Non-invasive imaging techniques and assessment of carotid vasa vasorum neovascularization: promises and pitfalls

T. Pereira, A. Betriu, R. Alves

PII: S1050-1738(18)30106-3
DOI: 10.1016/j.tcm.2018.06.007
Reference: TCM 6535

To appear in: Trends in Cardiovascular Medicine

Received date: 24 April 2018
Revised date: 12 June 2018
Accepted date: 14 June 2018

Please cite this article as: T. Pereira, A. Betriu, R. Alves, Non-invasive imaging techniques and assessment of carotid vasa vasorum neovascularization: promises and pitfalls, Trends in Cardiovascular Medicine (2018), doi: 10.1016/j.tcm.2018.06.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Non-invasive imaging techniques and assessment of carotid vasa vasorum neovascularization: promises and pitfalls

T. Pereira1,2, A. Betriu3,4 and R. Alves1,2

1 Institute for Biomedical Research in Lleida Dr. Pifarré Foundation, Catalonia, Spain
2 Departament de Ciències Mèdiques Bàsiques, University of Lleida, Catalonia, Spain
3 Unit for the Detection and Treatment of Atherothrombotic Diseases, Hospital Universitari Arnau de Vilanova de Lleida, Catalonia, Spain
4 Vascular and Renal Translational Research Group – IRBLleida, Catalonia, Spain

Disclosures: The authors have no conflicts of interest.

Please address correspondence to:

Tania Pereira, PhD
Current address: Level 6, 2 Koret Way, UCSF, San Francisco, CA 94143-0602, USA
Email: taniapereira10@gmail.com
Abstract: Carotid adventitia vasa vasorum neovascularization (VVn) is associated with the initial stages of arteriosclerosis and with the formation of unstable plaque. However, techniques to accurately quantify that neovascularization in a standard, fast, non-invasive, and efficient way are still lacking. The development of such techniques holds the promise of enabling wide, inexpensive, and safe screening programs that could stratify patients and help in personalized preventive cardiovascular medicine. In this paper, we review the recent scientific literature pertaining to imaging techniques that could set the stage for the development of standard methods for quantitative assessment of atherosclerotic plaque and carotid VVn. We present and discuss the alternative imaging techniques being used in clinical practice and we review the computational developments that are contributing to speed up image analysis and interpretation. We conclude that one of the greatest upcoming challenges will be the use of machine learning techniques to develop automated methods that assist in the interpretation of images to stratify patients according to their risk.

Key words: Carotid Imaging Techniques; Vasa Vasorum Neovascularization; Atherosclerotic Process, Automatic Methods.
1. Introduction

Atherosclerosis is a chronic progressive inflammatory disease of the arterial wall characterized by the localized thickening of that wall. This happens through the accumulation of inflammatory cells and lipid substances, combined with the proliferation of vascular smooth muscle cells, ultimately leading to the formation of atherosclerotic plaques (1,2).

In the normal carotid artery there is an extensive network of vasa vasorum (VV) in the adventitia that arise from branch points of parent arteries. Under physiological conditions, this specialized microvasculature delivers nutrients and oxygen to the outer layers of the arterial wall (2–6). In healthy states, microvessels arising from the vasa vasorum are spatially limited to the adventitia and outer media, and will only move towards and invade the intima during inflammatory processes that accompany atherosclerosis initiation and progression (5,7,8). According to this “outside-in” hypothesis, vascular inflammation and vasa vasorum neogenesis is initiated in the adventitia and progresses inward toward the intima (3,9). Initiation and expansion of VV neovascularization (VVn) remain incompletely understood (2). Nevertheless, it is clear that changes in physiological vascular conditions, endothelial injuries, or other events that cause dysfunction and alter homeostasis can induce the expansion of VV. Neovascularization resulting from that expansion precedes increases in the thickness of the carotid intima-media and in the development of atherosclerotic plaque (6,10), further playing a significant role in progression and destabilization of that plaque (2,4). In fact, histological studies of human atherosclerotic plaques revealed that symptomatic patients had a denser network of VV than patients with asymptomatic disease (2,11–13).

