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Summary 1 

Barley landraces from the western Mediterranean area have not been thoroughly exploited by modern 2 

breeding. This study aims at assessing the agronomic value of a core collection of lines derived from 3 

landraces of Spanish origin, and to compare them with sets of successful old and modern cultivars. 4 

The agronomic performance of a set of 175 barley genotypes, comprising 159 landrace-derived lines 5 

and 26 cultivars, was evaluated in a series of 10 field trials, carried out over 3 years and several 6 

locations. The most relevant trait of the landraces was higher grain yield at low production sites than 7 

cultivars, which may be related with better ability to fill the grain under stressful conditions. On the 8 

other hand, lateness, excessive plant height and lodging were negative traits frequently found in the 9 

landraces. Large genotype-by-environment interaction (GEI) for grain yield was detected, related 10 

partly with differences among germplasm groups, probably indicating local adaptation. GEI was also 11 

associated with the interaction of heading time and powdery mildew resistance with temperature.  12 

 13 
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Introduction  1 

Over the 20th century, barley producers in Europe chose to substitute their landraces or primitive 2 

cultivars by newly bred cultivars. New materials were readily adopted because they were specifically 3 

improved for the challenges of modern agriculture and consumer demands. Old landraces were 4 

gradually abandoned, and are currently kept mostly in germplasm banks.  5 

Nevertheless, landraces and old cultivars persisted in some areas in Europe, probably due to a 6 

combination of agronomic and socio-economic factors. A better stability of landraces compared to 7 

modern cultivars under largely unpredictable environmental conditions (as in Mediterranean climates) 8 

has been recurrently mentioned in plant breeding literature (van Oosterom et al., 1993, Voltas et al., 9 

1999; Lasa et al., 2001).  10 

This could be the case of some Spanish landraces, which persisted under cultivation longer than in 11 

other Western European regions. The best example is cultivar Albacete, a selection from a landrace 12 

made around 1955, which continues to be popular in some regions of Spain due to its reliability. In the 13 

semi-arid region of Aragón, it still occupied 69% of the area devoted to six-row barley in 2002 (DGA, 14 

2002).  15 

In general, landraces constitute one of the most valuable sources of genetic diversity. This diversity 16 

has become now more accessible thanks to the advances in genomics and recombinant DNA 17 

technology (Newton et al., 2010). Spanish barleys have long been known as a distinct phytogenetic 18 

resource with potential to contribute favourable traits to barley breeding. The genetic singularity of the 19 

Spanish barleys was described by Tolbert et al. (1979), Moralejo et al. (1994), Lasa et al. (2001), and 20 

especially by Yahiaoui et al. (2008). This genetic distinctiveness may be related to the presence of 21 

adaptation traits specific to Mediterranean conditions, which is worth investigating. The Spanish 22 

Barley Core Collection (SBCC) was assembled as a tool to systematize the study of the genetic 23 

diversity of local landraces of barley (Igartua et al., 1998). 24 

So far, the Western Mediterranean barley landraces have not been widely used in modern breeding, 25 

probably with the exception of the Coast types (of Spanish or North-African origin) that were 26 
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introduced in California by Spanish settlers in the 18th century (Florell, 1929). These landraces were 1 

later one of the founding germplasm groups of current North-American barleys (Knüpffer et al, 2003). 2 

The reasons for this overlook are, on one hand, the association of favourable and unfavourable traits of 3 

unknown genetic control and, also, an insufficient phenotyping effort. This study is part of an effort to 4 

overcome this lack of systematic phenotyping. A thorough evaluation of this collection for disease 5 

resistance has been already published (Silvar et al., 2010, 2011a). The objectives of this work are to 6 

describe Spanish barleys from the agronomic point of view, to assess their potential to contribute 7 

favourable traits, to compare their behaviour with old and modern cultivars widely grown in Spain, 8 

and to analyze the relationships of grain yield with various phenotypic and environmental traits. The 9 

final purpose of this study is to spur the interest of the barley community over this valuable 10 

phytogenetic resource.  11 

Material and Methods  12 

Plant material  13 

A total of 182 genotypes were evaluated in field trials. The set comprised the following subsets: 145 14 

six-row and 11 two-row Spanish inbred lines, derived from landraces after at least three generations of 15 

head-to-row purification; sixteen old cultivars, widely used in Spain during the 20th century, 8 two-row 16 

(Alpha, Beka, Hassan, Kym, Pallas, Union, Wisa and Zaida) and 8 six-row (Ager, Albacete, Almunia, 17 

Barberousse, Dobla, Hatif de Grignon, Monlon and Pané); and, finally, ten cultivars, recently bred or 18 

currently grown in Spain, used as controls of good agronomic performance (Candela, Orria, Plaisant 19 

and Steptoe six-row; Gaelic, Graphic, Nevada, Seira, Tipper and Volga two-row). The first three 20 

groups, six-row and two-row landrace-derived inbred lines and old cultivars, constitute the Spanish 21 

Barley Core Collection (SBCC, Igartua et al., 1998). 22 

Field trials 23 

A total of 10 field trials were sown in standard dates (Table 1) in three provinces, representing relevant 24 

barley growing areas of Spain (Table 1). The climatic data for the locations were provided by the 25 

Spanish Meteorology State Agency (AEMET), and were gathered from stations either in the same 26 
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location of the trial (Zuera, Sádaba), or in locations within a 20 km radius (the rest). Potential 1 

evapotranspiration (ETP) was estimated based on the daily data of precipitation, maximum and 2 

minimum temperatures, using the method of Hargreaves (Hargreaves et al., 1985). Daily temperature, 3 

precipitation, ETP, and precipitation/ETP ratio were converted to monthly and seasonal (autumn, 4 

winter and spring) averages (Table 1). 5 

Each trial occupied a large area (0.7 ha). Therefore, soil heterogeneity was a concern. To minimize its 6 

effect, the trials were subdivided in four sub-trials at each location. Each sub-trial included 44 SBCC 7 

accessions plus the 10 modern check cultivars, for a total of 54 accessions per sub-trial. One check 8 

was sown twice to fill up the last sub-trial. The allocation of genotypes to sub-trials was done in a 9 

stratified manner, keeping the original proportions of the groups (six-row lines, two-row lines, old 10 

cultivars), and also maintaining a balance of geographic origins between the four sub-sets. 11 

