Carcass lean-yield effects on the fatty acid and amino acid composition of Duroc pork and its technological quality after vacuum-ageing

Running head: Carcass leanness effects on pork meat quality

J. Álvarez-Rodríguez¹, R. Ros-Freixedes², S. Gol¹, E. Henríquez-Rodríguez³, R.N. Pena¹, Ll.Bosch³, J. Estany¹, F.Vilaró⁰ and M. Tor⁴,⁵

¹Department of Animal Science, University of Lleida-Agrotecnio Center, Universitat de Lleida. Spain
²Present address: The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh. United Kingdom
³Department of Chemical and Agricultural Engineering and Agrifood Technology, Universitat de Girona. Spain
⁰Scientific-Technical Services DATCEM, Universitat de Lleida. Spain
⁵Corresponding author. Email mtor@ca.udl.cat

Abstract

Eighty purebred Duroc castrated male pigs slaughtered at 210 days of age were used to evaluate the effect of lean-yield (European Union carcass grading based on lean content; or R, O and P classes) on the fatty acid and amino acid composition of raw pork (day 1 post-mortem), and technological meat quality after vacuum ageing up to 4, 6 and 8 days.

A strong relationship between slaughter weight and carcass lean-yield was observed. Carcasses graded as having a lower lean yield were fatter with higher intramuscular fat (IMF) concentration, and differences in proportions of fatty acids with increased MUFA and decreased PUFA percentage, but without adverse effect on ultimate pH, drip loss or colour attributes. There were no effects of carcass lean-yield on amino acid composition of raw pork, with valine being the limiting amino acid relative to lysine by about 30-35%. Vacuum ageing did not reduce the shear force of raw pork which may not be indicative of cooked pork response. The lipid oxidation had an inverse relationship with the PUFA content of each pork class, and it did not increase due to vacuum ageing up to 8 days. Meat fatness did not affect its amino acid balance and technological quality (colour, drip loss, shear force and lipid stability) but modified IMF composition.

Additional keywords: nutritive evaluation; pigs; amino acids; intramuscular fat.
Introduction

The Duroc swine breed has been largely used as a purebred or in sire lines to produce pigs intended for dry-cured and premium pork products, since it has a greater ability to accumulate intramuscular fat (IMF) than other common breeds in European Union such as Pietrain (Latorre et al. 2009).

A higher content of IMF improves the organoleptic characteristics of pork products (Fonseca et al. 2015). High levels of subcutaneous fat involve higher production costs and worsen the commercial grading of carcasses (Čandek-Potokar & Škrlep 2012). Thus, backfat content should be controlled without penalizing excessively the IMF characteristics. Therefore, certain breeding programmes tend to standardize carcass characteristics by reducing backfat thickness while maintaining steady IMF and oleic acid contents (Ros-Freixedes et al. 2013). Due to variation in these traits, carcasses in a given population are not equally classified from a commercial view. It has to be taken into account that only some carcass parts (ham and shoulder) are intended for the production of dry cured products and, therefore, selection on primal cuts aiming at production of dry cured products could modify correlated characteristics of the fresh meat from the rest of retail cuts (i.e. loin). In addition, it is now possible to incorporate the use of genetic markers that complement traditional methods of selection of the quality of fat (Estany et al. 2014).

After carcass processing, fresh pork may be normally aged for a short period of time to improve meat tenderness, but this practice should not affect negatively other meat attributes such as colour or lipid oxidation. Pork ageing is conducted usually by exposing meat cuts in air or by vacuum packaging. Earlier studies observed 50% reduction of pork meat hardness during the first 2 days and 80-90% reduction of hardness after 4-6 days of vacuum ageing (Dransfield et al. 1981; Rees et al. 2002). However, in these cases the meat came from purebred or hybrid genotypes commonly used in maternal lines (Landrace and Large-White), with usual IMF levels below 30 g/kg.

This study investigated the effect of carcass grade (R, O and P classes, where R has the greatest and P the lowest lean content) on the chemical composition (fatty acids and amino acids) of pork with IMF above 30 g/kg, and their colour parameters, drip loss, Warner-Bratzler shear force, and lipid stability after vacuum ageing for one, three, five and seven days.

Material and methods

Study design

A total of 80 barrows with 210 days of age (standard deviation ± 5 days) were selected at random from a purebred Duroc population (Selección Batallé, Riudarenes, Girona). The pigs were raised in two batches
(spring-summer 2013 and winter-spring 2014, n=40 per batch, 8 pigs per pen), and they were fed the same diet *ad libitum*. The ingredients and chemical composition of diet from 180 to 210 days of age are shown in Table 1.

On-farm and abattoir measurements

The pigs were weighed individually at 180 and 210 days of age. The average daily gain during the last month of the finishing period was calculated by difference between live-weights against time. On the day before slaughter, feed was withdrawn for 12-24 h and the pigs were transported 30 km to a commercial abattoir, where they were kept in lairage for 3 h with full access to water but not to feed. The pigs were stunned using CO₂ (88%) (Butina ApS, Holbaek, Denmark), exsanguinated, scalded, skinned, eviscerated, and split down the midline according to standard commercial procedures. The animal management was in compliance with European welfare guidelines (Directive 2010/63/EU).

The hot carcases were individually weighed to calculate the dressing out proportion. Backfat thickness between ribs 12th and 13th assuming rib 15th was the last rib and fat depth at *Gluteus medius* muscle on the carcase midline (skin included) were measured using an on-line ultrasound automatic scanner (Autofom®, SFK-Technology, Herlev, Denmark). The carcase lean content was estimated using the Spanish officially approved equation based on ultrasound measured variables (BOE, 2011) and carcasses were then graded into standard categories based on European Union scale: R (45-50% lean content, n=18), O (40-45% lean content, n=28) and P (<40% lean content, n=34). The carcases were genotyped according to Estany et al. (2014) to assess segregation of the single nucleotide polymorphism AY487830:g.2228T>C in the promoter region of the stearoyl-CoA desaturase (SCD) gene, of which the T allele enhances 18:1/18:0 and, consequently, the proportion of monounsaturated to saturated fat without affecting total fat content.