It is clear that a large scale use of histological methods to evaluate atherosclerotic progression in live patients is unfeasible. The development of alternative, non-invasive, methods to evaluate VVn as a proxy for atherosclerosis progression is thus an important goal. Imaging methods are obvious candidates for this role, and magnetic resonance imaging (MRI), contrast enhanced ultrasound (CEUS), and computed tomography (CT) are currently used in clinical practice for the visualization of anatomical structures in the adventitia VV (14). Still, initial validation of these techniques required that their results be compared to histological studies. In fact, it was shown that the intensity of histological markers for neovascularization significantly correlates with the quantification of neovascularization through imaging methods (11,15,16). The great objective of these
clinical tools, based on non-invasive image techniques, is the stratification of the risk level of patients (even in stages without plaque), and the assessment the vulnerability of the plaque (17).

This review starts by a brief description of invasive imaging techniques (Section 2), followed by a concise appraisal of features and limitations of the various non-invasive imaging methods being used for quantification of VVn (Section 3). It then summarizes the most relevant clinical findings brought about by the use of imaging techniques in the context of VVn and atherosclerosis (Section 4). This is trailed by a presentation of the processing methods used to extract information from the images (Section 5). The discussion (Section 6) then assesses how current methodological limitations and challenges present opportunities for future technological development. The paper concludes that better automated analysis methods could have a significant impact on the use of imaging methods to assess and stratify cardiovascular risk, remarking that machine learning and artificial intelligence methods are expected to have an important role in this.

2. Invasive Imaging Techniques for VV Quantification

Intravascular medical imaging methods collect images from the inside of blood vessels using specially designed catheters with a miniaturized probe attached to their distal end. These methods acquire images with higher resolution than non-invasive alternatives (18). Intravascular ultrasound (IVUS), Optical coherence tomography (OCT), and Near-infrared spectroscopy (NIRS) are imaging techniques that have recently been used for assessment of VVn (19–21). IVUS uses ultrasound technology to generate cross-sectional images of the lumen and walls of larger blood vessels, with a resolution of 150–300 µm (20,21). OCT uses near-infrared light to generate cross-sectional intravascular images, with a resolution of 10–20 µm (21). NIRS uses infrared spectroscopy to automatically assess the lipid content in atherosclerotic plaques, without providing visual images of plaque morphology or quantifying VVn (21).

Indocyanine green (ICG) fluorescence angiography is widely used to evaluate the blood flow in the operative field, for example during carotid endarterectomy. Indocyanine green (ICG) emits fluorescence in the far-red domain under light excitation and has been used to study the neovascularization of plaques in carotid (7,8). This was done using a surgical microscope, where the surgical field is illuminated using a laser-fluorescence imaging device. After ICG was administered intravenously, the perfusion of the affected area was
visualized by the fluorescence signal and diagnosed by visual inspection, either in real time or by looking at digitally recorded videos. This technique allows the evaluation of inwardly projecting neovessels. It also provides a method to evaluate the nutrient supply route for these neovessels, because endothelial neovessels are immediately visible, while vasa vasorum show delayed fluorescence (7,8).

The necessary invasiveness of these techniques is a limitation for their use in preventive care programs that aim at stratifying the population and assess cardiovascular risk level in individual patients. Intravascular imaging methods are outside the scope of this review. We focus only on non-invasive techniques.

3. Non-Invasive Imaging Techniques for VV quantification

The list of current non-invasive imaging methods being used for carotid analysis includes: CT, MRI and CEUS (14). Molecular imaging is a type of medical imaging that provides detailed information of what is happening inside the body. For CT and CEUS is necessary to use an imaging agent that allows to visualize physiologic activities such as chemical processes from the metabolism, oxygen consumption or blood flow. Magnetic resonance spectroscopy is able to measure chemical levels in the body, without the use of an imaging agent.

For the main techniques used for carotid VV assessment, non-invasive techniques were presented, and molecular imaging modalities were also referred since they have some advantages over traditional screening methods.

Computerized Tomography

CT uses ionizing radiation to reconstruct an image of the carotid and its walls, based on the differential x-ray attenuation of body tissue (22). During contrast-enhanced CT of arteries, a small fraction of the contrast media from the artery lumen enters the VV in the wall. The CT number of the wall is proportional to the spatial density of the VV (23). Example CT for carotid visualization in Figure 1 (24).