The experimental design for each sub-trial was an alpha-lattice, with 3 replications. Therefore, the ten 12 

modern cultivars were replicated 12 times, 3 at each sub-trial, whereas the rest of the accessions were 13 

replicated three times. Incomplete blocks were arranged in two directions, row (k=9) and column 14 

(k=6). Each genotype was sown in 6 row plots, 6 m long, 0.2 m between rows, with a rate of 350 seeds 15 

m-2. Each sub-trial had a width of 27 plots, with an alley of 1 m between tiers. The disposition of the 16 

sub-trials in the field was in quadrants, conforming a square plot of 81 m side length. Replications 17 

were nested within sub-trials.  18 

Traits  19 

The traits recorded were plant height (PHT), measured at maturity, in one representative plant of each 20 

plot, as the height from the tillering node to the point of insertion of the flag leaf; heading date (HED), 21 

as the number of days from January 1st until the day when 50% of the stems of each plot displayed 2 22 

cm protruding awns; lodging (LDG), recorded only at the trials in which it was present, following the 23 

visual scale of IPGRI (1994), with values from 1 (very low) up to 9 (very high); grain yield (YLD), as 24 

grain weight per plot in q ha-1; test weight (TW), determined with a grain analyzer (Dickey-John); 25 

thousand kernel weight (TKW); yield components (only at Zuera, Zaragoza, 2003), namely, number of 26 

ears m-2 (SPM), number of grains by ear (KS), number of grains m-2 (KM), and weight of 1000 grains 27 
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(TKW), from hand-harvest of a segment 1 m long of two central rows of each plot, for two 1 

replications; incidence of foliar diseases (leaf rust, LR; net blotch, NB; powdery mildew, PM) at trials 2 

in which the attacks were severe enough to reveal apparent genotypic differences (visual scores from 3 

1-resistant to 9-susceptible on plot basis); malting quality traits, carried out at the DAMM company 4 

facilities in Bell-lloc, Lleida, with samples from the FOR03 trial, which produced good grain quality. 5 

The traits recorded were caliber of grains, as the percentage of grains that passed through a sieve of 6 

2.2 mm (screening, SCR), the percentage of grains retained by a sieve of 2.5 mm (kernel plumpness, 7 

KP); the percentage of the malt rendered soluble upon mashing in the laboratory, i.e., the solids 8 

content of wort (MEX), and the percentage of protein in the grain (PRT). A complete list of trials 9 

where these traits were recorded is provided in Table S1. 10 

Statistical analyses  11 

Each sub-trial was analyzed following the alpha-lattice design, using the procedure proc mixed of SAS 12 

(1988). BLUPs for the genotypes for each trait at each sub-trial were calculated accordingly. In a 13 

second analysis, the 10 check cultivars included in all sub-trials were analyzed, following a 14 

randomized complete block design (RCBD), with three replications nested within the four sub-trials 15 

(analyzed with proc glm, SAS, 1988). When the averages of the 10 checks for a particular trait were 16 

significantly different between sub-trials, this was interpreted as a true difference due to uncontrollled 17 

environmental conditions (possibly soil), and a correction was carried out. A factor, K, was calculated 18 

dividing the general average of the field trial by the average of the sub-trial. The corrected data were 19 

obtained multiplying the corresponding K value by the trait value of the genotypes included in each 20 

sub-trial. This correction was actually rather light, and was preferred over the option of correcting on 21 

the basis of the values of the 10 common checks, as this apparently overcorrected the data.  22 

A previous diversity study based on molecular markers, revealed the occurrence of four different 23 

groups of accessions, or populations, in the landrace-derived Spanish lines, based on genetic 24 

differences (Yahiaoui et al., 2008). These populations were taken into account as possible sources of 25 

variation for the phenotypic traits measured in this study. The four groups (numbered G1 to G4) 26 

comprised 17, 9, 48 and 82 genotypes, respectively. For the purpose of this analysis, the SBCC sets of 27 
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old six-row cultivars, old two-row cultivars, and the 10 modern check cultivars were also considered 1 

as groups, G5 to G7, respectively.   2 

Genotype was considered as a random factor, as the genotypes are a representative sample of all 3 

Spanish landrace barleys, and of cultivars widely grown in Spain. Environment, a combination of 4 

location and year for each field trial was considered fixed, because of the low number of degrees of 5 

freedom. This choice was justified because the number of field trials used was enough for an 6 

agronomic evaluation, but it is uncertain whether their frequencies are a representative sample of all 7 

possible environments in our conditions. 8 

An AMMI analysis (Gauch, 1988, 1992) was carried out to describe the genotype-by-environment 9 

interaction (GEI) for grain yield, the main trait under study. This analysis was performed with routines 10 

proc glm and proc princomp in SAS (SAS, 1988). The number of significant terms in the AMMI 11 

model was evaluated with the method of Gollob (1968). The graphical representation of the AMMI 12 

model was enriched by plotting additional genotypic, phenotypic and environmental (climatic) 13 

variables, to study their relationship with the GEI of grain yield. A regression analysis of these 14 

variables with the genotypic principal component scores of the AMMI axes was performed. The 15 

regression coefficients were represented on the biplots, with length proportional to the coefficient of 16 

determination (percentage of variation of AMMI axes explained) of each external variable. Some of 17 

the environmental covariates were highly correlated among themselves. To reduce redundancy among 18 

them, a principal component analysis for these variables was carried out and only the most 19 

representative variables were shown in the AMMI graphical representations.  20 

Finally, sets of external genotypic and environmental variables were introduced in the analysis of 21 

variance for grain yield by means of factorial regression (van Eeuwijk, 1995). These sets of variables 22 

were introduced as covariate for the GEI in a sequential manner as shown in Baril et al. (1995). Then, 23 

the two subsets of best covariates were combined in a single analysis, testing all their possible 24 

interactions until arriving at the most parsimonious model possible (the one that explained the largest 25 

proportion of the GEI sums of squares, using a minimum number of degrees of freedom).  26 

