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Abstract 6 
Indium is increasingly used in electronic devices, from which it can be mobilized 7 

towards environmental compartments. Speciation of In in waters is important for its 8 

direct ecotoxicological effects, as well as for the fate of this element in the environment 9 

(e.g. fluxes from or towards sediments). Free indium concentrations in the environment 10 

can be extremely low due to hydrolysis, especially important in trivalent cations, to 11 

precipitation and to complexation with different ligands. In this work, the free indium 12 

concentration (which is a toxicologically and geochemically relevant fraction) in 13 

aqueous solutions at pH 3 has been measured with an adapted version of the 14 

electroanalytical technique AGNES (Absence of Gradients and Nernstian Equilibrium 15 

Stripping). Speciation measurements in mixtures of indium with the ligands NTA 16 

(nitrilotriacetic acid) and oxalate indicate that the values of their stability constants in 17 

the NIST46.6 database are less adequate than those published in some more recent 18 

literature. The extraordinary lability and mobility of In-oxalate complexes allow the 19 

measuring of free indium concentrations below nanomol/liter in just 25 s of deposition 20 

time. 21 

 22 

Keywords: bioavailability, speciation, In(III), complexation, free metal ion, technology 23 

critical element 24 

 25 

Highlights 26 
 AGNES technique can measure free indium concentrations in aqueous solutions 27 
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 A specific calibration procedure has been developed for indium 28 
 NIST46.6 stability constant values for In-complexes with oxalate or NTA are 29 

not optimal. 30 
 High lability and mobility of In-oxalate complexes lead to fast measurements 31 

 32 
 33 
 34 

1. Introduction 35 

Ecotoxicological paradigms such as the Free Ion Activity Model (FIAM) or the Biotic 36 

Ligand Model (BLM) attribute a key role to the free metal ion concentration (or 37 

activity) (Paquin et al., 2002). Suitable analytical methods are therefore needed, for a 38 

variety of elements, to target this specific fraction of their total concentration. 39 

Indium is a critical element present in a huge number of electronic devices (Abbas and 40 

Amer, 2013;Chung and Lee, 2012;Wood and Samson, 2006), from which it will 41 

eventually leach towards environmental waters and other compartments (White and 42 

Hemond, 2012;Zimmermann et al., 2013). To understand these fluxes from the 43 

anthroposphere to the hydrosphere, lithosphere and biosphere, the relevant chemical 44 

properties of this poorly-studied element have to be adequately elucidated. For instance, 45 

the large hydrolysis processes of indium (e.g. an increase by 0.1 units in the pH of a 46 

solution in equilibrium with precipitated  In(OH)3 decreases the free concentration by a 47 

factor of 2) are key to explain the transfer from some natural waters to the sediments 48 

(Nosal-Wiercinska, 2010;White et al., 2017). Moreover, hydrolysis also hinders the 49 

accurate study of its speciation with most conventional techniques and, so, there are 50 

many unresolved aspects of the behaviour of indium in a number of systems (Chung 51 

and Lee, 2012;Tuck, 1983). In particular, values of the reported stability constants of 52 

indium with most ligands are remarkably uncertain (Tuck, 1983). 53 

Total indium concentrations in natural waters have been reported to be, generally, 54 

extremely low. Using mass spectrometry, Alibo et al. (1998) reported total 55 
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concentrations of indium in the Pacific and Atlantic oceans in the range of 0.06 to 0.15 56 

pmol/kg and 0.6 to 1.5 pmol/kg respectively, while river and estuarine waters were in 57 

the range 0.01 to 15 pmol/kg. A recent review (White and Hemond, 2012) concluded 58 

concentrations of indium in oceans from 0.006 to 0.5 ng L-1 and from 0.13 to 15 pg L-1 59 

for some freshwaters. The concentration of dissolved indium (White et al., 2017) could 60 

reach 6 to 29 g/L in streams influenced by acid mine drainage (pH around 3).  61 

Several proposals for measuring free indium concentrations (i.e. the free concentrations 62 

of the hexaaquo complex) have been reported, including Ion Selective Electrodes 63 

(Abbas and Amer, 2013;Gupta et al., 2010) or molecularly imprinted polymer sensors 64 

(Zhang et al., 2015), but their limit of quantification (around 10-7 mol L-1) is still 65 

relatively modest.  66 

AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) (Galceran et al., 67 

2004) is an emerging electroanalytical technique designed to determine free metal ion 68 

concentrations in solutions. Specific studied systems with environmental interest 69 

include seawaters (Diaz-de-Alba et al., 2014;Galceran et al., 2007), estuarine waters 70 

(Pearson et al., 2016), river waters (Parat et al., 2015;Zavarise et al., 2010), dispersions 71 

of nanoparticles (Adam et al., 2014;David et al., 2012;Domingos et al., 2008;Mu et al., 72 

2014;Vale et al., 2015), quantum dots (Domingos et al., 2011), clay minerals 73 

dispersions (Rotureau, 2014), extracts of soils (Chito et al., 2012), humic acids solutions 74 

(Companys et al., 2007;Puy et al., 2008), etc. (see recent review (Galceran et al., 2014)). 75 

Although solid electrodes of Bi and Au have been able to determine free concentrations 76 

of Pb (Rocha et al., 2015) and Cu (Domingos et al., 2016), respectively, the typical 77 

implementation of AGNES with mercury electrodes requires amalgamating elements 78 

such as Zn, Cd, Pb or Sn. Given that indium is also an amalgamating element with a 79 
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negative standard redox potential, it can be tackled with AGNES and conventional Hg 80 

electrodes. 81 

The aim of this work is to show how AGNES can measure free indium concentration, 82 