The main advantage of CT is that it generates reproducible images of high resolution that are operator-independent (24). The spatial resolution of CT can be further increased using image deconvolution, an approach that reduces blooming effects and enhances detection of increased VV (23,25).

CT imaging has some disadvantages. First, there is a risk for the patient associated with the use of iodinated contrast material to obtain tissue images. Second, there are extensive motion artifacts inherently associated
with arterial pulsations or other physiological movements (24,26,27). These disadvantages lead us to think that carotid CT imaging is unlikely to play a major role as a screening tool for large scale analysis of arterial VVn in the context of cardiovascular disease (28).

Figure 1: CT image showing ulcerations in right carotid bifurcation plaque (white arrow).

Reproduced from (24), Doi: 10.4103/0971-3026.113616

Magnetic resonance imaging

One of the techniques that relies on transport for contrast is perfusion imaging, which quantifies the entry and extravasation of intravenously injected contrast agents into the plaque. The combined use of contrast agents with MRI forms the basis of Dynamic contrast enhanced MRI (DCE-MRI) and permits the assessment of both, neovascular architecture and functional characteristics of blood vessels (29). DCE-MRI measures the tissue contrast enhancement–time curve after intravenous injection of a bolus of contrast material, estimating kinetic parameters that describe the blood plasma fraction (v_p), extracellular extravascular volume fraction (v_e), and a kinetic parameter \(K_{\text{trans}} \). \(K_{\text{trans}} \) characterizes the transfer of the contrast agent from plasma to the extravascular space (for example, the adventitia), reflecting microvascular flow, permeability, and surface area (Figure 2 (7)) (30). The intensity level of images during MRI can be adjusted by changing the sequence parameters of the magnetic pulses used for image acquisition. Using appropriate adjusted pulses one is able to evaluate the magnetic resonance signal intensity of the carotid plaque components (31).
Figure 2: MRI of carotid vasa vasorum. a) Display of the kinetic modelling: Regions with flowing blood, such as the carotid artery lumen appear in red; v_p, regions with rapid transfer, such as the vessel adventitia (arrows) appear in green: K_{trans}. b) Representative sequence of DCE-MRI frames obtained before (image frame N = 1) and other frames after bolus injection of the contrast agent.

Reproduced, with permission, from (7), https://doi.org/10.1148/radiol.11101264

DCE-MRI enables a high-resolution characterization of both vessel structure, with the advantage of avoiding the ionizing radiation that is needed for CT imaging (28), (32). An important limitation of DCE-MRI is associated with the estimation of K_{trans}. That estimation is only accurate if the blood vessel has a minimum wall thickness of 2 mm, precluding the use of the technique to study arteries with thinner walls (29). Other important limitations of the technique are its cost and its longer scanning times (28), both of which do not bode well for a widespread use of the technique in large scale screening programs.

Contrast-enhanced ultrasonography

CEUS is a modality for vascular imaging that combines ultra-sonograms with contrast microbubbles (33). CEUS is sensitive to changes in the blood flow and permits acquiring tissue perfusion information that enables the visualization of the adventitial network of VV in human carotid arteries. CEUS imaging enhances the vessel lumen and, consequently, provides complete visualization of the carotid artery vasculature, luminal surfaces, near and far wall, and adventitial and intraplaque VVn (Figure 3 (34)).
Figure 3: Contrast–enhanced ultrasound (CEUS) for assessing neo-vascularization of carotid plaque. Stenotic carotid plaque marked yellow-orange color of the contrast agent filling the lumen of the carotid artery. CEUS contrast effects are visible within the carotid plaque (yellow square), indicating plaque neovascularization. Immunohistological evaluation of the plaque area.

Reproduced, with permission, from (34), Doi: https://doi.org/10.1371/journal.pone.0175331.g001

Advantages of CEUS include that it is cost-effective, it can be performed at the bedside, it uses no ionizing radiation, and it has no nephrotoxicity. Furthermore, the technique combines a submillimetre resolution with the capability to detect individual microbubbles and provides diagnostic information with an accuracy that is comparable to that of CT and MRI (22,35,36).