 27 
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Results  1 

The values of trial ART02 were not included in the analysis of grain yield, because severe lodging 2 

impeded a good separation of plots during harvest. The results of three six-row Spanish accessions 3 

originally included in the analysis are not reported, as they turned out to be duplicates, after analysis 4 

with molecular markers (Yahiaoui et al., 2008).  5 

Corrections due to differences among sub-tests were necessary at eight trials for grain yield, four for 6 

test weight, two for thousand kernel weight, and three for plant height. The correction factors were 7 

quite low, with the most extreme values being 0.9447 and 1.0618 for plant height at SAD02 and 8 

ART02, respectively, which means correction of approximately ± 6%.  9 

Responses of groups of genotypes 10 

There were noticeable differences between landraces and cultivars for all traits (Fig. 1). The analyses 11 

of variance for each trait are presented in Tables 2 and S2. The genotypic differences were broken 12 

down into between and within genetic groups (as defined in the M&M section). For most traits, mean 13 

squares for between groups were larger than within groups, especially for plant height, lodging and 14 

test weight, but also for powdery mildew resistance, grain yield, leaf rust resistance, thousand kernel 15 

weight and heading time. The GEI was also broken down in the same manner. The mean squares for 16 

this interaction were also larger between than within groups by trial for all traits. 17 

Grain yield was higher overall for cultivars than for landrace-derived lines. The mode for cultivars and 18 

landraces was on the same yield class, but there were only cultivars at the highest yielding class. In a 19 

further step, trials were divided into two subsets according to overall productivity, with the threshold 20 

around 3000 kg ha-1: high productivity (YLD-H) for trials BEL02, VLD02, ART04 and SAD04, and 21 

low productivity (YLD-L) for trials SAD02, FOR03, SAD03, VED03, and VLD03. At high 22 

productivity trials, the cultivars yielded more than landrace lines, with most cultivars placed at the two 23 

highest yielding classes, in which there were no landrace lines. At the low productivity trials, however, 24 

landraces outyielded cultivars on average. Only 2 out the 25 highest yielding genotypes averaged over 25 

low productivity trials were cultivars, and the first 9 were landraces. There were differences among the 26 
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landrace groups as well (Table 2), with accessions from G4 showing a clear advantage over the other 1 

landrace groups at low yielding sites (Table S3). In these trials G4 and G3 actually performed on 2 

average as well as the best groups of cultivars.  3 

Landraces were, overall, later flowering than cultivars, with an average delay ranging from 2.3 to 5.8 4 

days among trials (Table S4). Ranges of flowering dates were larger for landraces (between 17.5 and 5 

26.0 days) than for cultivars (between 9.7 and 19.0 days, Table S4). The most frequent flowering date 6 

for cultivars was around April 24-26, whereas for the landraces the mode was on April 28th (Fig. 1). 7 

Plant height was another trait in which landrace lines and cultivars presented striking differences. 8 

Most cultivars were very short, below 64 cm, whereas all landraces surpassed this height, with a mode 9 

around 83 cm, with the exception of G2 lines, which were shorter (Table S4). The pattern for lodging 10 

was similar to plant height, most cultivars being lodging resistant, whereas most landraces were prone 11 

to lodging. 12 

Regarding yield components, the number of spikes and the number of kernels per square meter were 13 

larger for cultivars, though these traits were calculated only for one location. The two groups of two-14 

row materials (G2 and G6) presented higher number of spikes per area than the rest. Number of 15 

kernels per spike was larger for landrace lines, but this was expected as 93% of them are six-row, 16 

whereas only 46% of cultivars are six-row. Test weight was larger for cultivars than for landraces, but 17 

thousand kernel weight was superior for landraces overall, particularly for groups G3 and G4, which 18 

had larger values than cultivars. This was true for 7 out of the 8 trials in which this trait was 19 

calculated.  20 

Besides the main field trials reported here, the whole SBCC or the subset of landrace-derived 21 

accessions were tested in additional locations in smaller, unreplicated plots (6 rows, 25 cm apart, 3.5 22 

m long). In two of these trials there were disease attacks severe enough to reveal apparent genotypic 23 

differences. One trial at the province of Gerona (north-western tip of Spain), in 2000, suffered attacks 24 

of leaf rust (LR) and powdery mildew (PM), whereas one trial at Valladolid, also in 2000, had a 25 

powdery mildew attack. Also, noticeable damage due to net blotch (NB) was observed in trials ART02 26 
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and FOR03, and due to PM at BEL02 and SAD02. There seems to be ample diversity for powdery 1 

mildew and leaf rust resistance in landrace lines, and less for the reaction to net blotch (Table 2). 2 