[In3+]. For toxicological and geochemical studies, the free ion concentration is a very 83 

relevant (even if sometimes small) fraction of the total dissolved concentration. This is 84 

the first application of AGNES to a trivalent ion. pH 3 is chosen here to avoid any 85 

complication from hydrolysis (Nosal-Wiercinska, 2010;White et al., 2017), for which 86 

conflicting formation constants have been reported (Alekseev et al., 2013;Tuck, 1983). 87 

This pH is relevant for acid mine drainages where high In concentrations have been 88 

reported (Nosal-Wiercinska, 2010;White et al., 2017). Speciation capability will be 89 

assessed with a ligand (NTA, nitrilotriacetic acid) forming a relatively inert complex 90 

and another one (oxalate) forming a labile one. In-NTA is also interesting for its 91 

application, in radiodiagnostic medicine (Biver et al., 2008),  as vector of isotopes In-92 

111 and In-113 to transferrin (implying iron substitution). 93 

2. Experimental  94 

2.1 Reagents 95 

Indium solutions were prepared by dilution from a 1000 mg L-1
 stock solution (Fluka, 96 

indium standard for ICP). NTA and potassium oxalate monohydrate (both Fluka, 97 

analytical grade) were used as ligands. Potassium nitrate was used as the inert 98 

supporting electrolyte at 0.1 mol L-1 (for all experiments) and prepared from solid 99 

KNO3 (Fluka, TraceSelect). KOH and HNO3 0.1 mol L-1 (Fluka) were used to adjust the 100 

pH of the solutions.  101 

Ultrapure water (Synergy UV purification system Millipore) was used in all 102 

experiments. Purified water saturated N2 (purity ≥ 99.999%) was used for deaeration 103 

and blanketing the solutions.  104 
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2.2 Instrumentation and procedures 105 

Voltammetric measurements were carried out with Autolab PGSTAT10 and 106 

PGSTAT101 potentiostats attached to Metrohm 663 VA Stands. All experiments were 107 

performed using GPES 4.9.007 (Eco Chemie) and NOVA 1.11 (Metrohm Autolab) 108 

software. 109 

The working electrode was a Metrohm Hanging Mercury Drop Electrode (HMDE). 110 

Glassy carbon was used as the auxiliary electrode and the reference electrode was 111 

double-junction Ag/AgCl/3mol L-1 KCl with KNO3 0.1 mol L-1 in the salt bridge. A 112 

glass jacketed cell was used in all the experiments and thermostated at 25.0°C. A glass 113 

combined electrode (Crison, 5209) was attached to an Orion Dual Star ion analyzer 114 

(Thermo) and introduced in the cell to measure and, accordingly, control the pH. 115 

Purging with N2 was necessary not only to spare a large signal from oxygen reduction, 116 

but also to avoid dramatic pH increases close to the electrode surface which would lead 117 

to indium hydrolysis (Aguilar et al., 2013a;Statsyuk and Dergacheva, 1998).  118 

Differential Pulse Polarography (DPP) was used to have an initial estimate of the 119 

(deposition) potential to be applied in AGNES for a desired gain (i.e. accumulation 120 

factor) compensating any drift from the reference electrode. For DPP experiments, the 121 

largest stand drop (labelled "3" which according to the catalogue corresponds to a radius 122 

r0 = 203 m) has been used in order to be able to apply an expression, valid for planar 123 

geometry, to the DPP peak potential (Bard and Faulkner, 2001; Galceran et al., 2004). 124 

For the "short" DPP variant the  drop lifetime was td=0.1 s, while for the "long" DPP 125 

was td=1 s; the scan rate was 4.5 mV/s and 0.45 mV/s, respectively. In both DPPs, the 126 

typical initial potential was -0.4 V and the final potential was -0.6 V; a modulation 127 

amplitude of 49.95 mV and a pulse time tp=50 ms were applied.   128 
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To assess indium reversibility (i.e. the fast reaching of equilibrium conditions -ruled by 129 

Nernst equation- between In0 and In3+ at the electrode surface) in the conditions of this 130 

work, Cyclic Voltammograms (CV) were performed between -0.1 V and -0.8 V with a 131 

scan rate of 10 mV/s. More details on the ancillary techniques (DPP and CV) and on 132 

AGNES can be found in the Supplementary Material (SM). 133 

We faced some difficulties while we were doing the speciation measurements with 134 

indium. The capillar of the mercury drop electrode was blocked more often than usual 135 

and we had also some irreproducibilities.  136 

 137 

2.3 AGNES principles applied to indium analysis 138 

AGNES is a stripping technique with two stages: deposition (accumulation in the 139 

amalgam) and stripping. 140 

The deposition stage in AGNES lasts until a special situation of equilibrium is reached. 141 

Two conditions must be met: i) the ratio (called gain, Y) between the concentration in 142 

the amalgam and the free ion concentration in the solution is ruled by Nernst equation:  143 

 
0

0'
13

In 3
exp

In

F
Y E E

RT

            
  (1) 144 

where F is the Faraday constant, R the gas constant, T the temperature, E1 is the applied 145 

deposition potential and Eº’ is the standard formal potential of the redox couple; and ii) 146 

there are no gradients in the concentration profiles of the involved species (e.g. no 147 

fluxes of In0, In3+, etc.). In the simplest variant for the deposition stage, denoted 1P (one 148 

pulse), the total duration of the deposition stage applying E1 is t1, whose last period is an 149 

equilibration, resting or "waiting" time, tw, without stirring. The variant 2P (two pulses) 150 

contains an added initial sub-step (for a time t1,a) during which the element is 151 

accumulated under diffusion limited conditions (E1,a<<E1); the desired gain (via E1) is 152 
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prescribed during t1,b (with stirring) and tw (without stirring) (Companys et al., 2005). 153 

More details on the 1P and 2P variants are given in the SM. The required deposition 154 

times to reach equilibrium decrease with decreasing the radius of the drop (Huidobro et 155 

al., 2007), so the smallest radius (drop 1 in Metrohm stand) is chosen for AGNES 156 

experiments. 157 

The stripping stage aims at the quantification of [In0] in the amalgam. Several variants 158 

have been developed (Galceran et al., 2014). The simplest and most popular variant, 159 