Important limitations of CEUS are its dose-dependency and the nonlinear propagation artifact known as pseudo-enhancement, which occurs in the far wall adventitia of the carotid artery (37,38). This artifact strongly advices against the use of that wall for the VV assessment in CEUS imaging. An additional limitation of this method is its dependency on the operator. The variety of alternative procedures used for the analysis of the contrast enhancement limit the comparability of results from different centres. The creation of a common, reproducible, and well-established protocol for CEUS is essential to overcome that problem and enable multicentre studies that potentiate large-scale use of CEUS imaging for cardiovascular risk stratification. Also, the accuracy of CEUS in plaque analysis decreases for heavily calcified plaques that create acoustic shadows (5,29,39). This is important because acoustic shadowing limits the assessment of stenosis severity and other plaque characteristics (40,41). The use of specialized software, implementing blooming-reducing algorithms, to analyse images with acoustic shadows can mitigate the errors in image evaluation and enhance image quality and detection of VV (23).
4. Clinical Studies

The process of VVn is mainly associated to inflammatory mechanisms that are triggered in a wide range of pathologies: HIV, diabetes, chronic kidney disease, psoriasis, obesity, cardiovascular disease and events, etc. (42–46). In fact, (42–46) are only a few of the examples that emphasize the importance of VV assessment in multiple clinical contexts and studies, and accentuate the relevance of using imaging technology to investigate VVn.

We will now briefly discuss reported clinical studies using non-invasive imaging methods to evaluate VVn of the human carotid in the context of different pathologies. These studies emphasize the congruence of results between non-invasive imaging methods and histological tissue analysis and/or reveal important clinical results. A summary of the studies is presented in Table 1.

Computerized Tomography

The correlation between CT and histological images in the context of carotid VV and plaque evaluation is high (r=0.91 for fatty plaques, r=0.85 for mixed plaques and r=0.95 for calcified plaques) (47,48). Encouraged by these results, CT was used to screen carotid stenosis (26,49,50). Plaque volume, degree of stenosis and composition can be assessed using the method, emphasizing the usefulness of this and other imaging techniques as tools for risk stratification (51).

Magnetic resonance imaging

Several comparative analyses revealed a good agreement between the results obtained by using DCE-MRI to evaluate plaque and adventitial VVn and those obtained through histological analysis of surgical specimens (52,53,55,56,67,68). Furthermore, Kerwin et al. showed that K\text{trans} in the carotid adventitia in the presence of plaques provides a quantitative proxy for the extent of VVn (55,56).