The carcases were refrigerated by gradual reduction of their internal temperature: 16 °C (1st hour post-mortem), 8 °C (2nd hour), 4 °C (3rd hour), 2 °C (4th hour) and 2 °C (5th hour), and kept at approximately 4 °C until 24 h post-mortem. At 24 h post-mortem, carcass length from the posterior edge of the symphysis pubis to the anterior edge of the first rib was measured. In addition, ultimate pH of meat was measured between ribs 12th and 13th (assuming rib 15th was the last rib) with a pH-meter equipped with a spear-tipped probe (Testo 205, Testo AG, Lenzkirch, Germany). The carcases were subsequently processed and ham weight was recorded. A section of 5-cm of length (approximately 200 g) of *Longissimus thoracis* muscle was excised at the 3th-4th last rib area and placed in individual vacuum-packaged plastic bags at 4°C for transportation to laboratory.

Three slices were cut from each *L. thoracis* muscle sample to evaluate fatty acid and amino acid composition of raw pork (1 cm-long), drip loss at 24 h post-mortem (1 cm-long), tenderness and lipid
oxidation during ageing for 8 days (3 cm-long). This last thickest slice was divided into 4 homogeneous pieces; the first was used to evaluate colour at day 1 (T1) while the remaining three pieces were vacuum-packaged and stored in the dark at 4 °C for 4, 6 or 8 days (T1; T4; T6; and T8, respectively). The four piece samples were used for colour measurement before subsequent freezing at -20 °C until concurrent analyses of tenderness and lipid oxidation. When required, the sliced L. thoracis samples were thawed in the vacuum-packaged bags for 24 h at 4°C, removed from packages, blotted dry for 15 min, and weighed. Thawing loss was calculated by dividing the difference in weight between the fresh and thawed samples by the initial fresh weight.

Instrumental meat quality analyses

The *Longissimus thoracis* muscle colour was measured on polystyrene white trays after 1 h of blooming the inner surface with a Konica Minolta CM-700d spectrophotometer (Konica Minolta Sensing Inc., Osaka, Japan) in the CIELAB space (CIE 1986) with a measured area diameter of 8 mm, including specular component and a 0% ultraviolet, standard illuminant D65, which simulates daylight (colour temperature 6504 K), observer angle 10º and white calibration. The Commission Internationale de l’Éclairage (CIE) lightness (*L*), redness (*a*), and yellowness (*b*) colour-space values were reported as the average of three randomly selected readings taken on each slice without any covering film, and mean values were used for statistical analysis. Hue angle (*H*) was calculated as: \[H^* = \tan^{-1}(b*/a*) \times 57.29 \] expressed in degrees, whereas chroma (*C*) (colour intensity, also known as saturation index) was calculated as: \[C^* = \sqrt{a^{*2} + b^{*2}} \]. In addition to these parameters, the reflectance spectra were collected from 400 nm to 700 nm at every 10 nm. The relative metmyoglobin (MMb) content was estimated through Kubelka-Munk ratio K/S\textsubscript{572/525} (Hunt et al. 1991), which decreases when pigment content increases. The K/S values at 572 nm and K/S at 525 nm were calculated by linear interpolation.

Drip loss at 24 h post-mortem was determined by centrifugation, according to a modification of the method used by Kristensen & Purslow (2001). Briefly, raw meat samples were weighed, cut carefully with a scalpel to avoid slight water losses, and transferred to centrifugation tubes which allow separating meat from exudate during centrifugation. Centrifugation losses were calculated as the percentage of initial sample weight (approximately 0.1 g).

Fatty acid analyses

Feed lipids were extracted using a chloroform/methanol/water mixture (2/2/1.8 v/v/v) (Hanson & Olley 1963). Feed and meat fatty acid (FA) methyl esters were directly obtained by transesterification using a solution of boron trifluoride 20% in methanol (Rule 1997), followed by 2 h heating at 80°C, centrifugation at 2,500 rpm during 5 min and collection of the final supernatant. Analysis of FA methyl esters were performed in duplicate by GC with a 30 m x 0.25 mm capillary column (Agilent DB-23,
Agilent Technologies, Santa Clara, United States) and a flame ionization detector with helium as the
carrier gas at 2 mL/min. The oven temperature program increased from 150-220 °C at 8 °C per min, and
the injector and detector temperatures were both 250 °C.

The quantification was carried out through area normalization after adding into each sample 1,2,3-
tripentadecanoylglycerol as internal standard. IMF was calculated as the sum of each individual FA
expressed as triglyceride equivalents (AOAC 2000), following the methodology described in Bosch et al.
(2009). Fatty acid composition was calculated as the percentage of each individual acid relative to total
FA and expressed as g per 100 g FA. The proportion of polyunsaturated (PUFA) (C18:2n-6; C18:3n-3;
C20:2n-6; C20:3n-6; C20:4n-6; and C22:6n-3), monounsaturated (MUFA) (C16:1n-7; C17:1n-7; C18:1n-9;
and C20:1n-9) and saturated (SFA) (C10:0; C12:0; C14:0; C16:0; C17:0; C18:0; and C20:0) fatty acid
contents were calculated.

Nitrogen and amino acids analysis

After colour measurement, the sliced muscle sample was defatted, freeze-dried and pulverized using an
electric grinder and used for protein (N x 6.25) analysis by automated Dumas method (AOAC 2000).

The amino acids content of the muscle was determined by hydrolysis of samples (50 mg) which was
performed by incubating them under nitrogen in 5 mL 6N HCl for 12 h at 110ºC (Colgrave et al. 2008).

