$ is an induced arc label if and only if $(i, i') \in E(D)$ and $(j, j') \in E(h(i, i'))$.

Lemma 4.2 Let D be a k-equitable digraph, and let $((i, j), (i', j')), ((r, s), (r', s'))$ be two arcs of $D \otimes_h RS_n$. If $|n(i - i') + (j - j')| = |n(r - r') + (s - s')|$ then $|i - i'| = |r - r'|$ and $|s - s'| = |j - j'|$.

Proof.
Note that the equality $n(i - i') + (j - j') = \pm (n(r - r') + (s - s'))$ implies that there exists $\alpha \in \mathbb{Z}$ such that $|\alpha n| = |\pm (s - s') - (j - j')|$. Thus, by Lemma 4.1 $|\alpha n| \leq n - 1$. Hence, $\alpha = 0$ and therefore, $|j - j'| = |s - s'|$ and $|i - i'| = |r - r'|$.

Theorem 4.5 Let D be an (optimal) k-equitable digraph and let $h : E(D) \to RS_n$ be any function. Then $D \otimes_h RS_n$ is (optimal) k-equitable.
Proof.
Assume that $|n(i - i') + (j - j')|$ is an arc label induced by a k-equitable labeling of D. There exist exactly k arcs in D, (i_l, i_l'), $1 \leq l \leq k$ such that $|i_l - i_l'| = |i - i'|$. Thus, $|n(i_l - i_l')| = |n(i - i')|$ and by Lemma 4.1 we have that

$$|n(i_l - i_l')| - \frac{n - 1}{2} \leq |n(i - i') + (j - j')| \leq |n(i_l - i_l')| + (n - 1)/2.$$

Hence, we obtain that $||n(i - i') + (j - j')| - |n(i_l - i_l')|| \leq (n - 1)/2$ and by Corollary 4.1 there exist two different arcs $(r, r'), (s, s') \in E(h(i_l, i_l'))$ such that $|n(i - i') + (j - j')| - |n(i_l - i_l')| = |r - r'| = |s - s'|$ with $r - r' \leq 0 \leq s - s'$. Therefore, either $|n(i - i') + (j - j')| = |n(i_l - i_l') + r - r'|$ or $|n(i - i') + (j - j')| = |n(i_l - i_l') + s - s'|$. In the first case, $((i_l, r), (i_l', r'))$ is labeled with $|n(i - i') + (j - j')|$, whereas in the second case, is $((i_l, s), (i_l', s'))$ which is labeled with $|n(i - i') + (j - j')|$. Moreover, assume that $|n(i - i') + (j - j')| = |n(r - r') + (s - s')|$. By Lemma 4.2, $|i - i'| = |r - r'|$ and $|s - s'| = |j - j'|$. That is, $|n(i - i')| = |n(r - r')|$ and we only have k-possible arcs with the same label.

In particular, if the k-equitable labeling of D is optimal, then the induced labeling on $D \otimes_h RS_n$ is also optimal. \hfill \qed

Recall that cycles are k-equitable for each proper divisor k of their size. By giving a non-optimal labeling, it was stated in [3] that the union of vertex-disjoint k-equitable graphs is k-equitable. Using Theorem 4.5, we can provide optimal k-equitable labelings of n copies of trees, for n odd.

Theorem 4.6 Let n be an odd integer and let F be an optimal k-equitable forest for each proper divisor k of $|E(F)|$. Then, nF is optimal k-equitable for each proper divisor k of $|E(F)|$.

Proof. Clearly, each rotation of a super edge-magic 1-regular digraph gives a 1-regular digraph. In particular, by Theorem 1.3 we have that $und(F \otimes_h \Sigma_n) = nF$. Thus, since F is optimal k-equitable for each proper divisor k of $|E(F)|$, Theorem 4.5 implies that nF is optimal k-equitable for each proper divisor k of $|E(F)|$. \hfill \qed

Theorem 4.7 Let $m - 1, n$ be odd integers. Then, nC_m is optimal k-equitable for all proper divisors k of m.

Proof. Let C_n be a strong orientation of C_n and assume that M is the adjacency matrix of
Given a graph G with a similar proof as in Section 3.2, we can state the following result. Clearly, each graph is edge r-magic for some r. Let \overrightarrow{C}_n be the graph obtained from $\overrightarrow{C}_1 \cup \overrightarrow{C}_2 \cup \ldots \cup \overrightarrow{C}_n$. Let \overrightarrow{RC}_n be the digraph obtained from \overrightarrow{RC}_n by reversing all its arcs. Consider a function $h : E(\overrightarrow{C}_n) \rightarrow \{\overrightarrow{RC}_n, \overrightarrow{RC}_n\}$ such that two consecutive arcs in \overrightarrow{C}_m, namely $(x, y), (y, z)$ have $h(x, y) \neq h(y, z)$. Assume that $a_1a_2 \cdots a_m$ is a directed path in \overrightarrow{C}_m. Then, for each $(i, j) \in E(h(a_1, a_2))$ we obtain that $(a_1, i)(a_2, j)(a_3, i) \cdots (a_m, j)(a_1, i)$ is a cycle of length m in $\overrightarrow{C}_m \otimes_h \{\overrightarrow{RC}_n, \overrightarrow{RC}_n\}$. That is,

$$\overrightarrow{C}_m \otimes_h \{\overrightarrow{RC}_n, \overrightarrow{RC}_n\} \simeq n\overrightarrow{C}_m,$$

Thus, since every cycle is optimal k-equitable for each proper divisor k of the size, the result follows by Theorem 4.5.

\[\blacksquare\]

5 (Super) Edge r-magic graphs. Open problems

A (p, q)-graph $G = (V, E)$ admits an edge r-magic labeling if there exists a bijective function $f : V \cup E \rightarrow \{i\}_{i=1}^{p+q}$ such that for each edge $uv \in E$, $f(u) + f(uv) + f(v) \in \{k_1, k_2, \ldots, k_r\}$ where $\{k_1, \ldots, k_r\}$ are r distinct constants. In this case, the graph is said to be edge r-magic. If we add the extra condition that $f(V) = \{i\}_{i=1}^{p}$ then we say that f is a super edge r-magic labeling and G a super edge r-magic graph.

The next lemma is an extension of Lemma 3.2 for the case of super edge r-magic graphs. The proof works similarly.

Lemma 5.1 A graph labeling of a graph G is super edge r-magic if and only if, the set of sum labels of adjacent vertices (including repetitions) can be partitioned into r sets $S_0, S_1, \ldots, S_{r-1}$ and there exist $r - 1$ integers $c_1, c_2, \ldots, c_{r-1}$ such that $S_0 \cup (S_1 - c_1) \cup \cdots \cup (S_{r-1} - c_{r-1})$ is a set of consecutive integers.

With a similar proof as in Section 3.2 we can state the following result.

Theorem 5.1 Let D be a (super) edge r-magic digraph and let $h : E(D) \rightarrow S_n$ then the graph $\text{und}(D \otimes_h S_n)$ is (super) edge r-magic.

Clearly, each graph is edge r-magic for some r. Thus a natural question appears:

Question 5.1 Given a graph G, find the minimum r such that G is edge r-magic.
Similarly, we can study the following aspect.

Question 5.2 Let G be an edge r-magic graph. Find an edge r-magic labeling f of G that minimizes the difference $k_r - k_1$, where k_1 and k_r are respectively, the minimum and the maximum magic constants of f.

Acknowledgements The research conducted in this document by first and third author has been supported by the Spanish Research Council under project MTM2008-06620-C03-01 and by the Catalan Research Council under grant 2009SGR1387.

References