DCE-MRI can be used to estimate arterial and plaque calcification, loosening of the matrix, or haemorrhages, by measuring the response to a variety of magnetic pulses (53,54,69,70). The ability of DCE-MRI to measure these characteristics of the atherosclerotic plaque allows the identification of high-risk plaques (71–73) and opened new uses for the technique. For example, L. Dong proposed its use for assessing the therapeutic response of VV in patients with atherosclerotic plaque (29).
<table>
<thead>
<tr>
<th>Feature population</th>
<th>Number of patients</th>
<th>Age years ± SD</th>
<th>Histological studies</th>
<th>Main conclusions</th>
<th>Image technique</th>
<th>Year</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe carotid stenosis</td>
<td>13</td>
<td>Y</td>
<td>Plaque density on CT angiograms correlated with histologic findings</td>
<td></td>
<td>CT</td>
<td>1999</td>
<td>T. Oliver (47)</td>
</tr>
<tr>
<td>Neurological events</td>
<td>30</td>
<td>Y</td>
<td>High correlation between CT findings and histopathology</td>
<td></td>
<td>CT</td>
<td>2009</td>
<td>M. Das (68)</td>
</tr>
<tr>
<td>Carotid artery stenotic disease</td>
<td>288 carotids</td>
<td>N</td>
<td>The resultant sensitivity of CT stenosis screening for moderate stenosis is 75.0% with a specificity of 93.8%</td>
<td></td>
<td>CT</td>
<td>2006</td>
<td>E. Bartletti (49)</td>
</tr>
<tr>
<td>Ischemic cerebrovascular disease</td>
<td>404</td>
<td>62 ± 14</td>
<td>N</td>
<td>CT angiography allows the assessment of atherosclerotic carotid plaque surface</td>
<td></td>
<td>CT</td>
<td>2009</td>
</tr>
<tr>
<td>Patients with symptoms in the anterior circulation</td>
<td>346</td>
<td>N</td>
<td>CT allows the assessment of features of plaque in low degree of stenosis</td>
<td></td>
<td>CT</td>
<td>2011</td>
<td>P. Homburg (51)</td>
</tr>
<tr>
<td>Patients with internal carotid artery stenosis</td>
<td>428 (183 female /245 male)</td>
<td>73.3 ± 10.4</td>
<td>N</td>
<td>Association between VV and symptomatic individuals was significant (P = 0.011)</td>
<td></td>
<td>CT</td>
<td>2013</td>
</tr>
<tr>
<td>Patients with atherosclerotic carotid artery disease</td>
<td>20</td>
<td>Y</td>
<td>Histological evaluation showed kinetic modeling of dynamic contrast-enhanced MRI (CE-MRI) reflects the neovasculature (P< 0.01)</td>
<td></td>
<td>MRI</td>
<td>2003</td>
<td>W. Kerwin et al. (52)</td>
</tr>
<tr>
<td>Patients with symptomatic carotid disease and stenosis of more than 70%</td>
<td>11 (4 female /7 male)</td>
<td>68 ± 4</td>
<td>Y</td>
<td>Detection rate for each plaque component was above 80%</td>
<td></td>
<td>MRI</td>
<td>2005</td>
</tr>
<tr>
<td>Patients with carotid stenosis</td>
<td>31</td>
<td>68 ± 9</td>
<td>Y</td>
<td>Good agreement between in vivo MRI and histology for quantitative measurements of the main plaque components</td>
<td></td>
<td>MRI</td>
<td>2005</td>
</tr>
<tr>
<td>Patients with lesions of carotid; Subjects with moderate disease</td>
<td>25 males</td>
<td>63 ± 10.4</td>
<td>Y</td>
<td>Histological evaluation showed that adventitial VV was significantly correlated with the amount of neovasculararing (P=0.04)</td>
<td></td>
<td>MRI</td>
<td>2008</td>
</tr>
<tr>
<td>Patients with carotid stenosis of 15% or greater in an intensive lipid therapy</td>
<td>28 (female/ 82% male)</td>
<td>71.3 ± 9.5</td>
<td>N</td>
<td>Intensive lipid therapy is associated with a significant reduction in VV</td>
<td></td>
<td>MRI</td>
<td>2011</td>
</tr>
<tr>
<td>Patients with carotid plaque</td>
<td>64 (35 female/ 51 male)</td>
<td>66 ± 12</td>
<td>Y</td>
<td>Patients with cardiovascular events showed significantly higher adventitial (P= 0.001); Carotid adventitial was negatively correlated with time since clinical event (Spearman's rho = -0.40, p = 0.03)</td>
<td></td>
<td>MRI</td>
<td>2017</td>
</tr>
<tr>
<td>Male patient with diabetes</td>
<td>1</td>
<td>53</td>
<td>N</td>
<td>Showed the possibility to identify progression and regression of atherosclerosis in patients</td>
<td></td>
<td>CEUS</td>
<td>2006</td>
</tr>
<tr>
<td>Patients with atherosclerotic carotid artery disease</td>
<td>11 (female /10 male)</td>
<td>Y</td>
<td>Histological evaluation was correlated with the CEUS results (Spearman’s 0.68)</td>
<td></td>
<td>CEUS</td>
<td>2007</td>
<td>P. Shah et al. (15)</td>
</tr>
</tbody>
</table>
Patients with carotid stenosis:
Patients without artery plaque:
25 (80% male)
15 (66.7% male)
64.5 ± 11.7
76.6 ± 7.7
N
Adventitial VV higher in patient with carotid atherosclerosis (P<0.001)
CEUS
2009
M. Magnoni et al. (58)

Asymptomatic cerebrovascular disease:
Patients with symptomatic carotid artery stenosis:
64
9
67 ± 6
Y
Histology assessment confirmed the presence of vascularization in all symptomatic plaque identified by the CEUS
CEUS
2009
M. Guarnoni et al. (59)