AGNES-I, relies on measuring the faradaic intensity current at a certain stripping time. 160 

However, the slight irreversibility of In (see section 3.1) suggests using the alternative 161 

variant AGNES-Q which measures the stripped faradaic charge when a constant re-162 

oxidation potential (E2) is applied for a sufficiently long stripping time (t2). All the 163 

accumulated moles of In0 are now stripped away from the amalgam and, so, the 164 

resulting faradaic charge (Q) is unaffected by any kinetics (provided full depletion of 165 

In0). Given the standard redox potentials of In ( -0.510 V) and Pb ( -0.317V), in this 166 

work with indium, to avoid any interference of possible traces of Pb (Charalambous and 167 

Economou, 2005;Esteban et al., 1992;Perez-Rafols et al., 2017), a fixed E2=-0.450 V 168 

(vs. Ag/AgCl) has been chosen for AGNES-Q. Some irreversible systems (e.g. those 169 

with Zn) can also be analyzed with AGNES-I (Companys et al., 2005), because the 170 

reoxidation potential can be sufficiently more positive than the standard redox potential 171 

to overcome the irreversibility, without reaching a potential where the reoxidation 172 

interference of other cations (e.g. Cd) occurs. 173 

 174 

From Faraday's law and the equilibrium condition (1) reached by the end of the first 175 

stage: 176 

3
Hg Hg3 [Inº ] 3 [In ]Q FV FV Y    (2) 177 
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where VHg is the volume of the mercury electrode.  The normalized proportionality 178 

factor (Q, obtained from a calibration in previous works with Zn, Cd and Pb (Parat et 179 

al., 2011) can be defined as: 180 

Q HgnFV   (3) 181 

Combining eqns (2) and (3), one reaches the key equation for AGNES, which relates 182 

the analytical signal (faradaic charge in this case) with the free metal ion concentration: 183 

3
Q [In ]Q Y   (4) 184 

 185 

The faradaic charge can be obtained by subtracting a synthetic blank (i.e. the solution 186 

with just background electrolyte) to the total charge (Galceran et al., 2014). 187 

3. Results 188 

3.1 Impact of irreversibility: specific calibration for In 189 

For Zn, Cd or Pb, the potential (Ej) associated to a given gain (Yj) can be computed from 190 

the peak potential of a Differential Pulse Polarogram (DPP) with the formula: 191 

0

M
1 peak

M

exp
2

nD nF E
Y E E

D RT

           
 (5) 192 

where  0M
D  is the diffusion coefficient for the reduced metal inside the amalgam, n+M

D  193 

is the diffusion coefficient for the free metal ion in solution, Epeak is the potential of the 194 

maximum obtained in a typical DPP (with the largest drop) and ∆E is the modulation 195 

amplitude of the DPP experiment. The expression for DPP assumes no complexation of 196 

the metal, so working at pH 3 limited the impact of the hydroxocomplexes of indium on 197 

the DPP peak potential. However, this formula assumes that the couple In0/In3+ is 198 

behaving reversibly at the mercury electrode, while conflicting reports on the 199 

irreversibility of In (Almagro et al., 1977;Engblom and Ivaska, 1987;Guru and 200 
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Mahajan, 1976;Komatsu, 1973;Nosal-Wiercinska, 2010;Taher, 2000;Zelic et al., 1994) 201 

are known. The Cyclic Voltammogram (CV) shown in Fig. 1 exhibits its cathodic and 202 

anodic peaks at -0.502 and -0.479 V, respectively. So, their difference is 23 mV. 203 

According to the rule (see section 6.5.1 in (Bard and Faulkner, 2001), the expected 204 

difference in a reversible system should be: 205 

 pa pc

59
ln 10 mV 19 mV

3

RT
E E

nF
   

 (6) 206 

This means that, in the CV timescale, the In couple is behaving quasi-reversibly. Thus, 207 

the (short term) irreversibility of indium prevents a direct accurate computation with the 208 

existing expression (5), so a new calibration procedure has been designed.  209 

The key idea of the procedure is to fix Q according to eqn. (3) (instead of finding it as 210 

done with all other elements previously studied with AGNES). Using the radius of the 211 

drop 1 (which according to the catalogue corresponds to r0= 141 m), one obtains: 212 

-1
Q 0.0034 C L mol   (7) 213 

One can calibrate by measuring the charge with AGNES for known free indium 214 

solutions applying a (judiciously chosen) fixed potential (called Ecalib). Fig. 3 shows one 215 

of the calibrations used in this work. Taking into account eqn. (4), from the slope of the 216 

plot Q vs. [In3+] and the fixed value of Q given by (7), one can find the gain actually 217 

applied during the calibration (called Ycalib) associated to the used Ecalib.  218 

As a rough initial guideline, and to avoid a blind trial-and-error process when starting 219 

with a new reference electrode, Ecalib can be computed from an aimed gain by using an 220 

empirically modified version of equation (5) found in this work: 221 

 222 

 223 
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3

0

In
estimated 1 peak

In

3
2.11 exp

2

D F E
Y E E

D RT

            
    (8) 224 

 225 

where Epeak was determined from the "short" DPP (i.e. td=0.1s). In this work, the used 226 

diffusion coefficients were 0

9

In
1.38 10D    m2 s-1 (Galus, 1984) and 3

10

In
4.363 10D 

   227 

m2 s-1 (taken from table 1 in (Kariuki and Dewald, 1997), who reported this value from 228 

a previous research (Turnham, 1965)). Eqn. (8) provides a guideline (previous to the 229 

calibration) of the gain associated to a candidate Ecalib because, from this gain, one can 230 

estimate the necessary deposition time (see section 3.2 below). After a succesful 231 