Hydrolysis tubes were cooled and centrifuged at 3,000 g for 30 min to remove particulate matter.

Aliquots of 25 µL of hydrolysate were evaporated under nitrogen steam and re-diluted in 500 µL of
water/acetonitrile (20/80 v/v) containing 250 ng/mL of Trans-4-Hydroxy-L-proline-2,3,5-d3 (Hpro-d3)
(CDN Isotopes, Sainte Foy La Grande, France).

Quantitation of individual amino acids was performed using a method described by Guo et al. (2013)
with modifications, as follows. An Ultra-High-Performance Liquid Chromatography (UPLC) Acquity
system (Waters, Milford, MA) holding a BEH Amide column (2.1 x 150 mm; 1.7 µm) was used. Solvent A
was 10mM ammonium formate in water with 0.15% formic acid; solvent B was ammonium formate-
saturated acetonitrile with 0.15% formic acid. The gradient included five steps. Initial conditions were
15% A and 85% B maintained for 3 min at 0.5 mL/min. Then, from 15% to 20% A in 3 min; from 20% to
24% A in 1.5 min; from 24% to 60% A at 0.6 mL/min in 1.5 min and maintained for 3 min. Then, initial
conditions were regained in 2 min. Weak and strong washing solvents were 80% acetonitrile and 20%
acetonitrile, respectively. Samples were filtered through a 0.20 µm hydrophilic PTFE membrane prior to
injection. The injection volume was 5 µL.

Quantitation of amino acids in the hydrolysate was performed by using a Multiple Reaction Monitoring
method (MRM) in a Waters TQD mass spectrometer (Micromass MS Technologies, Manchester, UK).
Briefly, the system was equipped with an ESI source operated in positive ion mode. The parameters in the source were set as in Guo et al. (2013). Moreover, their MRM transitions were tested successfully in our conditions for Phenylalanine, Leucine, Isoleucine, Methionine, Valine, Proline, Tyrosine, Alanine, Threonine, Glycine, Glutamic acid, Serine, Aspartic acid, Histidine, Arginine, Lysine and Cystine. Cone voltage and collision energy were optimized for each individual amino acid. An additional MRM transition was determined for internal standard, Hpro₃, obtaining the following values: 135.1/89; 135.1/70.9; precursor/product for quantitation and verification, respectively. Calibration curves were constructed from a commercial amino acid standard mixture (Ref.: AAS19, Sigma-Aldrich, St. Louis, MO) and diluted to a series of appropriate concentrations with water/acetonitrile (20/80 v/v) containing 250 ng/mL of Hpro₃. Triptophan concentration was not determined because of under these conditions is completely degraded (Fontoulakis & Lahm 1998). The results were processed using QuanLynx software (MassLinx, Waters Corporation, USA). For hydroxyproline quantitation, Hpro₃ was used as an internal standard. The other amino acids were quantified from absolute response without internal standard. The amino acids content of muscle are expressed as a proportion of crude protein content. The sums of essential amino acids (EAA) and non-essential amino acids (NEAA) and their ratios out of the total amino acid content were calculated according to the NRC (2012) classification. The following EAA were accounted for: Lysine, Methionine, Threonine, Isoleucine, Valine, Phenylalanine, Leucine and Histidine. The remaining analysed amino acids were considered as NEAA: Cystine, Arginine, Hydroxyproline, Tyrosine, Alanine, Glycine, Glutamic acid, Serine, Proline, and Aspartic acid. Tryptophan concentration was not determined as this would have required alkaline hydrolysis before quantitation.

Tenderness and lipid oxidation

The *L. thoracis* muscle samples analysed for tenderness and lipid oxidation were thawed in vacuum-packaged bags for 24 h at 4°C, removed from packages, blotted dry for 20 min, and weighed. Samples were then cut parallel to the long axis of the muscle fibres into rectangular cross-section slices of 10 × 10 mm and 30 mm length without cooking. Four slices per *L. thoracis* muscle sample were sheared perpendicular to the fibre orientation, with a Warner-Bratzler device attached to a texture analyser TA-TX2 (Stable Micro Systems Ltd, Surrey, UK) attached to a PC, and equipped with a 5-kg load cell and a crosshead speed of 2.5 mm/s.

Lipid oxidation was assessed by thiobarbituric acid reactive substances (TBARS) analysis, following a modification of the method of Buege & Aust (1978). Meat samples (5 g) were homogenised with 15 ml of distilled water in falcon tubes at 13500 rpm during 15 seconds. Afterwards, 1 ml of the resultant solution was transferred in duplicate to pyrex glass tubes and it was mixed with 2 ml of a solution containing 15% trichloroacetic acid, 0.375% thiobarbituric acid and 1 N HCl.
The tubes were homogenized and incubated at 90 °C for 60 min in a water bath to induce colour development. The absorbance at 540 nm was measured with a iEMS Reader MF spectrophotometer (Labsystems Oy, Helsinki, Finland). A standard calibration curve was created with increasing concentrations (from 0 to 100 μl) of malonaldehyde (MDA), which was obtained by hydrolysis of 1,3,3-tetraethoxypropane (TEP) in 100 ml of 1 N HCl. The tubes used for the calibrations, including the blank and samples to be analysed, were put through the TBA procedure at the same time. TBARS values are expressed as milligrams of MDA per gram of IMF.