Subjects with pre-existing cardiovascular disease and events:
147 (61% male)
64 ± 11
N
Adventitial VV was associated with cardiovascular disease and events (P<0.01)
CEUS
2010
D. Staub et al. (60)

Patients carotid atherosclerotic disease:
27 (8 female /19 male)
68.4 ± 9.7
Y
CEUS measurements were well correlated with the histopatologic ratio (R² = 0.7095)
CEUS
2011
A. Hoogi et al. (11)

Patients with internal carotid artery stenosis:
31 (7 female /24 male)
71 ± 11
N
Far wall of the common carotid artery was significantly more echogenic than the near wall at contrast agent phase (P<0.001)
CEUS
2012
A. Thapar et al. (33)

Patients with a carotid artery stenosis:
14 (4 female /10 male)
67.8 ± 10.2
Y
CEUS results showed a significant correlation with histology, however, they refer brightness enhancement during CEUS as carotid atherosclerotic plaque may not always reflect the presence of VV (P < 0.018)
CEUS
2013
M. Vavuranakis et al. (61)

Control Group:
Patients with diabetes without retinopathy:
65 (34 female /31 male)
50 [44; 57]
N
Type 2 diabetic patients with retinopathy showed increased angiogenesis of the VV carotid artery (P<0.0019)
CEUS
2013
M. Arcidiacono et al. (62)

Patients with diabetes with retinopathy:
56 (27 female /29 male)
58 [49; 67]
N
IPN: Intraplaque Neovascularization

Patients with carotid atherosclerotic disease and cardiovascular events:
45
N
New quantitative methods for analysing CEUS were significantly correlated with visual scoring image (P<0.001)
CEUS
2013
Z. Akkus et al. (63)

Patients without intraplaque neovascularization (IPN):
Patients with IPN:
30
62.9 ± 10.1
N
CEUS showed a trend for a history of cardiovascular disease (P<0.019)
CEUS
2014
H. Kim et al. (64)

Patients with no symptoms of carotid atherosclerotic diseases:
159
56.9 ± 8.7
N
CEUS results showed a significant correlation with histology, however, they refer brightness enhancement during CEUS as carotid atherosclerotic plaque may not always reflect the presence of VV (P < 0.018)
CEUS
2014
S. van den Oord et al. (65)

Healthy subjects:
65 (40% men)
159 [70]
N
CEUS showed a trend for a history of cardiovascular disease (P<0.0015)
CEUS
2015
M. Arcidiacono et al. (66)

Control:
Diabetes without retinopathy:
53
61 [39; 51]
N
Type 1 diabetic patients showed an increased angiogenesis of the VV of carotid compared with non-diabetic subjects (P=0.018)
CEUS
2015
E. Rubinstein et al. (64)

Chronic kidney disease patients without previous cardiovascular events:
Patients in stages 3-4:
44
59.5
N
Patients with cardiovascular events showed significantly higher adventitial was negatively correlated with time since clinical event after adjusting for age (P<0.001)
CEUS
2017
M. Arcidiacono et al. (64)

Patients with high-grade carotid stenosis:
66.158 [90]
N
Scores on the CEUS-based on the level classifications were correlated with the density of intraplaque vessels (P=0.05)
CEUS
2017
C. Schmidt et al. (34)

CT - Computed Tomography; MRI - Magnetic Resonance Imaging; CEUS - Contrast-enhanced ultrasonography; P – P-value; IPN: Intraplaque Neovascularization
Contrast-enhanced ultrasonography

The initial use of ultrasound imaging for carotid plaque assessment did not include the use of contrast agents (74), which were a posterior addition to this imaging modality (75). CEUS uses an intravenous microbubble contrast agent. The contrast agent is an intraluminal tracer and can be used to obtain angiography-like images of the carotid arteries (16). Currently, CEUS is on the frontline of methodological development for carotid VVn assessment and plaque characterization.