calibration, there is no longer need of any additional DPP run or use of eqn. (8), unless 232 

there is a dramatic change in the reference electrode, because (before a new calibration) 233 

one can use the estimate of the gain associated to the new Ecalib from the previous 234 

calibration. 235 

Fig. 3 is an example of such kind of calibrations, where the free indium concentration in 236 

the abscissae is just a fraction of the total dissolved indium (e.g. around 82% at pH 3, 237 

see details in Table SM-1 of the Supplementary Material).  238 

Once the correspondence between Ecalib and Ycalib is known, the necessary potential (Ej) 239 

to achieve any desired gain (Yj) (and viceversa) can be computed with the aid of eqn. (1) 240 

as: 241 

calib
calib

ln
3

j
j

YRT
E E

F Y
   (9) 242 

Even though the true values of Q and/or Yj might be away from the computed ones in a 243 

calibration, the correction factor would cancel out because the same offset applies to the 244 

calibration and to the measurement. 245 

The slight irreversibility which affects CV and DPP signals does not impact on the 246 

achievement of Nernstian equilibrium by the end of the first stage, just might delay it. 247 
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Moreover, the timescale of the relevant redox processes in experiments CV and DPP is 248 

short (of the order of seconds), while the deposition stage of AGNES is of the order of 249 

hundreds of seconds. On the other hand, if any irreversibility still had an effect, one 250 

would just see (in 1P variant) that longer deposition times lead to higher charges 251 

(because the response signal increases monotonously with t1 as equilibrium is 252 

progressively approached as seen in Fig 4) and one would just lengthen t1 until the 253 

stabilization of the analytical response. The irreversibility cannot affect the second stage 254 

of AGNES, either, because of the long re-oxidation step (t2=50 s, ample time for 255 

diffusion inside the drop) stripping off all the material at a potential far away from 256 

equilibrium. 257 

 258 

3.2 Time required to reach equilibrium 259 

The attainment of equilibrium can be checked by performing a "trajectory" (time course 260 

or time profile): a set of experiments with a given gain and successively longer 261 

deposition times. When the charge stabilizes into a plateau or horizontal line (i.e. longer 262 

deposition times do not alter the measured charge), it is indicative of equilibrium. 263 

Before the plateau, lower values of charge are measured, which we term as undershoot 264 

values. Panel a) in Fig. 4 shows that the trajectories reach higher plateau values for 265 

higher gains, as expected from eqn. (4) (which only applies when equilibrium has been 266 

reached). Also, the time needed to reach the plateau increases with the gain. For 267 

previously studied divalent cations (Zn, Pb and Cd), the following rule (Galceran et al., 268 

2010), when using the smallest radius (drop 1) of the stand, for the deposition time with 269 

stirring needed to reach a certain gain had been suggested: 270 

1 w 7t t Y   (10) 271 
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(where the resulting time is expressed in seconds). Previous formula has proved useful 272 

when a standard stirring speed ( “6” in the stand, corresponding to 3000 min-1) is in 273 

operation and when only the free metal contributes to the flux, i.e. for systems with just 274 

metal or with totally inert complexes. 275 

The trajectories in panel a) of Fig. 4 have been re-plotted in panel b) in terms of a 276 

normalized charge, Q/Y, vs. a normalized deposition time with stirring (t1-tw)/Y. The 277 

collapse of trajectories into practically one master curve demonstrates two conclusions: 278 

i) The rule for the required deposition time can be re-formulated, for indium, as: 279 

1 w 10t t Y   (11) 280 

The slight increase in the deposition times required to reach AGNES equilibrium can be 281 

due to the described slight irreversibility of the In couple (as it is well known that 282 

irreversibility is more critical close to equilibrium situations) and to the lower diffusion 283 

coefficient of indium.  284 

ii) The collapse of the plateaus of the normalized trajectories confirms the Nernstian 285 

behaviour: there is a direct proportionality between the gain and the accumulated charge 286 

(as also indicated by eqn. (4)). 287 

 288 

3.3 Speciation measurements 289 

3.3.1 In+NTA 290 

A first checking of AGNES measuring the free metal ion concentration, when 291 

complexes are present, involved a ligand (NTA) typically forming inert complexes in 292 

voltammetric experiments (Alberti et al., 2007). Markers in Fig. 5 show the 293 

experimental results of the evolution of free indium in several mixtures with NTA (see 294 

Table 1), computing the plotted concentration from the average of the stabilized signals 295 

(typically at two different gains). AGNES 1P strategy with gains from 2 to 50 and 296 

deposition times (t1-tw) up to 800 s was convenient until the total concentrations of NTA 297 
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and In were almost in the stoichiometric proportion 1:1. From this point of the titration 298 

onwards, the required deposition times with the 1P strategy were very long, so AGNES 299 

2P has been used. The point at cT,NTA=12.14 mol L-1 applying Y1,a=1010 produced large 300 

overshoots, even with such a short t1,a as 1.5 s. It was observed that the accumulation 301 

rate during the first substage declined with decreasing Y1,a, so -to avoid large 302 

overshoots- Y1,a=108  was used for NTA concentrations higher than 12.14 mol L-1. 303 

These lowest free indium concentrations involved gains in the range 5000 to 105 and 304 

relaxation times (t1,b) in the range 1000 to 2000 s (see Table 1).  305 

As seen in Table 1, at the first additions (say until cT,NTA=9.46 mol L-1), the decrease 306 

in free In concentration measured with AGNES is practically equal to the amount of 307 

added ligand, indicating a strong complexation between one In atom and one NTA 308 

molecule (and perhaps other species such as H+ or OH-). When the stoichiometric 309 

proportion 1:1 is reached, there is a sudden drop in the free In concentration (see Fig 5). 310 