Statistical analyses

The data were analysed with the Jmp Pro 11 statistical software (SAS Institute, Cary, NC, USA). Growth performance, carcass traits, pH of *L. thoracis* muscle, centrifugation drip loss, IMF composition, protein and amino acid contents were analysed with a standard least squares linear model including carcass category (R, O and P) and batch (2 levels) as fixed effects. Colour attributes, thawing losses, Warner-Bratzler shear force and TBARS data were analysed with a linear mixed model including, in addition to the afore-mentioned effects of carcass category and batch, the effect of ageing time (T1, T4, T6 and T8) and its interaction with carcass category as fixed effects using a repeated-measures analysis of variance. The pig was considered as the random effect. The rest of first order interactions were removed from the final models because they result not significant (P>0.05). To assess the potential role of genotype on chemical composition and technological quality of carcass and meat traits, the SCD genotype effect was also accounted for as a fixed effect in preliminary statistical analyses. The level of significance was set at 0.05. Differences (P<0.05) between least square means were assessed using the Tukey test. Values are presented as least square means and their standard errors (S.E.). Pearson correlation coefficients between adipose tissue traits and amino acid composition were obtained by using REML estimation method.

Results

Three SCD genotypes were obtained: CC (n=12), CT (n=42), and TT (n=26). The most frequent SCD genotype in all carcass grades was CT (13/18 in R; 13/28 in O and 16/34 in P carcasses). As expected, the SCD genotype only affected the MUFA and SFA content of the meat (P<0.001) and did not have any interaction with carcass grade or batch (P>0.05). The loin MUFA content increased linearly in CC, CT and TT genotypes (492±4, 502±4 and 516±4 g/kg of fatty acids, respectively; P<0.05) whereas the SFA content was greater in CC and CT compared to TT genotype (406±4 and 399±3 vs. 381±5 g/kg of fatty acids, respectively; P<0.05).

Growth performance and carcass traits
Growth performance and carcass traits are shown in Table 2. Although all the pigs had similar age at slaughter, the realized carcass groups came from pigs with different productive traits. The average daily gain was lower in pigs leading to R (45-50% lean) and O (40-45% lean) carcasses than to P (<40% lean) carcasses (P<0.05), but dressing out did not differ among groups (P>0.05). The ham weight was lower in R and O compared to P carcasses (P<0.05). Backfat thickness at different anatomical locations (Gluteus medius and 3rd-4th last ribs) was the lowest in R carcasses (P<0.05).

Technological traits and chemical composition of fresh meat

The technological traits and chemical composition of fresh pork (24 h post-mortem) according to carcass lean-yield is detailed in Table 3. No detectable differences were observed in ultimate pH or centrifugation drip losses among carcass groups (P>0.05). The crude protein content of pork was higher while the IMF content was lower in R carcasses than in the rest (P<0.05). The fatty acid composition differed among carcass groups, with R carcasses showing lower MUFA and greater PUFA content than the rest of groups (P<0.05) and with similar SFA content across groups (P>0.05).

The amino acid composition of fresh pork according to carcass lean-yield is shown in Table 4. The individual amino acid content was mostly similar among groups (P>0.05) except for a tendency for isoleucine and glycine to be lower in P and R carcasses, respectively (P<0.1). Studied correlations between pork content of isoleucine and glycine with subcutaneous and IMF adipose tissues traits were not significant (P>0.05) except between glycine and pork IMF fat content (r=0.23; P=0.039). The balance of amino acids in the pork was compared with the recommended balance of indispensable amino acids for adults (WHO/FAO/UNU 2007) by expressing the content of relevant amino acids relative to lysine and then calculating the proportion of the recommended amount of each amino acid that was provided when a sample containing the recommended amount of lysine was consumed (Table 5). The balance of indispensable amino acids was less than ideal, with valine being the most limiting by about 30-35%.

Colour attributes at different vacuum ageing times

None of the CIEx Lab colour attributes differed among carcass groups (P>0.05) (data not shown). Redness index (a*) increased from day 1 (T1) to day 4 of vacuum ageing (T4) (1.72 vs. 2.97±0.20, respectively; P<0.05) and it was kept steady at T6 and T8 (2.87 and 2.73±0.20, respectively; P>0.05). The yellowness index (b*) also increased from T1 to T4 (7.02 vs. 8.64±0.38, respectively; P<0.05) but it decreased slightly at T6 and T8 (8.10 and 7.40±0.38, respectively; P>0.05).

Overall lightness (L*) increased at T6 (P<0.05), but hue angle (H*) did not differ among ageing times (P>0.05), and chroma (C*) increased at T4 (P<0.05) and slightly decreased at T8 (Figure 1). The estimated relative content of metmyoglobin based on reflectance spectra did not differ between T1 and
T6 (K/S=1.30±0.01; P>0.05), but it increased significantly at T8 (K/S=1.28±0.01, P<0.05). There was no interaction between carcass grade and ageing time on the CIELab colour attributes (lightness, redness, yellowness, hue angle and chroma) (P>0.05).

Thawing losses, tenderness and lipid oxidation at different vacuum ageing times

Thawing losses during vacuum ageing of pork did not differ significantly among carcass groups (228±10.5, 208±8.5 and 204±8.0 g/kg, in R, O and P, respectively; P>0.05). However, thawing losses were the lowest in T1 and the highest in T8 (Figure 2; P<0.05), whereas the thawing losses in pork aged for T4 and T6 were intermediate (P>0.05).

The shear force on thawed raw pork did not differ significantly either among carcass groups (2.45±0.13, 2.30±0.11, 2.18±0.10 kg, in R, O and P, respectively; P >0.05) or among ageing times (P>0.05, Figure 2). There was no interaction between carcass grade and ageing time on thawing losses or Warner-Bratzler shear force (P>0.05).

The TBARS assay in pork from the different carcass groups according to vacuum ageing times is shown in Figure 3. There was an interaction between carcass grade and ageing time on lipid oxidation (expressed on a pork fat content basis), which was higher in R (45-50% lean) than in the rest of group carcasses from T4 onwards (P<0.05). The lean-yield did not affect lipid oxidation during ageing, except for P group (<40% lean), which showed greatest TBARS values at T4 and T6 (P<0.05).