As is the case with CT and DCE-MRI, CEUS imaging measurements correlate well with features derived from histological analysis of carotid plaques (11,12,15,59,60). One of these studies specifically showed that adventitial VVn is significantly associated to cardiovascular diseases and past cardiovascular events (60). CEUS analysis revealed an increase in adventitial VVn with age, even in individuals with no apparent risk factors for atherosclerosis (66). In addition, CEUS examination revealed that females had significantly more presence of intra-plaque neovessels than males (65), and that higher VVn was associated to a history of cardiovascular disease (64). Other CEUS studies also highlighted increased VVn in Type 1 and 2 diabetic patients (42,76).

5. Automatic methods for VV quantification

Automatic computational solutions that are quantitative, accurate, and reproducible represent an important development for assessing intraplaque neovascularization and for assessing VVn in the carotid adventitia. The later marks the asymptomatic, pre-plaque, stages of atherosclerosis. Such computational solutions assist in removing human subjectivity from image analysis.

Early automatic methods for plaque detection and analysis in CT images often required extensive manual adjustment, especially if image noise, calcification, or other artifacts were present in the images (77). Semi-automated methods for segmenting vessel walls and identifying the carotid artery lumen were also developed for the analysis of CT images (77–80). Results obtained using those semi-automated methods strongly correlated with the results generated by manual analysis of the same images (78–80). They also strongly correlated with results from histological analysis of carotid endarterectomies (81), and could be used for automated, high accuracy, classification of plaque samples into asymptomatic and symptomatic (81).
Methods that (semi)automatically detect the lumen, the outer boundary, and the contours of the plaque in carotid are also important in the field of DCE-MRI. An early semi-automated method required the operator to select two points in the image that define the vessel segment of interest. The computer then automatically connected the two points, using the centre line of the vessel to delineate the boundaries of the lumen, and assess the severity of carotid atherosclerosis (67,82). More recent methods automatically trace the contours of the lumen, as well as the outer boundary of the vessel wall and the plaque components (68,83–85). Overall, automated analysis of DCE-MRI images performs on par with manual quantification of images by the operator (82–85).

Automated quantification methods to analyse CEUS images of adventitia VVn and plaque VVn are under development to further improve the accuracy of image interpretation and to decrease inter-operator variability (16,86). During the manual process for CEUS image quantification, the operator defines the regions to consider. In general, and for currently available contrast quantification tools, the regions of interest (ROI) cannot be the same between different frames of a CEUS movie. For each frame, a user has to draw a new ROI, making for a cumbersome process that is disproportionately time consuming and hard to reproduce exactly. Automating this analysis would significantly reduce the analysis and processing time.

Image processing techniques that detect ROI in the ultrasound image can identify wall structure (46,87), presence or absence of plaque (88), or levels of VVn (46,89). These solutions improve accuracy of carotid plaque measurements and quantification of VVn, either in plaque or in asymptomatic artery walls. Artificial intelligence and machine learning algorithms for pattern recognition are also being used to analyse CEUS images (90). Recently, machine learning techniques have trained to identify symptomatic and asymptomatic carotid plaque, with accuracy and sensitivity above 90% (91), which is a promising result.

6. Discussion

Technical limitations and opportunities

Improving the large scale applicability of CT imaging requires hardware developments that reduce the dose of contrast agent and radiation exposure, thus facilitating a more widespread use of the technology (92). Similarly, improving the large scale applicability of MRI imaging requires that the costs of the technology be reduced. In addition, technical developments are required to enable accurate MRI measurements of either
adventitial VV in thinner-walled blood vessel or small wall injuries (29,56). CEUS could also benefit from hardware and technological improvements. First, new contrast agents, with fewer and weaker side effects, need to be developed (17). Second, methods that correct the artifacts generated in this type of imaging and leading to an over estimation of VV are also needed. Third, hardware that decreases the influence of the operator on image acquisition is still lacking.

Molecular image techniques allow studying perfusion routes in vessels, by timing the appearance of contrast and fluorescence in the vessels and neovessel (93). This feature could be helpful in designing experiments to understand the “direction” of vascular neogenesis in pathological states and validate the theory whereby vascular inflammation begins in the adventitia and advances to the media and intima (3,9).

Overall, and due to the limitations and features of each technique, a strategy that combine more than one technique will prove most valuable, as different techniques offer complementary information (93).