The use of the default NIST 46.6 (default database in the speciation program 311 

VMINTEQ (Gustafsson, 2016)) for predicting the concentration is only acceptable 312 

below the proportion 1:1. Using the stability constants of (Harris et al., 1994), the 313 

agreement is practically the same as NIST46.6 for the first additions, but for the values 314 

above the proportion 1:1, Harris' predicted free concentration is too low. The essential 315 

difference between NIST's and Harris et al's models is the value of the stability constant 316 

for InH(NTA)2 (see Table 2). In Harris et al's model this is the overwhelmingly 317 

principal species for In. On the other hand, the model of Biver et al., which complete 318 

disregards the species InH(NTA)2, agrees much better with AGNES results in the 319 

probed conditions, albeit for the highest probed NTA concentration when Biver et al's 320 

predictions is somewhat higher than the free concentration measured by AGNES. In 321 
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summary, AGNES confirms the accuracy of Biver’s constants in concentration regions 322 

where the discrepancies in predicted [In3+] span several orders of magnitude. 323 

3.3.2 In+Oxalate 324 

A second speciation experiment involved a ligand (oxalate) which had been seen to 325 

form labile complexes with Zn (Companys et al., 2005). A titration of a fixed amount of 326 

In with increasing amounts of oxalate is shown in Fig. 6. The green dashed line shows 327 

the expected concentration according to VMINTEQ 3.1 using its standard database, 328 

where the In-Oxalate constants are taken from NIST 46.6 (which, in turn, takes the 329 

stability constant values from Pingarron and coworkers (Pingarron et al., 1984)). The 330 

thermodynamic accumulative stability constants derived from the NIST values (i.e. 331 

extrapolating at zero ionic strength) are log 0
110 =7.3; log 0

120 =13.19; log 0
130 =15.82; 332 

log 0
111 =8.16 (where the subscripts indicate the metal, ligand and proton stoichiometry, 333 

respectively). AGNES results diverge from this standard prediction, with values very 334 

close to the predictions based on the constants more recently reported by (Vasca et al., 335 

2003): log 0
110 =7.95; log 0

120 =13.57; log 0
130 =15.5 (with the complex InOxH2+ not 336 

being specifically considered). Notice the good agreement between AGNES and Vasca 337 

et al.'s prediction over five orders of magnitude variation in the free In concentration 338 

(almost from millimolar to nanomolar). Due to the decreasing [In3+] at each oxalate 339 

addition, the gain had to be increased (see label close to each point in the figure). 340 

However, the deposition time (t1-tw) could be kept to just 25 s and reached equilibrium 341 

(checked with longer times). This is not contradictory with the time rule (11), because, 342 

in this case, the complexes of In with oxalates contribute to the flux (Companys et al., 343 

2005). These complexes must be very labile and mobile (i.e. diffusion coefficient 344 

similar to that of the free ion), because their contribution to the arrival of In3+ at the 345 

electrode surface is so large. 346 
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4. Conclusions  347 

The determination of free In3+ concentration at pH 3 using the electroanalytical 348 

technique AGNES has been successfully achieved. The partial irreversibility of indium 349 

leads to inaccuracies in the computation of the gain from DPP peaks (as was the case for 350 

Zn and Cd at very low ionic strengths (Aguilar et al., 2013b)), but they can be overcome 351 

by means of a new calibration strategy where the gain (rather than Q) is the calibrated 352 

parameter (see eqns. (4), (7) and (9)). The times required to attain equilibrium are 353 

slightly longer than the ones needed for reversible metals like Pb, Cd, and Zn, following 354 

the rule indicated in eqn. (11) rather than in eqn. (10).  355 

Speciation of indium at pH 3 in systems containing either inert (with NTA) or labile 356 

(with oxalate) complexes can be followed with AGNES which discriminates between 357 

different published set of constants (models). Values reported in NIST 46.6 seems to be 358 

less accurate than other more recently published ((Biver et al., 2008) for In-NTA and 359 

(Vasca et al., 2003) for In-oxalate).  360 

Very promising appears to be the application of AGNES in the presence of labile 361 

complexes, like In-oxalate complexes, where very short deposition times are enough, 362 

even for very low free concentrations, due to the contribution of the complexes to attain 363 

the equilibrium. Further work is needed to evaluate the effect of pH on In speciation and 364 

measurement. Current assessments of the stability constants -for oxalate or NTA- at pH 365 

3 do not rely on any particular set of In hydrolysis (contrarily to what happens in other 366 

methods such as the potentiometric titrations (Biver et al., 2008)). 367 

The application of AGNES to uncontaminated circumneutral natural waters still 368 

requires further challenging developments, such as the use of very small mercury 369 

electrodes combined with vigorous stirring to substantially decrease the diffusion layer 370 

(Rocha et al., 2010). Application to acid waters of streams impacted by mines seems, in 371 

principle, feasible with some adaptations of the existing methodology.  372 
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 552 
 553 
Table 1  Composition of the mixtures NTA+In and AGNES parameters applied at pH 3.00±0.03 (t1,a=0 indicates a 1P strategy) with KNO3 0.1 554 
mol L-1 as supporting electrolyte. 555 
 556 
 557 
 558 

pH 
cT,In / 
mol 
L-1 

cT,NTA 
/ mol L-1 

[In3+] 
AGNES 

/ mol L-1 

[In3+]  
VMINTEQ / 
mol L-1 

t1, a / s Y t1-tw or t1,b / s 
% [In3+] 