Regarding quality traits, grain size parameters (SCR, KP) for the landrace lines were comparable to 3 

the results of cultivars. Differences in malt extract and grain protein were almost non-existent, 4 

probably due to low replication of these measurements, and are just a rough indication of the malting 5 

quality potential of the genotypes tested.  6 

Joint analysis for grain yield 7 

The analysis of variance for grain yield revealed large differences between genotypes, and also a 8 

significant GEI. For both the principal effect (genotype) and the GEI, the mean squares between 9 

groups were much larger than within groups. Furthermore, when the GEI between groups was broken 10 

down, it was evident that the larger share of this interaction was contributed by the comparison of high 11 

vs. low productivity trials (Table 3). 12 

The AMMI analysis for grain yield suggested some trends in the GEI (Figs.2 and S1). The first three 13 

axes were significant, explaining 48.0%, 28.0% and 15.5% of the sum of squares of the GEI, 14 

respectively (Table 3). Actually, the third axis may represent mostly noise, as we could expect a 15 

maximum of 81% of the GEI sums of squares due to pattern, as estimated by the method proposed by 16 

Gauch (1992). Therefore, the AMMI2 model is more parsimonious, and will be kept for further 17 

analyses. The trials could be classified roughly in three groups: two highly interactive groups, one 18 

with trials from the province of Valladolid (VLD03, VLD02) and the other with trials from the 19 

province of Lleida (BEL02, ART04), and the last group with the trials showing the least interaction, 20 

four from the province of Zaragoza (SAD02, SAD03, SAD04, VED03) and one from Lleida (FOR03). 21 

The first axis indicated a contrast between trials BEL02 and ART04 on one side, and VLD02 and 22 

VLD03 on the other. The second axis was driven mostly by the contrast between SAD03 and FOR03 23 

vs VLD02 and ART04. The separation between most cultivars (particularly those belonging to G5 and 24 

G7) and the landraces indicated different GE responses. Most cultivars had negative scores on both 25 

axes, whereas the landraces were distributed over the other three quadrants of the plot, although some 26 

were placed close to the origin, meaning that their GEI was minimal. There were differences between 27 
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groups of landraces as well. Almost all accessions from G3 had positive scores on the first axis. The 1 

accessions from the other 3 landrace groups were more scattered, but it is remarkable that, almost 2 

exclusively, accessions from G4 were found in the second quadrant. Therefore, there were apparent 3 

differential adaptations between cultivars and landraces, but also among landrace groups.  4 

The genotypic covariate with largest positive correlations with the first axis was the reaction to 5 

powdery mildew, followed by plant height, lodging, leaf rust and heading time. Test weight, on the 6 

other hand, showed a strong negative correlation with the first axis. This axis also was significantly 7 

(and positively) correlated with maximum temperatures and evapotranspiration in the fall. We can 8 

speculate that good growing conditions during vegetative growth promoted plant development (higher 9 

plant height and lodging) at VLD02 and VLD03, but also favoured the development of diseases, 10 

particularly for the accessions with positive scores on the first axis, mostly landraces from all groups. 11 

The landraces and cultivars with negative scores on the first axis probably combined smaller size with 12 

some tolerance to diseases. The fact that no landrace had sizeable negative scores on both axes means 13 

that there was no line combining reduced plant height and lodging and good tolerance to disease. 14 

Actually, this may be one of the reasons of the overall superiority of modern cultivars in Spain. The 15 

second component showed less strong correlations with genotypic and environmental covariates. The 16 

strongest one was with plant height which, overall, appears as the main genotypic factor causing GEI 17 

in this study. Test weight was the other genotypic covariate with a remarkable correlation, negative, 18 

with the second axis.  19 

In general, the cultivars showed relatively better performance at the higher yielding sites, except 20 

VED03, whereas G3 accessions showed an opposite pattern. The cultivars, in general, did not present 21 

a relatively good performance at the lowest yielding trials (SAD02, FOR93, SAD03, VLD03), 22 

whereas some landraces from groups G1, G2 and G3 had better relative adaptation at these trials. 23 

The results of the factorial regression pointed at several genotypic and environmental covariates as 24 

related to the GEI of grain yield. Actually, the mean squares of the interaction terms including some of 25 

these covariates were remarkably larger (Table 3) than those derived from other partitionings of GEI 26 

(AMMI and genotypic groups). The reaction to powdery mildew was the main genotypic factor related 27 
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to grain yield GEI, particularly when considered together with the maximum fall temperature. Heading 1 

time, again in interaction with maximum fall temperature, was the second most important genotypic 2 

factor, followed by lodging which in turn, did not show any significant interaction with environmental 3 

covariates. Only 1.7 % of the degrees of freedom of GEI, corresponding to the interaction of the three 4 

genotypic covariates with Trial, explained 38.8% of its sums of squares. Moreover, just two degrees of 5 

freedom of the GEI (0.14%), corresponding to the interaction of powdery mildew resistance and 6 

heading time with maximum fall temperature, explained 21.1 % of the GE sums of squares.  7 

Discussion  8 

This study aimed at the characterisation of a potentially useful genetic resource, the Spanish landraces 9 

of barley, which has been scarcely used in modern plant breeding. Previous studies determined that 10 

they show clear genetic differences with the germplasm used in mainstream barley breeding in Europe 11 

(Yahiaoui et al., 2008) and also that they may carry adaptations to environmental conditions that may 12 

be useful for other regions in a climate change scenario (Casas et al., 2011). The present study gives a 13 

complete overview of the agronomic potential of Spanish landraces. The main finding of this study is 14 

the identification of drastic changes of genotype order between productivity levels, revealing that 15 

landraces are superior under mid-to-low production conditions. This is a relevant message for 16 

European breeders, because it means that some of these landraces possess traits that may have not 17 

been well captured in current cultivars. This finding is particularly interesting at this moment, in which 18 

breeders are looking for sources of favourable traits to increase resilience of crops to respond to 19 

climate change challenges.    20 

The large differences found between landraces and cultivars were not unexpected. Variety 21 

replacement over the 20th century occurred for a reason, and this study hints at several traits as the 22 

possible basis underlying this replacement. From the agronomic point of view, a detrimental trait of 23 

the landraces is the excessive plant height that induces lodging under mid-high yielding conditions. 24 