Discussion

A normal practice to increase the IMF content is to slaughter pigs at heavier live weights. In this study, purebred Duroc barrows from a selected population were slaughtered at the same age (210 ±5 days) but they were classed into three carcass groups: R (45-50% lean), O (40-45% lean) and P (<40% lean), which derived from the following approximate live weight intervals: 125-130 kg, 130-135 kg and 135-140 kg. A strong relationship between slaughter weight and carcass lean-yield was observed. Since carcass fatness and IMF are correlated, the carcass classes differed also in their IMF content. Carcass class R had an average of 32 g of IMF/kg, carcass class O had an average of 40 g of IMF/kg and carcass class P had an average of 43 g of IMF/kg. Although major differences were observed in carcass traits among groups, the dressing out, ultimate pH and drip loss was not affected by carcass grade.

In earlier studies, increasing the slaughter live-weight from 100-105 kg to 125-130 kg in purebred Duroc pigs increased dressing out and back-fat at slaughter whereas drip loss and thawing loss were reduced (Candek-Potokar et al. 1998; Maingel et al. 2007). Similar to the present results, ultimate pH and the value of colour reflectance (L*) were not affected by carcass grade. In those studies, the average daily
gain of the pigs did not differ, since greater live weight was achieved by increasing age at slaughter. In
the present study, the pigs with the best growth rate (achieving 140 kg at slaughter), did not have
increased dressing out, but greatest carcass lipid content (back-fat thickness and IMF) without
detrimental effects on drip loss or colour attributes.

The highest value for essential amino acid contents was observed for leucine followed by lysine, while
the highest value in non-essential amino acid contents was observed for glutamic acid followed by
aspartic acid. Hydroxyproline was the amino acid with lowest content. In a previous experiment using
carcasses from lean genotypes (all with >50% lean) (Okrouhlá et al. 2008), lysine and secondly leucine
represented the greatest content of the essential amino acids, while the proportion of non-essential
amino acids were similar to the present results. In agreement with this study, the amino acid contents of
the lean pork did not differ among carcass groups, but they found consistent differences in the
Semimembranosus muscle.

In the present experiment, there were no differences among carcass grades in the amino acid contents
of pork. However, a significant positive correlation between the content of total glycine and the IMF of
pork was detected. A decrease of free glycine content with carcass weight has been reported in the L.
thoracis muscle in previous studies (Usborne et al. 1968). Because glycine produces a sweet taste (Solms
1969), these results suggest the hypothesis that the most marbled pork showed a correlated change of
taste, especially in meat products where protein hydrolysis occurs.

The pork from the studied Duroc barrows had low connective tissue content, based on the association
between hydroxyproline content and henceforth collagen content (Colgrave et al. 2008). In fact, the
rather low shear force values measured in this study were in agreement with reduced hydroxyproline
content. Although the proportion of hydroxyproline in pork was low, earlier studies detected differences
in this amino acid content in Longissimus dorsi muscle between clearly contrasting pork (extensive and
intensive feeding systems in New Zealand and between light and heavy Singaporean pigs) (Purchas et al.
2009). Different concentrations were also observed among genotypes (Duroc, Iberian x Duroc, Landrace
x Large-White) in hydroxyproline content in Gluteus medius muscle (Tor et al. 2012).

Relative to the amino acid balance recommendations for humans our results showed that valine was the
most limiting aminoacid at 66-70% of requirement, indicating that 144-151 g of pork would need to be
consumed in order to match 100 g of a sample with the recommended balance of the indispensable
amino acids. The next most limiting amino acids were isoleucine and leucine at 75-85%. Our results
differ slightly from those of Wilkinson et al. (2014), who found that the first limiting amino acid in pork
was leucine followed by valine. However, in that case the samples derived from crossbred genetic lines
which were probably leaner than the present genotype. The amount of Duroc pork meat that would
need to be consumed to get a satisfactory balance of amino acids to meet human requirements for all amino acids was higher in the P (<40% lean) group, although the amino acid composition did not differ significantly among carcass grades.

The objective colour attributes did not differ between lean-yield classes. In addition, vacuum-ageing up to 8 days had not clear deleterious effects on meat colour traits, although the best colour appeal (low hue angle, high redness index and low calculated metmyoglobin content) was shown in vacuum-aged pork for 4 days, in line with results of film-packaged refrigerated pork (Alvarez-Rodriguez et al. 2015). Although IMF content has been positively related to tenderness (Jeleniková et al. 2008) our results showed that neither carcass grade nor ageing affected tenderness measured by Warner Bratzler. Similar results were reported by Candek-Potokar et al. (1998) though they did report a reduction in sensory tenderness in heavier Duroc pigs (mostly P graded), which was related to increase in fibre diameter. Using cooked pork loins, Channon et al. (2004) and Juárez et al. (2009) reported that vacuum ageing for 7-14 days significantly improved tenderness based on shear force. These pigs however had lower IMF contents (18-25 g/kg of IMF) than those used in the present experiment (over 30 g/kg of IMF) and this may have attenuated any improvement in Warner Bratzler shear force over the seven days investigated (overall 2.3±0.1 kg of shear force). Based on the currents results it would be difficult to justify ageing to improve tenderness in the Duroc line investigated. The results might however differ for sensory tenderness. In another experiment using the current texture meter device with lean Pietrain-sired pigs (below 30 g/kg of IMF), the mean shear force of raw loins was 3.3±0.1 kg (García-Hernández et al. 2017). Thus, the values recorded for this Duroc raw pork are indicative of the loin being tender, which may mask the potential effects of ageing on this attribute. It must be pointed out that Warner Bratzler shear measurements are normally made on cooked samples, to reflect the most common form of meat when eaten. In the afore-mentioned study by García-Hernández et al. (2017), cooking at 70°C another sub-sample from the same lean loins increased shear force up to 5.7±0.1 kg. However, it has been suggested that relationships between shear force readings on raw and aged cooked samples are low, probably due to the fact that the effects of ageing on cooked meat tenderness are not apparent on the tenderness of raw meat (Purchas 1973).