VMINTEQ 

3.001 9.88 0.00 9.84 8.17 0 10, 20 200, 400 82.7 

2.998 10.31 0.00 8.40 8.54 0 2, 5 100, 200 82.5 

2.992 10.34 0.00 8.84 8.51 0 2, 5 100, 200 82.6 

3.033 9.87 2.37 6.79 8.53 0 2,10,20 100, 200, 400 62.9 

3.015 10.30 4.86 4.51 6.21 0 5, 10 200, 400 44.1 

3.003 10.33 4.87 5.14 4.54 0 5, 10 200, 400 44.1 

2.997 10.33 4.87 5.14 4.56 0 5, 10 100, 200 44.1 

3.013 9.87 5.11 4.03 4.56 0 5,10 200, 400 40.5 

3.014 10.29 7.77 2.01 3.99 0 10, 20 200, 400 21.9 

2.999 10.32 7.79 2.11 2.26 0 10, 20 200, 400 22.0 

3.005 10.32 7.79 2.18 2.27 0 10, 20 200, 400 22.0 

2.997 10.31 9.44 0.632 2.27 0 15, 30 200, 400, 800 0.021 

3.007 10.26 9.44 1.05 1.14 0 20, 50 

200, 400, 800 
(for Y=20) 
500, 1000, 
2000 (for 

Y=50) 

11.1 

3.015 10.30 12.24 1.93×10-3 1.11 1.5, 5 10000 5000, 10000 2.72 
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 559 
 560 
 561 
 562 
 563 
 564 
 565 
 566 
 567 
 568 
 569 
 570 
 571 

3.000 10.20 12.82 1.20×10-3 0.280 
6, 10, 
12, 20 

1×104, 
2×104 

2000 2.23 

3.004 8.56 14.78 1.72×10-4 0.227 8, 10, 9 
5×104, 
5×103 

1000, 2000 1.03 

3.004 8.59 14.84 1.58×10-4 0.0880 18, 9 
1×105, 
5×104 

1000, 2000 1.02 
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 572 
Table 2 Logarithm of the accumulated thermodynamic stability constants                                                573 
(0 or th) for In+NTA complexes from the literature. 574 

log th 

Complex 
formed 

Default 
VMINTEQ 

database 

Harris et al. 
(Harris et 
al., 1994) 

Biver et al. 
(Biver et al., 

2008) 
In NTA 15.73 15.74 18.39 

In (NTA)2 25.62 25.63 27.99 

InH(NTA)2 18.6 29.14 - 
 575 
  576 
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 577 
Figures 578 
 579 

 580 

	581 

Fig	1:			Cyclic	voltammogram	in		cT,In=4.98mol	L‐1	at	pH=3		between	‐0.1V	and	‐‐0.9V,			582 
scan	rate	10	mV/s.	Measured:	Ec	=	‐0.502	V,	Ea	=	‐	0.479	V.	The	distance	between	the	583 
peaks	is	23	mV.	584 
 585 
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 587 

Fig	2:	Differential	Pulse	Polarograms	in	an	indium	solution	4.90	µmol	L‐1	at	pH=3.	588 
Purple	line	stands	for	the	"long"	or	“standard”	DPP	(td=1s)	while	the	red	line	stands	589 
for	the	"short"	DPP	(td=0.1s).		590 
 591 
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 593 

 594 
 595 

 596 
 597 

Fig	3:	Calibration	of	In	for	faradaic	charges	(Q)	at	pH=3	using	Ecalib=‐0.4996	V.	From	598 
the	slope,	Ycalib=5.90	was	derived.	The	free	indium	concentration	in	abscissae	is	599 
computed	with	the	speciation	program	VisualMinteq.	600 
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602 

 603 

Fig	4:		Trajectories	at	different	gains	in	a	solution	cT,In=5.00	mol	L‐1	at	pH=3.	Panel	604 
a)	Charge	vs.	deposition	time	with	stirring;	Panel	b)	Collapse	of	the	trajectories	using	605 
normalized	charge	vs.	normalized	time.	606 
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 608 

Fig	5:			Free	indium	concentrations	for	several	mixtures	of	In	(cT,In	around	10	mol	L‐609 
1)	with	NTA	at	pH=3	(see	table	1).		Circle	markers	stand	for	AGNES	1	pulse	610 
measurements,	while	cross	markers	stand	for	AGNES	2	pulses	measurements.	611 
Theoretical	computations	using	VMINTEQ:	Green	dashed	line	for	database	NIST	46.6	612 
(default	in	VMINTEQ);	violet	dotted	line	for	values	from	Harris	et	al	(	1994),	and	613 
continuous	red	line	for	values	from	(Biver	et	al	(	2008)	.	614 
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1. Composition of calibration solutions 
 

Table 1: Computed free In concentrations and percentages of the other main species in 

the solutions used for the calibration shown in Fig. 3 of the article.  

Table  SM-1: Specifications of calibration solutions 

Code cT,In 

 (µmol L-1) 

pH [In3+]VMINTEQ 

(µmol L-1) 

%In3+ %InNO3
2+ %In(OH)2

+ % InOH2+ 

M1 0.85 2.997 0.70 82.5 14.4 0.18 2.86 

M2 1.67 3.002 1.38 82.6 14.3 0.19 2.91 

M3 3.26 3.000 2.70 82.7 14.1 0.19 2.93 

M4 6.24 3.002 5.18 83.0 13.8 0.20 3.00 

M5 8.94 3.002 7.44 83.2 13.5 0.20 3.06 

 

 

2. Ancillary electroanalytical techniques 
 

This section expands the ancillary electroanalytical techniques that have been used in 

the article: DPP (Differential pulse polarography) and CV (Cyclic voltammetry). It 

briefly introduces each technique and explain its principles. The purpose is to provide 

an overview of each technique and point out their potentials and limitations.  

 

2.1 DPP (Differential pulse polarography) 

Differential pulse polarography is a polarographic technique (i.e. based on the use of a 

mercury drop as working electrode) whose potential program is a series of separated 

potential steps (Arca et al., 1995;Bard and Faulkner, 1980). Fig. SM-1 shows that the 

potential program is a combination of a linear ramp with a superimposed square wave. 

During each drop, two potentials are applied: the base potential Eb during a time 

denoted t0 (first pulse) and the potential Eb +E during a time tp=td-t0 (second pulse or 
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pulse width). The polarogram  takes, for each drop, the base potential as abscissa while, 

for ordinate, it takes the difference between two current samples: one immediately 

before the time t0 and the other just before the end of the drop lifetime (td). 