Lower plant height and lodging in cultivars compared to landraces may have resulted from adaptation 25 

to modern fertilization levels. In fact, reduced plant height has been one of the main outcomes of 26 

modern breeding in winter cereals (Austin et al., 1980; Friedt, 2011). The longer growth cycle of the 27 
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landraces may be affected by the age in which they were developed. The original landraces were 1 

collected mostly in the first half of the 20th century, whereas the cultivars were bred in the second half 2 

of the century, mostly in the last quarter. Several studies have found an increase of temperatures in 3 

many regions of the world and, specifically, in Northern Spain over the second half of the past century 4 

(an average of 1.4ºC, reported by Peñuelas et al., 2002) and in Southern Spain from 1986 until 2008 5 

(García-Mozo et al., 2010). These increases have caused, for instance, an advancement of leaves 6 

unfolding in trees of 16 days over 49 years (Peñuelas et al., 2002), and an advancement of flowering 7 

time of arboreal and herbaceous species, correlated with temperature increase (García-Mozo et al., 8 

2010). This shift of phenological events must have affected crops as well. For instance, by advancing 9 

the occurrence of stressful situations during grain filling for winter cereals, due to earlier episodes of 10 

high temperatures. This increase of risk of high temperature stress for Southern Europe over the last 11 

century was indeed detected by the IPCC (IPCC, 2007). Therefore, an advancement of heading time in 12 

modern varieties, to avoid increasingly early terminal stress, is not surprising. A similar shortening of 13 

growth cycle due to breeding was observed for durum wheat (De Vita et al., 2007, Royo et al., 2008). 14 

On the other hand, the earliest heading time observed in landraces and cultivars was the same, 15 

suggesting that there is a minimum safety threshold to achieve heading, after the period of high risk of 16 

late frosts is over.    17 

The landraces, in general, presented worse agronomic ability than cultivars. However, they also 18 

displayed large variability for most traits, suggesting a possible use for breeding. In this respect, one of 19 

the most important results of this study is that landraces presented better adaptation to low yielding 20 

environments. Finding as many as nine landrace-derived lines which outyielded 26 cultivars under our 21 

mid-to-low production conditions was an unexpected result of this study. These results suggest that 22 

modern breeding has not impacted Spain as it has impacted barley production in Central and Northern 23 

Europe. This phenomenon was already detected at a number of studies carried out in the 24 

Mediterranean region with different sets of local germplasm (Pswarayi et al., 2008a,b; Ceccarelli, 25 

1994; Ceccarelli and Grando, 1989, 1996). These studies, however, focused mostly on field trials with 26 

very low production levels, around or below 1 t ha-1, whereas average grain yields of our low yielding 27 
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are representative of a higher productivity level, between 1.7 and 2.4 t ha-1 (Table S4). It was expected 1 

that, at this level, yield potential would still be the main feature determining grain yield, as found by 2 

Rizza et al. (2004) for Southern Italy, but this was not the case. This level of production is very 3 

common on large areas of barley cultivation in Spain and in other countries with Mediterranean 4 

climates, like Spain, Algeria or Australia, which are among the main barley producers (FAOSTAT, 5 

2013). Usually, the main limitation to realize higher yields in Mediterranean environments is limited 6 

water availability (Rizza et al., 2004) and, therefore, any superior germplasm under these conditions 7 

may carry some positive drought tolerance traits. Abundant research on drought tolerance of crops 8 

indicates that different mechanisms may be relevant at different productivity levels, (Cattivelli et al., 9 

2008). Therefore, the best Spanish landraces represent useful resources for breeders to mine for traits 10 

useful for drought tolerance, particularly at moderate yielding levels.  11 

The landrace lines were not homogeneous agronomically. Actually, the groups of landraces made 12 

according to their genetic diversity (Yahiaoui et al., 2008) also presented notable differences for 13 

several agronomic traits. It is remarkable that accessions from groups G3 and G4 had higher TGW 14 

than groups of cultivars, even though these two groups were significantly later heading than the 15 

cultivars and, therefore, experienced slightly worse grain filling conditions than the cultivars. This 16 

may be partially explained by a balancing effect between yield components but it also suggests the 17 

presence of stress tolerance mechanisms during grain filling in the Spanish accessions of groups G3 18 

and G4. Kernel weight is the yield component which is most affected in winter cereals suffering 19 

terminal stress (Stone and Nicolas, 1994; Brancourt-Hulmel, 1999), particularly under Mediterranean 20 

conditions (Voltas et al., 1999), and different mechanisms to maintain adequate grain filling under 21 

stress have been proposed (Blum, 2005). Actually, improvement of grain filling under stress has been 22 

identified as one of the main outcomes of breeding in durum wheat (Alvaro et al., 2008). The potential 23 

of some Spanish landraces to enhance grain filling under stress merits further exploration. 24 

There were significant differences between accessions for grain yield, and also a large GEI term. In 25 

both cases, a large part of both terms was due to the differences between genotypic groups, 26 

particularly landraces and cultivars, although the differences within groups were still significant. 27 
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Cultivars, in general, presented plant height, heading time and lodging susceptibility better suited to 1 

modern cultivation The results of the factorial regression also indicated a large relevance of powdery 2 

mildew resistance in the determination of grain yield GEI. This was also visible in Fig. 2, in which the 3 

reaction to powdery mildew and leaf rust seem to be driving the spread of the genotypes over the first 4 

axis. Brancourt-Hulmel (1999) found that heading time, lodging and powdery mildew resistance were 5 

the main genotypic features that drove GEI in winter wheat trials in France, the same traits we have 6 

found for barley in Spain in this study. Most likely, all these traits had some relevance in the process 7 

of the substitution of modern cultivars for landraces in Spain. 8 

The genotypic groups showed some specific features that can be used for their focused use in 9 

breeding. Group G1 was constituted by a clearly differentiated set of accessions. They had the longest 10 

growth cycle and were the tallest genotypes. Though no direct measures of biomass were made, it was 11 

evident that they produced larger biomass than the rest. It is possible that the original landraces were 12 

grown to be used as fodder, and thus may be interesting material for bioenergy uses. The accessions 13 

from G3 and G4 come from different parts of Spain (Yahiaoui et al., 2008). G3 comes from colder 14 

regions of the inland plateau, whereas G4 comes from warmer lowlands of the Southern part of the 15 

country, the coastal Mediterranean regions and the Ebro valley. The first axis of the AMMI analysis is 16 

a contrast between locations that are representative of these two areas: Valladolid (VLD02, VLD03) is 17 

in the centre of the Northern plateau, and Lleida (BEL02, ART04) is in the centre of the Ebro valley. 18 