Lipid oxidation was greater in pork loins from the leanest carcasses (R group, 45-50% lean), especially from 4 days of vacuum storage onwards. This was likely associated with the higher PUFA content in the IMF of this group. Bosch et al. (2012) previously reported for the same Duroc line a decline in PUFA content of the loin with increasing live-weight. Nevertheless, the mean TBARS of all groups after seven days ageing were considerably below sensory detection of rancid flavours of 1 mg MDA/kg of meat (Rossi et al. 2013).

Conclusions
• A strong relationship between slaughter weight and carcass lean-yield was observed.

• Carcass grading based on lean content had a major effect on IMF composition, since increased fatness was associated with increased MUFA and decreased PUFA content.

• Carcass adiposity did not affect the amino acid balance and the technological quality (colour, drip loss, shear force and lipid stability) of raw pork.

• Ageing for 8 days was unlikely to increase the tenderness of pork with intramuscular fat levels over 30 g/kg, as was the case for pigs in this study.

• The lipid oxidation had an inverse relationship with the PUFA content of each pork class, and it did not increase due to vacuum ageing for 8 days.

Acknowledgements

The authors wish to thank T. Giró, A. Ñaco and L. Villagrasa for their technical assistance during collection and analyses of samples. This work was supported by the Ministry of Economy and Competitiveness of Spain and the European Union Regional Development Funds (AGL2012-33529 and AGL2015-65846-R).

Conflict of interest statement

The authors declare no conflicts of interest.

References

Hunt MC, Acton JC, Benedict RC, Calkins CR, Cornforth DP, Jeremiah LE, Olson DG, Salm CP, Savell JW,
Conference, Kansas State University’. pp. 1–17. (American Meat Science Association: Champaign, IL,
USA).

Latorre MA, Iguácel F, Sanjoaquín L, Revilla R (2009) Effect of sire breed on carcass characteristics and

Maignel L, Mathur PK, Fortin F, Sullivan BP (2007) Effect of breed, sex and slaughter weight on

Purchas RW (1973) Some aspects of raw meat tenderness. A study of some factors affecting its change
with cooking and a new means of measurement. *Journal of Food Science* **38**, 556-559.

Purchas RW, Morel PCH, Janz JAM, Wilkinson BHP (2009) Chemical composition characteristics of the
longissimus and semimembranosus muscles for pigs from New Zealand and Singapore. *Meat Science*
81, 540-548.

Table 1. *Chemical composition of the diet fed to pigs from 180 to 210 days of age (g/kg of feed, unless otherwise stated) (Means)*

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Value (g/kg of feed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross energy, MJ/kg</td>
<td>17.0</td>
</tr>
<tr>
<td>Dry matter</td>
<td>886</td>
</tr>
<tr>
<td>Crude protein (CP)</td>
<td>142</td>
</tr>
<tr>
<td>Lysine</td>
<td>8.6</td>
</tr>
<tr>
<td>Methionine</td>
<td>1.2</td>
</tr>
<tr>
<td>Methionine+Cysteine</td>
<td>3.6</td>
</tr>
<tr>
<td>Threonine</td>
<td>4.7</td>
</tr>
<tr>
<td>Valine</td>
<td>3.5</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>9.9</td>
</tr>
<tr>
<td>Leucine</td>
<td>2.9</td>
</tr>
<tr>
<td>Histidine</td>
<td>2.8</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>5.8</td>
</tr>
<tr>
<td>Sum of EAA</td>
<td>60.4</td>
</tr>
<tr>
<td>Ether extract</td>
<td>64</td>
</tr>
<tr>
<td>SFA, g/kg fatty acids</td>
<td>100</td>
</tr>
<tr>
<td>MUFA, g/kg fatty acids</td>
<td>588</td>
</tr>
<tr>
<td>PUFA, g/kg fatty acids</td>
<td>312</td>
</tr>
<tr>
<td>Crude fibre</td>
<td>36</td>
</tr>
</tbody>
</table>

Ingredients (g/kg of feed, in descending order): barley (372), wheat (224), rye (126), canola meal 00 (70), pea (47), soyabean meal 46% CP (31), animal-vegetable blended fat (42), sugar-beet pulp (30), sugarcane molasses (18), calcium carbonate (13), vitamin-mineral premix (7), sodium chloride (5), L-Lysine 50% CP (5), L-Tryptophan 85% CP (5), monocalcium phosphate (3), L-Threonine 72.5% CP (1), Choline chloride (1).

EAA= sum of essential amino acids (Lysine, Methionine, Threonine, Isoleucine, Valine, Phenylalanine, Leucine and Histidine).
Table 2. Growth performance and carcass traits of Duroc barrows slaughtered at 210 days of age according to carcass commercial grading (Least square means ± standard error)