 

In uncomplicated systems (i.e. just metal ions and background electrolyte with 

negligible complexation), the height of the peak is proportional to the free metal ion 

concentration (which is also the total metal concentration), but such proportionality 

vanishes -in general- when the metal is complexed. Relatively cumbersome 

mathematical expressions are needed to describe the differential pulse polarogram, even 

in cases without electrodic adsorption. 

 

Fig SM-1: Potential program for two drops in a differential pulse polarographic experiment. 
Adapted from reference (Bard and Faulkner, 1980).  
 

Assuming a reversible redox couple and planar electrode, the peak potential (Epeak) or 

position of the maximum of the polarogram can be computed (see eqn. (7.3.30) in 

reference (Bard and Faulkner, 1980)) with 

E
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00 M
peak

M

ln
2n

DRT E
E E

nF D 

 
    (SM.1) 

where Eº’ is the standard formal potential of the redox couple, R is the gas constant, T is 

the temperature, n is the number of exchanged electrons, F is the Faraday constant, 0M
D  

is the diffusion coefficient for the reduced metal inside the amalgam,  
MnD   is the 

diffusion coefficient for the free metal ion in solution and ∆E is the modulation 

amplitude (or pulse height). 

 

DPP is an ancillary technique for AGNES because the gain can be computed from Epeak 

for several analytes (Zn, Cd, Pb, Sn). See eqn. 5 in the manuscript. 

 

Complexation of the electroactive metal (with ligands including OH-) changes the 

position of the DPP peak and its height. So, in the particular case of indium, a low pH 

(such as 3) is convenient to avoid an impact on Epeak due to the formation of indium 

hydroxides. 

 

2.2 CV (Cyclic Voltammetry) 

Potential sweep methods are widely used to study electrode processes. One of the 

variants is Cyclic Voltammetry (CV), where the sweep direction is inverted at a certain 

chosen potential.  The applied potential is varying within time in a symmetrical saw-

tooth wave form (Brett and Oliveira-Brett, 1993) as shown in Fig   
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Fig SM-2:Variation of the applied potential with time in cyclic voltammetry, showing the initial 
potential, Ei = -0.1 V, and the return potential  Emin= -0.8 V . Adapted from reference (Brett and 
Oliveira-Brett, 1993).  
 

 

In this technique the resulting current is recorded over the whole cycle of forward and 

reverse sweeps. Species reduced in a forward scan of each cycle can be re oxidized in 

the reverse scan, hence in many simple systems two (cathodic and anodic) peaks appear 

which can be identified with the reduction and oxidation processes, respectively; see Fig 

SM-3.  
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Fig SM-3:  Schematic representation of the processes in the cyclic voltammogram applied to a 
solution with indium. cT,In=0.10µmol L-1 at pH=3  between -0.1V and -0.8 V,   scan rate 
10 mV/s. Measured: Ec = -0.406 V, Ea = - 0.375 V. The distance between the peaks is 31 
mV. 
 

 

 The electrode process is more irreversible if the separation between the peaks for 

forward and reverse scan is greater. As indicated in the article, at 25ºC, the difference 

between the anodic and cathodic peak potentials should be  

 pa pc

59
ln 10 mV 19mV

3

RT
E E

nF
   

 (2) 

for a fully reversible couple of a trivalent cation. In case of the fully irreversible system 

during the inversed scan direction no peak would appear (Brett and Oliveira-Brett, 

1993). 

 

CV is a typical technique in exploratory phases, to elucidate the main phenomena taking 

place at the electrode, but it is not very much used for quantitative purposes, due to the 
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cumbersome expressions that could be applicable (Bard and Faulkner, 1980;Crow, 

1994) for its interpretation. 

3. AGNES  
3.1 Applications of AGNES 

AGNES (Absence of Gradients Nernstian Equilibrium Stripping) has been successfully 

applied for determining free concentrations of metals in a wide range of systems such as 

natural samples (seawater (Galceran et al., 2007), river water (Chito et al., 

2012;Zavarise et al., 2010), solutions containing dissolved organic matter (Companys et 

al., 2007;Pernet-Coudrier et al., 2011;Puy et al., 2008), soil extracts (Chito et al., 

2012)). 

 

AGNES has measured free metal ion concentrations of Zn, Cd and Pb (with HMDE or 

Screen Printed electrodes)  (Galceran et al., 2014;Parat et al., 2011) and Cu (with solid 

electrodes) (Domingos et al., 2016). 

  

3.2 Principles of AGNES  

AGNES  is a stripping technique consisting of two stages with specific goals. We detail 

here its principles when indium is the target analyte. 

 

3.2.1 First stage: Absence of Gradients in the concentration profiles and 
Nernstian  Equilibrium at the electrode surface 

 

The aim of this stage is to reach a special situation of equilibrium, where two conditions 

have to be fulfilled: i) Absence of Gradients in the concentration profiles and ii) 

Nernstian equilibrium at the electrode surface. 
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Condition i) : Absence of Gradients. Fig Fig SM-4  shows  a schematic representation 

of the desired concentration profiles. As can be seen on the left hand side (in the 

amalgam), there is a uniform concentration of reduced indium and, on the right hand, 

there is a flat concentration profile of free indium cation in the solution.  

 

 

Fig	SM‐4:	Profiles	aimed	at	the	end	of	the	first	step	(t=t1)		
 

Condition ii): the second requirement is reaching Nernstian equilibrium for the redox 

couple (e.g. In3+/In0 in this work). The concentration of the oxidized and re-oxidized 

species of indium must fulfil Nernst equation which can be written as:  

3

0

0 In

In

ln
3


 

aRT
E E

F a
 (SM.3) 

where E0 is the standard redox potential and aj is the activity of species j. When 

equilibrium is reached, Nernst equation can be re-written as  

Amalgam

3In   

1t t

0In  

Electrode

3 0In 3e In (Hg)  
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 
0

0 '
13

In 3
exp

In

F
Y E E

RT

              (SM.4) 

where Y is the gain or preconcentration factor, which represents the proportionality 

between the reduced indium concentration in the amalgam and its free form in the 

solution. E1 is the deposition potential associated to the gain Y. 