Therefore, there was good agreement between the origin of the accessions and their position in the 19 

AMMI biplot (Fig. 2). All but one of the accessions from G3 had positive loadings in axis 1, same as 20 

VLD02 and VLD03. G4 accessions were actually more spread over the first axis, but many were on 21 

the same (negative) side as ART04 and BEL02.  22 

Among all groups of genotypes studied, the best accessions from group G4 offer the highest potential 23 

to contribute favourable traits for grain yield and disease resistance. These lines, though later heading 24 

than cultivars, were the earliest landrace group and also showed the best scores for leaf rust and 25 

powdery mildew resistance among the landraces. Nevertheless, they should be introduced with care 26 

into breeding programs, to reduce their plant height and susceptibility to lodging. For this purpose, 27 
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introgression through backcross is advised. Also, care should be taken to ascertain the agronomic 1 

effects of possible adaptation syndromes that have been selected for in the landraces over time, 2 

affecting at the genes of the vernalization and photoperiod pathways (Casao et al., 2011a, b). Ongoing 3 

work using genome wide association mapping, and linkage mapping approaches with biparental 4 

populations derived from the best Spanish lines (Hofmann et al., 2013; Silvar et al, 2011b; Ponce-5 

Molina et al., 2012) is already producing useful information on markers linked to economically 6 

important traits that can be used to facilitate targeted trait introgression with marker –assisted 7 

selection.  8 
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Table1. Geographic coordinates, climatic characteristics, sowing date of the field trials. 1 

Mean T (ºC) Min T (ºC) Max T (ºC) Rainfall (mm) ETP4 Ratio5 
Location 

Coordinate
s 

Altitude 
(m) 

Harvest 
year 

Trial 
code 

Sowing date 
A1 W2 S3 A W S A W S A W S Total A W S A W S 

2002 ART02 31/10/2001 7.10 7.13 16.13 1.40 0.70 8.63 12.77 13.57 23.57 100 67 202 369 130 154 435 0.77 0.44 0.46Artesa  
de Segre 
(Lleida) 

41º53'N  
01º02’E 

320 
2004 ART04 18/12/2003 9.30 5.67 16.00 4.97 0.20 9.30 13.67 11.77 22.67 130 126 167 423 113 133 410 1.15 0.94 0.41

Bell-lloc  
d'Urgell 
(Lleida) 

41º38'N  
00º47’E 

210 2002 BEL02 07/11/2001 8.33 7.97 16.83 3.43 2.60 9.43 13.13 13.37 24.23 82 54 152 289 127 147 442 0.65 0.37 0.34 

Foradada 
(Lleida) 

41º52'N  
1º00’E 

455 2003 FOR03 07/11/2002 9.80 5.83 18.07 4.43 -0.63 10.30 15.13 12.33 25.80 165 178 35 378 133 147 467 1.24 1.21 0.07 

2002 VLD02 08/11/2001 8.97 9.07 15.97 3.07 3.67 8.73 15.10 14.47 23.17 111 107 137 354 140 154 431 0.79 0.69 0.32
Macotera 
(Salamanca) 

40º49'N  
05º17’E 

892 
2003 VLD03 11/11/2002 11.73 6.33 14.70 6.83 -3.40 5.17 16.57 16.50 23.60 199 169 72 440 137 142 419 1.46 1.19 0.17

2002 SAD02 28/11/2001 8.93 8.57 16.20 2.97 2.97 9.13 14.87 14.07 23.20 66 59 162 287 136 149 421 0.49 0.39 0.38

2003 SAD03 27/11/2002 11.17 6.73 17.37 6.43 1.63 10.37 15.87 11.83 24.33 147 189 77 413 128 133 437 1.15 1.43 0.18
Sádaba 
(Zaragoza) 

42º16'N 
01º16’E 

440 

2004 SAD04 23/12/2003 9.33 6.00 15.50 4.93 0.93 8.70 13.77 11.03 22.23 159 116 129 404 114 126 409 1.40 0.91 0.32

Zuera 
(Zaragoza) 

41º52'N 
00º39’E 

298 2003 VED03 08/11/2003 11.07 7.13 18.10 6.53 2.17 11.33 15.60 12.07 24.80 138 127 106 371 125 134 439 1.10 0.95 0.24 

1 Autumn; 2 Winter; 3 Spring; 4 ETP: total evapotranspiration calculated according to the method of Hargreaves; 5Ratio: rainfall divided by the ETP 2 
Source: National Institute of Meteorology 3 
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Table 2. Separation of means among the genotypic groups for all traits (see description in text). 1 
Numbers followed by the same letter in each column are not significantly different according to 2 
an LSD (P<0.05). 3 
 4 

Groups  
HDN 
(days)  

PHT 
(cm)  

LDG 
(score)  

YLD 
(q/ha-1)  

YLD_L 
(q/ha-1)  

YLD_H 
(q/ha-1) 