<table>
<thead>
<tr>
<th>Carcass grade</th>
<th>R (45-50% lean)</th>
<th>O (40-45% lean)</th>
<th>P (<40% lean)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>18</td>
<td>28</td>
<td>34</td>
<td>-</td>
</tr>
<tr>
<td>Weight at 180 days old, kg</td>
<td>105.8±1.8<sup>b</sup></td>
<td>106.7±1.5<sup>b</sup></td>
<td>113.4±1.4<sup>a</sup></td>
<td>0.002</td>
</tr>
<tr>
<td>Weight at 210 days old, kg</td>
<td>126.9±2.3<sup>b</sup></td>
<td>130.8±1.8<sup>b</sup></td>
<td>138.9±1.7<sup>a</sup></td>
<td><0.001</td>
</tr>
<tr>
<td>Average daily gain, g</td>
<td>698±45<sup>b</sup></td>
<td>806±36ab</td>
<td>839±34<sup>a</sup></td>
<td>0.05</td>
</tr>
<tr>
<td>Dressing out, %</td>
<td>75.9±0.4</td>
<td>75.6±0.3</td>
<td>76.3±0.3</td>
<td>0.33</td>
</tr>
<tr>
<td>Carcass weight, kg</td>
<td>96.3±1.9<sup>b</sup></td>
<td>98.9±1.5<sup>b</sup></td>
<td>106.0±1.4<sup>a</sup></td>
<td><0.001</td>
</tr>
<tr>
<td>Carcass length, cm</td>
<td>86.0±0.6</td>
<td>86.8±0.5</td>
<td>87.8±0.5</td>
<td>0.07</td>
</tr>
<tr>
<td>Ham weight, kg</td>
<td>12.47±0.25<sup>b</sup></td>
<td>12.44±0.20<sup>b</sup></td>
<td>13.29±0.19<sup>a</sup></td>
<td>0.005</td>
</tr>
<tr>
<td>Fat depth at Gluteus medius muscle, mm</td>
<td>21.6±0.4<sup>c</sup></td>
<td>25.1±0.3<sup>b</sup></td>
<td>29.2±0.3<sup>a</sup></td>
<td><0.001</td>
</tr>
<tr>
<td>Backfat thickness between ribs 12th and 13th assuming rib 15th was the last rib, mm</td>
<td>21.3±0.3<sup>c</sup></td>
<td>24.4±0.3<sup>b</sup></td>
<td>28.1±0.3<sup>a</sup></td>
<td><0.001</td>
</tr>
<tr>
<td>Carcass lean content, %</td>
<td>46.6±0.5<sup>a</sup></td>
<td>42.5±0.4<sup>b</sup></td>
<td>35.7±0.4<sup>c</sup></td>
<td><0.001</td>
</tr>
</tbody>
</table>

Means in the same row with no superscript letters after them or with a common superscript letter following them are not significantly different (P < 0.05)
Table 3. Technological traits and chemical composition of fresh L. thoracis muscle (24 h post-mortem) from Duroc barrows according to carcass commercial grading (Least square means ± standard error)

<table>
<thead>
<tr>
<th>Carcass grade</th>
<th>Ultimate pH</th>
<th>Centrifugation drip loss, g/kg</th>
<th>Dry matter, g/kg</th>
<th>Crude protein, g/kg</th>
<th>Intramuscular fat, g/kg</th>
<th>∑MUFA, g/kg fatty acids</th>
<th>∑SFA, g/kg fatty acids</th>
<th>∑PUFA, g/kg fatty acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (45-50% lean)</td>
<td>5.88±0.04</td>
<td>21.2±2.7</td>
<td>282.7±2.7</td>
<td>217.0±2.0</td>
<td>31.8±2.5</td>
<td>492.0±4.2</td>
<td>391.4±4.5</td>
<td>116.5±3.6</td>
</tr>
<tr>
<td>O (40-45% lean)</td>
<td>5.92±0.03</td>
<td>16.4±2.1</td>
<td>287.2±2.2</td>
<td>214.3±1.6</td>
<td>40.7±2.0</td>
<td>501.7±3.2</td>
<td>403.2±3.6</td>
<td>95.1±2.9</td>
</tr>
<tr>
<td>P (<40% lean)</td>
<td>5.93±0.03</td>
<td>17.5±2.0</td>
<td>286.5±2.0</td>
<td>210.9±1.5</td>
<td>43.2±1.9</td>
<td>508.8±3.0</td>
<td>402.1±3.4</td>
<td>89.1±2.7</td>
</tr>
</tbody>
</table>

P-values:
- Ultimate pH: 0.56
- Centrifugation drip loss: 0.37
- Dry matter: 0.40
- Crude protein: 0.04
- Intramuscular fat: 0.003
- ∑MUFA: 0.006
- ∑SFA: 0.10
- ∑PUFA: <0.001

MUFA= monounsaturated fatty acids (C16:1n-7; C17:1n-7; C18:1n-9; and C20:1n-9); SFA=saturated fatty acids (C10:0; C12:0; C14:0; C16:0; C17:0; C18:0; and C20:0); PUFA=polyunsaturated fatty acids (C18:2n-6; C18:3n-3; C20:2n-6; C20:3n-6; C20:4n-6; C20:4n-6 and C22:6n-3).

Means in the same row with no superscript letters after them or with a common superscript letter following them are not significantly different (P < 0.05).
Table 4. Essential and non-essential amino acid composition of fresh L. thoracis muscle (24 h post-mortem) from Duroc barrows according to carcass commercial grading (Least square means ± standard error)