 

There are several ways to reach the two equilibrium conditions (i and ii). The simplest 

one is the 1P strategy, where the same potential E1 is applied, while waiting for as long 

time (t1) as needed to achieve the goal of the two equilibrium conditions. Fig SM-5 

shows a scheme of the 1P strategy. Usually, the potential E1 is just a few millivolts 

more negative than the standard redox potential of the couple, so that moderate gains 

are aimed, because larger gains require longer deposition times. 
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Fig SM-6:  Schematic representation of the potential and stirring  program using two potential 
sub-steps in the first stage (AGNES-2P). The total deposition time t1 is the summation of the first 
potential step time  t1,a, the second potential t1,b and the waiting time tw. 
 

 

To enhance mass transport, stirring is activated along most of the deposition stage. See 

table SM-2  with the specification of the periods where stirring is on.  
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Table	SM‐2:	Combination	of	parameters	for	the	two	strategies	available	for	the	first	
stage	(1	Pulse	and	2	Pulses)	of	AGNES	.	
 
a: Parameters for 1P 
 

1 P Stage Time Stirring Potential Gain 

Deposition t1-tw On E1 Y=Y1 

tw Off E1 Y=Y1 

Stripping t2 Off E2 Y2 

b: Parameters for 2P 

2 P Stage Time Stirring Potential Gain 

Deposition t1,a On E1,a Y1,a 

t1,b On E1 Y=Y1,b 

tw Off E1 Y=Y1,b 
Stripping t2 Off E2 Y2 

 
 
 
After the application of the first sub-stage in 2P, three situations can arise: undershoot, 

equilibrium or overshoot. The undershoot appears when the number of moles 

accumulated during the first sub-stage (i.e. throughout the time t1,a) is less than those 

needed for equilibrium. The overshoot appears when the number of moles is greater 

than those needed. Using the 2P strategy there is a reduction of the deposition time 

(with respect to the 1P strategy) that might even reach a factor of ten, if t1,a is optimally 

chosen. Fig SM-7 shows how a large overshoot can be spotted in the currents recorded 

during the first stage of a 2P experiment. 
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Fig SM-7:   Currents recorded during the first stage of a  2P experiment. Y1,a =1010; Y=50; 
t1,a=100 s; t1,b=300 s;  cT,In=4.97µmol L-1and cT,Ox=69µmol L-1 and pH=3.00. 
 

 

To check whether a given t1,a produces overshoot, undershoot or equilibrium in our 

system, one can compare experiments with various t1,b. See Fig  SM-8. If experiments 

with longer t1,b produce higher analytical responses (in the stripping stage), one 

concludes that the applied t1,a has been too short (i.e. undershoot). If longer t1,b produce 

lower analytical responses, one concludes that the applied t1,a has been too long (i.e. 

overshoot).  Table SM-2 provides the times and potentials that were used for 1P and 2P.   

 

 
Regardless of which strategy (1P or 2P) is adopted for the first stage, it is convenient to 

use small electrodes, as the required deposition time increases with the size of the 

electrode (Huidobro et al., 2007). So,  drop size 1 -the smallest in our stand- is selected 

to reach to the equilibrium faster. Its approximate radius is 1.41×10-4m.  
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Fig  SM-8:  Schematic representation of possible situations for the first sub-stage of 2P 
experiments, as seen from the stripping charges (Q) in three series of experiments (each 
characterized by a given t1,a) along increasingly long relaxation times (t1,b). The markers 
triangle, circle and cross, represent overshoot, equilibrium and undershoot situations, 
respectively. The series indicated with triangle markers are associated to a t1,a larger than the 
optimum one (for the aimed gain), while the cross series are associated to too short t1,a.  
 

 

3.2.2 Second stage: quantification of the reduced indium inside the amalgam. 
The goal of the second stage is to quantify how much In0 has been accumulated in the 

amalgam during the first stage. There are different ways to achieve the goal of this 

second stage, which lead to the variants AGNES-I, AGNES-Q, AGNES-SCP  and 

AGNELSV (Galceran et al., 2014). 

 

In the case of indium, AGNES-Q has been selected, where  the stripped charge is 

measured. Once discounted the blank (i.e. the capacitive charge in an experiment with 
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no analyte, just background electrolyte) (Galceran et al., 2014) from the total charge, 

one obtains the faradaic charge (Q). Acording to Faraday’s law, one can write:  

o
Hg3 (moles in amalgam) 3 In  Q F FV        

(SM_5)                       

By defining the proportionality factor as 

Q Hg3FV    
(SM_6) 

and combining with  SM.4) 

3
Q [In ]Q Y   (SM_7) 

 
This expression indicates the direct proportionality between faradaic charge and the free 

concentration of indium in the solution.  

 

During this second stage, it is necessary that all of the reduced indium inside the 

amalgam is stripped to have the total faradaic charge (Q). This total charge is not 

affected by any kinetics, provided the stripped charge is the one that corresponds to the 

total number of moles of In0 in the amalgam. When all this In0 is stripped, the speed at 

which this stripping is happening is irrelevant (as long as we wait long enough for the 

complete stripping).   

 

During the second stage, the current is sampled at short time intervals (e.g. each 50 ms) 

and is is recorded into a file (see Fig  SM-9). The integration of these currents provides 

the charge.  
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time, as they might contribute to the flux (if they are not totally inert) that builds up the 

required amount of reduced metal in the amalgam (Galceran et al., 2004). 
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