1  122.9 A  85.4 A  4.0 B  23.27 D  18.86 B  28.8 E 
2  118.5 B  73.7 C  3.6 BC  24.01 D  18.90 B  30.4 DE 
3  118.8 B  81.4 B  5.5 A  25.96 C  21.63 A  31.4 D 
4  116.9 C  80.8 B  5.5 A  27.08 BC  22.08 A  33.3 C 
5  112.5 E  63.0 D  1.4 D  26.75 C  18.97 B  36.5 B 
6  114.2 D  74.1 C  3.0 C  28.27 B  21.59 A  36.6 B 
7  114.7 D  59.8 E  1.1 D  29.90 A  21.84 A  40.0 A 

  
TW 

(kg. hl-1)  
TKW 

(g) 
SPM 

(number)  
KNM 

(number)  
KS 

(number)  
LR 

(score) 
1  65.5 D  35.8 D  213 C  6844 A  32.4 A  7.4 AB 
2  69.3 B  38.5 C  340 A  6297 A  18.7 D  8.1 A 
3  62.7 F  42.6 A  246 C  6506 A  26.3 B  8.2 A 
4  63.6 E  42.6 A  259 BC  7043 A  27.8 AB  6.2 B 
5  72.1 A  38.7 C  374 A  7236 A  19.1 CD    
6  67.0 C  41.0 B  259 BC  7558 A  28.5 AB    
7  69.3 B  39.1 C  323 AB  7759 A  24.6 BC    

  
NB 

(score)  
PM 

(score)  
SCR 
(%)  

KP 
(%)  

MEX 
(%)  

PRT 
(%) 

1  5.7 BCD  4.6 B  8.0 A  53.4 C  76.5 A 11.3 AB 
2  4.9 E  4.5 B  3.9 B  66.4 BC  78.2 A 12.0 A 
3  5.9 AB  5.9 A  3.4 B  73.2 AB  73.2 A 10.9 AB 
4  5.8 BC  4.2 B  3.7 B  70.6 AB  72.3 A 11.9 A 
5  5.2 DE  2.9 C  2.0 B  81.5 A  79.9 A 11.8 A 
6  6.3 A  3.9 B  2.6 B  77.1 AB  77.5 A 10.5 B 
7  5.3 CDE  2.5 C  8.0 A  53.4 C  76.5 11.3 AB 

 5 
 6 
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Table 3. Joint analysis for grain yield, showing three different partitions of the genotype-by-1 
environment factor: genotypic groups (see text), AMMI and factorial regression with 2 
genotypic and environmental covariates. 3 

 4 
Source df SS MS F  
Trial 8 264928 33116 4088.4 ** 
Genotype 181 29322 162 20.0 ** 

Between groups 6 11248 1868 230.6 ** 
Within groups 175 18074 104 12.8 ** 

Genotype x Environment 1448 62942 44 5.4 ** 
Genotypic groups      
GE between groups 48 21667 451 55.7 ** 

GE bet. groups, high productivity 18 10102 561 76.1 ** 
GE bet. groups, low productivity 24 4747 198 24.4 ** 
GE bet. groups, high vs. low  6 6818 1136 140.2 ** 

GE within groups 1400 41275 29 3.6 ** 
GE with. groups, high productivity 525 21150 40 4.9 ** 
GE with. groups, low productivity 700 13150 19 2.3 ** 
GE with. groups, high vs. low 175 6975 40 4.9 ** 

AMMI      
AMMI1 188 30205 161 19.8 ** 
AMMI2 186 17594 95 11.6 ** 
AMMI3 184 9751 53 6.5 ** 
AMMI3 residual 890 5392 6 0.7  
Factorial regression      
PM*Trial 8 10978 1372 168.9 ** 

PM*Max T autumn 1 8049 8049 990.8 ** 
Deviation  7 2928 418 51.5 ** 

HDN*Trial 8 6903 863 106.2 ** 
HDN* Max T autumn 1 5204 5204 640.6 ** 
Deviation  7 1700 243 29.9 ** 

LDG*Trial 8 6539 817 100.6 ** 
Residual 1424 38522 27 3.3 ** 

Error 3276  8     
**: Significant at level P <0.01 5 
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Supplemental Table 1. Traits recorded at each field trial. 1 

               
Trial 

Plant 
height

Heading 
date 

Lodging 
score 

Grain 
yield

Test 
weight

Thousand 
kernel 
weight 

Yield 
components

Malting 
quality 
traits 

Leaf 
rust

Net 
blotch 

Powdery 
mildew

ART02 x x  x x x    x  
BEL02  x x x x x     x 
SAD02 x   x       x 
VLD02 x x  x x x      
FOR03  x x x x x  x  x  
VLD03 x x x x x x      
SAD03 x   x x       
VED03 x x x x x x x     
ART04  x  x x x      
SAD04     x x x      
GER00         *   
VAL00           * 

 2 
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Supplemental Table 2. Means and standard deviations of traits measured at each trial, split for landraces and cultivars.  1 
  2 