<table>
<thead>
<tr>
<th>Carcass grade</th>
<th>R (45-50% lean)</th>
<th>O (40-45% lean)</th>
<th>P (<40% lean)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino acids, g/g CP</td>
<td>Lysine</td>
<td>8.48±0.29</td>
<td>8.43±0.23</td>
<td>8.62±0.22</td>
</tr>
<tr>
<td></td>
<td>Methionine</td>
<td>1.95±0.08</td>
<td>2.06±0.07</td>
<td>2.08±0.06</td>
</tr>
<tr>
<td></td>
<td>Threonine</td>
<td>4.68±1.00</td>
<td>4.80±0.08</td>
<td>4.85±0.07</td>
</tr>
<tr>
<td></td>
<td>Valine</td>
<td>4.96±0.11</td>
<td>5.09±0.09</td>
<td>4.94±0.08</td>
</tr>
<tr>
<td></td>
<td>Isoleucine</td>
<td>4.54±0.09</td>
<td>4.56±0.07</td>
<td>4.34±0.07</td>
</tr>
<tr>
<td></td>
<td>Leucine</td>
<td>9.29±0.13</td>
<td>9.42±0.11</td>
<td>9.20±0.10</td>
</tr>
<tr>
<td></td>
<td>Histidine</td>
<td>5.16±0.17</td>
<td>5.16±0.14</td>
<td>5.15±0.13</td>
</tr>
<tr>
<td></td>
<td>Phenylalanine</td>
<td>3.82±0.04</td>
<td>3.89±0.04</td>
<td>3.83±0.03</td>
</tr>
<tr>
<td>∑EAA*</td>
<td>42.9±0.7</td>
<td>43.4±0.6</td>
<td>43.0±0.5</td>
<td>0.80</td>
</tr>
<tr>
<td>Cistine</td>
<td>0.97±0.04</td>
<td>0.97±0.03</td>
<td>0.96±0.03</td>
<td>0.99</td>
</tr>
<tr>
<td>Hydroxyproline</td>
<td>0.27±0.02</td>
<td>0.28±0.01</td>
<td>0.26±0.01</td>
<td>0.63</td>
</tr>
<tr>
<td>Proline</td>
<td>3.76±0.06</td>
<td>3.84±0.05</td>
<td>3.80±0.04</td>
<td>0.53</td>
</tr>
<tr>
<td>Alanine</td>
<td>5.21±0.10</td>
<td>5.27±0.08</td>
<td>5.14±0.08</td>
<td>0.52</td>
</tr>
<tr>
<td>Arginine</td>
<td>5.97±0.07</td>
<td>6.01±0.06</td>
<td>5.90±0.05</td>
<td>0.35</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>10.34±0.26</td>
<td>10.79±0.21</td>
<td>10.73±0.20</td>
<td>0.37</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>15.47±0.30</td>
<td>15.89±0.25</td>
<td>15.48±0.23</td>
<td>0.42</td>
</tr>
<tr>
<td>Glycine</td>
<td>3.92±0.08</td>
<td>4.15±0.06</td>
<td>4.03±0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Serine</td>
<td>4.13±0.08</td>
<td>4.28±0.06</td>
<td>4.28±0.06</td>
<td>0.26</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>3.34±0.10</td>
<td>3.22±0.08</td>
<td>3.33±0.08</td>
<td>0.53</td>
</tr>
<tr>
<td>∑NEAA</td>
<td>53.4±0.6</td>
<td>54.7±0.5</td>
<td>53.9±0.5</td>
<td>0.27</td>
</tr>
<tr>
<td>Total</td>
<td>96.25±1.22</td>
<td>98.09±0.99</td>
<td>96.90±0.92</td>
<td>0.47</td>
</tr>
</tbody>
</table>

EAA= essential amino acids (Lysine, Methionine, Threonine, Isoleucine, Valine, Phenylalanine, Leucine and Histidine); NEAA= non-essential amino acids (Cistine, Arginine, Hydroxyproline, Tyrosine, Alanine, Glycine, Glutamic acid, Serine, Proline, and Aspartic acid).

*Tryptophan (essential amino acid) was not measured in the current samples and therefore it was not included.
Table 5. The amino acids (AA) balance relative to lysine in raw pork according to carcass grade compared with the recommended balance of indispensable amino acids for adults (WHO/FAO/UNU, 2007)*

<table>
<thead>
<tr>
<th></th>
<th>Target balance of AA for adults expressed relative to lysine at 100 (WHO/FAO/UNU, 2007)</th>
<th>Balance of AA in pork relative to lysine</th>
<th>Proportion of the recommended amount of each AA in a sample containing the target amount of lysine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>O</td>
<td>P</td>
</tr>
<tr>
<td>Lysine</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Methionine + Cysteine†</td>
<td>48.9</td>
<td>45.9</td>
<td>47.4</td>
</tr>
<tr>
<td>Threonine</td>
<td>55.6</td>
<td>55.2</td>
<td>56.9</td>
</tr>
<tr>
<td>Valine</td>
<td>86.7</td>
<td>58.5</td>
<td>60.4</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>66.7</td>
<td>53.5</td>
<td>54.1</td>
</tr>
<tr>
<td>Leucine</td>
<td>131.1</td>
<td>109.6</td>
<td>111.7</td>
</tr>
<tr>
<td>Histidine</td>
<td>33.3</td>
<td>60.8</td>
<td>61.2</td>
</tr>
<tr>
<td>Phenylalanine + Tyrosine</td>
<td>84.4</td>
<td>84.4</td>
<td>84.3</td>
</tr>
</tbody>
</table>

Carcass grades based on lean content (European Union standards): R (45-50% lean), O (40-45% lean) and P (<40% lean).

*Tryptophan (essential amino acid) was not measured in the current samples and therefore it was not included.

† Cysteine supply was calculated as twice the analysed Cys content.
Figure 1. Lightness (a), hue angle (b) and chroma (c) colour attributes (CIELab scale) of L. thoracis muscle from purebred Duroc barrows at day 1 post-mortem or subsequently vacuum aged up to 4, 6 or 8 days. Different letter within each colour attribute indicates significant differences (P<0.05) between ageing times (Least square means ± standard error).
Figure 2. Thawing losses (a) and Warner-Bratzler shear force (b) in raw, uncooked meat (L. thoracis muscle) from purebred Duroc barrows at day 1 post-mortem or subsequently vacuum aged up to 4, 6 or 8 days. Different letter within each variable indicates significant differences (P<0.05) between ageing times (Least square means ± standard error).
Figure 3. Lipid oxidation (TBARS, µg malonaldehyde-MDA/g of intramuscular fat - IMF) of raw loins from purebred Duroc barrows according to carcass grade (R, O or P category) at day 1 post-mortem or subsequently vacuum aged up to 4, 6 or 8 days. Different letter within an ageing time (a, b) indicates significant differences (P<0.05) between carcass categories. Different letter within carcass group (x, y) indicates significant differences (P<0.05) between ageing times (Least square means ± standard error).

The mean TBARS values was 0.59±0.02 µg MDA/g of meat (R group=0.62 µg MDA/g of meat; O group=0.53 µg MDA/g of meat and P group=0.61 µg MDA/g of meat).