Improving image analysis

In general, computer-assisted analysis for better quantification of image parameters have been longstanding issues in the medical imaging field (94,95). Artificial intelligence based methods are increasingly being applied to cardiology to interpret complex data ranging from advanced imaging technologies. Advances in high-performance computing and the increasing accessibility of machine learning algorithms capable of performing complex tasks have heightened clinical interest in applying these techniques in research and clinical care (96). Recent advances in machine learning methods (ML) led to promising results in the automated interpretation of medical images and these ML could hold the key for the development of efficient and accurate applications for automated analysis of medical images (95,97–99).

Routine care of cardiovascular patients accumulates large amounts of data in electronic health records. The use of significant amount of diverse data is crucial to develop ML for medical applications. ML techniques can be useful for different types of the problems using different approaches. Supervised learning approaches use data to develop a model that can then predict or classify new events, while unsupervised learning approaches identify relationships between variables. Both approaches have been used for carotid imaging in the last years. However, ultrasound imaging has been most used to develop ML that assess plaque and VV neovascularization.
Supervised and unsupervised MLM have been used to assess segmentation and characterize carotid plaques from ultrasound images (99,100). It must be stressed that unsupervised MLM need to be validated in several independent cohorts, in order to confirm general cluster patterns and avoid potential classification biases (101). In supervised learning, small training datasets can lead to inaccurate decisions in testing datasets if the training datasets are biased. This means that training datasets for supervised learning should large and very well annotated. Developing the annotated datasets requires an enormous annotation effort by the experts.

Due the time-consuming for feature engineering, used by unsupervised and supervised machine learning, deep learning (DL) has emerged as the leading technique for image task (102). DL algorithms automatically learn features through the implementation of multi-layer hierarchies for the purpose of classification (102). DL methods have successfully been used for example in early-stage atherosclerosis detection and automatic measurement of intima-media thickness (103), or to characterize carotid plaque composition (104). DL algorithms require substantial computational memory resources and this presents a potential limitation for the application of these methods.

The accuracy of ML approaches is making them the best choice for assisted image analysis and interpretation, independently of the type of imaging method being used (94,105,106). These methods are expected to improve their performance, generating novel insights about pathological processes, enabling more precisely tailored treatment plans, and ultimately improving patient outcomes (94).

Clinical and Health system outlook
Atherosclerosis is a chronic inflammatory disease that leads to several acute cardiovascular complications with poor prognosis. Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Considering its poor prognosis, understanding the pathophysiology of atherosclerosis and exploring potential means to discover populations at risk as well as preventing its progression remain of significant importance.

Carotid imaging has focused mostly on the detection of atherosclerotic plaque and on the evaluation of its composition and structure. As the community becomes better at assessing these two aspects of a patient using imaging methods, we will become better at stratifying cardiovascular risk assessment and at personalizing treatment. Nevertheless, detection of biomarkers for early onset of atherosclerosis can have a big impact on the prevention and treatment of this disease group. One such biomarker is VVn before plaque formation. It seems
likely that better methods for quantifying this biomarker could have a strong impact on the evaluation of cardiovascular risk and personalization of preventive measures to reduce that risk.

Additionally, a more widespread use of accurate non-invasive image techniques will help to better characterize the physiopathological dynamics of adventitial VVn, which is still a poorly understood process (2). This improved characterization will increase our understanding of the origin and evolution of atherosclerotic processes and cardiovascular diseases. For these reasons alone, the application of progressively better, more efficient and more economic non-invasive image techniques in cardiovascular screening programs is likely to have a big societal impact.

7. Conclusions

Important efforts are underway to understand the impact of VVn in vascular health and disease. A large fraction of these efforts focus on developing non-invasive imaging methods to assess carotid plaque. Quantification of VVn remains a major issue, as our ability to perform this assessment in vivo is still limited. To improve that ability, efforts should focus on further developing new imaging methodologies and automated image analysis algorithms. Improvements in these areas could potentially impact the clinician’s ability to stratify patients according to their risk levels and to better identify and treat individuals with premature cardiovascular disease (107).

Acknowledgments

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no [609396]. We thank the anonymous reviewers for clearly improving the clarity and quality of this paper.

References