Variables 

HED PHT LDG YLD TW TKW NBL PML Trial Groups 

Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd 

Landraces 121.4 5.2 84.7 6.5 - - 20.9 3.2 62.4 2.9 39.8 5.1 3.5 0.9 - - 
ART02 

Cultivars 119.1 4.0 74.0 10.1 - - 27.8 2.7 69.4 3.5 40.0 4.9 3.3 1.2 - - 

              - - - - 

Landraces 112.1 4.7 - - 6.5 1.3 28.5 5.0 63.5 3.0 39.8 5.0 - - 3.9 1.6 
BEL02 

Cultivars 106.3 4.6 - - 1.7 1.8 35.2 4.4 68.7 3.5 37.9 4.9 - - 3.1 1.4 

              - - - - 

Landraces - - 61.8 5.0 - - 17.0 2.8 - - - - - - 3.1 0.9 
SAD02 

Cultivars - - 50.1 7.3 - - 18.9 2.4 - - - - - - 3.0 0.8 

              - - - - 

Landraces 124.0 5.1 89.5 6.7 - - 38.4 5.9 65.6 3.0 46.2 3.7 - - - - 
VLD02 

Cultivars 119.2 3.2 70.8 12.4 - - 40.8 4.8 71.1 3.5 44.4 3.3 - - - - 

              - - - - 

Landraces 116.8 3.5 - - 5.2 2.7 16.7 2.3 63.6 2.6 37.9 3.6 8.1 0.8 - - 
FOR03 

Cultivars 114.1 2.6 - - 2.0 1.8 19.2 2.5 69.3 3.3 36.9 3.7 7.9 1.1 - - 

              - - - - 

Landraces 123.4 6.2 92.3 11.4 5.2 2.5 25.8 4.0 65.6 2.3 44.0 5.0 - - - - 
VLD03 

Cultivars 117.6 4.4 67.0 14.1 1.3 1.2 22.5 3.1 69.3 2.4 40.3 5.3 - - - - 

              - - - - 

Landraces - - 76.2 6.1 - - 18.6 3.3 62.9 2.5 - - - - - - 
SAD03 

Cultivars - - 61.9 8.3 - - 16.1 3.3 68.0 2.8 - - - - - - 

              - - - - 

Landraces 113.2 4.4 81.8 6.7 4.0 2.0 28.9 3.6 64.8 3.0 45.1 5.1 - - - - 
VED03 

Cultivars 109.5 3.5 67.6 11.5 2.0 2.0 27.7 3.3 69.4 3.5 40.3 5.2 - - - - 

              - - - - 

Landraces 120.0 4.0 - - - - 26.5 3.1 63.5 3.2 39.6 4.3 - - - - 
ART04 

Cultivars 116.6 2.5 - - - - 38.4 5.6 70.6 4.4 38.4 4.2 - - - - 

              - - - - 

Landraces - - - - - - 34.9 4.5 63.0 3.4 40.6 4.9 - - - - 
SAD04 

Cultivars - - - - - - 37.1 4.8 69.3 3.5 38.3 5.2 - - - - 

 3 
 4 



29 
 

 1 
 2 
Supplemental Table 3. Mean squares for the analyses of variance of a series of agronomic traits recorded at the field trials.  Significant values (P<0.01) 3 
are highlighted in blue. Error terms for each trait are highlighted in red. 4 
 5 

 df HDN PHT LDG TW TKW SPM KNM KS PM NB LR SCR KP MEX PRT 

Environment (E) 6 10528 53551 414 451 2870   619 
57
43 

     

Genotype (G) 181 360 1047 41 176 229   10 3      
between groups 6 2868 19626 677 3733 2294 81506 8054221 584 127 13 44 68 1350 181 7.9
within groups 175 274 410 19 54 158 8865 7249772 64 6 3 3 9 180 82 1.2

GxE  13 99 10 8 14   3 1      
between groups  52 639 28 39 62   10 3      
within groups  11 80 9 7 13   3 1      

Error  3 21 3 4 4   2 1      
 6 
 7 
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 1 

Supplemental Table 4. Lists of the 25 best genotypes, according to grain yield over 9 trials 2 
(column “grain yield overall”), and over high productivity trials (column “grain yield – high”) 3 
and low productivity trials (column “grain yield – low”).  4 

 5 

Ranking Grain yield overall Grain yield -high Grain yield - low 

1 Orria (G7) Orria (G7) 73 (G4) 

2 Graphic (G7) Graphic (G7) 81 (G4) 

3 Steptoe (G7) Steptoe (G7) 16 (G4) 

4 Candela (G7) Gaelic (G7) 27 (G3) 

5 Barberousse (G6) Barberousse (G6) 91 (G4) 

6 91 (G4) Candela (G7) 38 (G4) 

7 42 (G4) Nevada (G7) 18 (G4) 

8 Gaelic(G7) Volga (G7) 75 (G4) 

9 Monlón (G6) Zaida (G5) 42 (G4) 

10 Nevada (G7) Kym (G5) Orria (G7) 

11 27 (G3) Dobla (G6) 106 (G1) 

12 81 (G4) Ager (G6) 76 (G4) 

13 18 (G4) Alpha (G5) 39 (G4) 

14 Volga (G7) Monlón (G6) 31 (G3) 

15 125 (G4) Hassan (G5)  79 (G3) 

16 73 (G4) Tipper (G7) 51 (G3) 

17 98 (G4) 91 (G4) 49 (G4) 

18 Pané (G6) Pané (G6) 14 (G4) 

19 16 (G4) 145 (G4) 92 (G4) 

20 Ager (G6) Seira (G7) 109 (G4) 

21 38 (G4) 42 (G4) Steptoe (G7) 

22 10 (G4) 98 (G4) 146 (G3) 

23 14 (G4) 116 (G4) 11 (G3) 

24 52 (G4) 4 (G1) 25 (G4) 

25 4 (G1) 125 (G4) 125 (G4) 

 6 
 7 

 8 

 9 

 10 

 11 
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Figure legends 1 

 2 

Fig. 1: Distribution of variables measured or recorded at a series of field trials for a collection of 3 

Spanish barley landraces, compared with a set of barley cultivars (see test for detailed description). The 4 

classes represent either 0.5 standard deviations for the continuous quantitative traits or a unit for the 5 

discreet traits 6 

Fig. 2: Plot of the first two principal components of the AMMI analysis of grain yield for a series of 7 

Spanish barley landrace-derived lines and cultivars, grown in Spain in nine field trials. Genotypic and 8 

environmental covariates have been added to the plot, with vector lengths proportional to their 9 

correlation with the AMMI axes 10 

Supplemental Fig. 1: Plot of the first principal component of the AMMI analysis of grain yield for a 11 

series of Spanish barley landrace-derived lines and cultivars, grown in Spain in nine field trials, versus 12 

the average yield of genotypes and trials.  13 


