Aged but withstanding: maintenance of growth rates in old pines is not related to enhanced water-use efficiency

Elena Granda¹*, J. Julio Camarero¹, J. Diego Galván², Gabriel Sangüesa-Barreda¹, Arben Q. Alla³, Emilia Gutierrez⁴, Isabel Dorado-Liñán⁵, Laia Andreu-Hayles⁶, Inga Labuhn⁷, Håkan Grudd⁸ and Jordi Voltas⁹

¹Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain; jicamarero@ipe.csic.es; gsanguesa@ipe.csic.es
²Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland; galiarde@gmail.com
³Fakulteti i Shkencave Pyjore, Universiteti Bujqësor i Tiranës, Kodër-Kamëz 1029, Tirana, Albania; benialla@gmail.com
⁴Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avd. Diagonal 643, 08028 Barcelona, Spain; emgutierrez@ub.edu
⁵Forest Research Centre, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CIFOR), Madrid, Spain; dorado.isabel@inia.es
⁶Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, USA; lah@ldeo.columbia.edu
⁷Department of Physical Geography and Quaternary Geology, Stockholm University, Sweden; present address at Department of Geology, Lund University, Sweden; inga.labuhn@geol.lu.se
⁸Department of Physical Geography and Quaternary Geology, Bolin Centre for Climate Research, Stockholm University, Sweden; hakan.grudd@polar.se
⁹Department of Crop and Forest Sciences-AGROTECNIO Center, Universitat de Lleida, Rovira Roure 191, E 25198 Lleida, Spain; jvoltas@pvcef.udl.cat

*Corresponding author:
Elena Granda
Instituto Pirenaico de Ecología (IPE-CSIC)
Avda. Montañana 1005, 50192 Zaragoza, Spain.
Phone: +34 976 369393 ext. 880039/ Fax: +34 976 716019
E-mail address: elena.granda.f@gmail.com
Abstract

Growth of old trees in cold-limited forests may benefit from recent climate warming and rising atmospheric CO₂ concentrations (c_a) if age-related constraints do not impair wood formation. To test this hypothesis, we studied old Mountain pine trees at three Pyrenean high-elevation forests subjected to cold-wet (ORD, AIG) or warmer-drier (PED) conditions. We analyzed long-term trends (1450-2008) in growth (BAI, basal area increment), maximum (MXD) and minimum (MID) wood density, and tree-ring carbon (δ^{13}C) and oxygen (δ^{18}O) isotope composition, which were used as proxies for intrinsic water-use efficiency (iWUE) and stomatal conductance (g_s), respectively. Old pines showed positive (AIG and ORD) or stable (PED) growth trends during the industrial period (since 1850) despite being older than 400 years. Growth and wood density covaried from 1850 onwards. In the cold-wet sites (AIG and ORD) enhanced photosynthesis through rising c_a was likely responsible for the post-1850 iWUE improvement. However, uncoupling between BAI and iWUE indicated that increases in iWUE were not responsible for the higher growth but climate warming. A reduction in g_s was inferred from increased δ^{18}O for PED trees from 1960 onwards, the warmest site where the highest iWUE increase occurred (34%). This suggests that an emergent drought stress at warm-dry sites could trigger stomatal closure to avoid excessive transpiration. Overall, carbon acquisition as lasting woody pools is expected to be maintained in aged trees from cold and high-elevation sites where old forests constitute unique long-term carbon reservoirs.
Keywords: cold-limited forests; dendroecology; global change; old trees; *Pinus uncinata*; stable isotopes

Abbreviations: basal area increment (BAI); maximum wood density (MXD); minimum wood density (MID); intrinsic water use efficiency (iWUE), photosynthetic rates (A), and stomatal conductance (g_s).
1. Introduction

Old-growth forests represent 15% of the world forest surface and are responsible for 10% of the global net ecosystem productivity (Luyssaert et al. 2008) given that they have been taking up carbon for centuries and storing it as long-lasting woody pools. In fact, tree longevity rather than growth rates is considered to control the carbon sequestration of forests (Körner, 2017).

A progressive reduction in the productivity of old forests is traditionally assumed because aged trees are thought to show a decline in growth and carbon accumulation due to a less efficient hydraulic architecture, cell senescence, and a decreased nutrient uptake (Yoder et al. 1994; Ryan & Yoder 1997; Mencuccini 2002) or an increase of maintenance respiration costs (Yoda et al. 1965). However, recent studies have shown that carbon accumulation may continue until trees are centuries old (Stephenson et al. 2014) since tree size, rather than age, drives long-term growth trends (Mencuccini et al. 2005). Yet, there is an important need to understand old trees’ performance, especially in regard to their responses to rapidly changing environmental conditions (climate warming, rising atmospheric CO₂ concentrations – \(c_a\)).

During the industrial period (here defined from 1850 onwards) environmental changes have been more pronounced and rapid, including abrupt rises in \(c_a\) and air temperatures (IPCC 2014). Increases in \(c_a\) could lead to the so-called fertilization effect, which predicts a positive influence of greater carbon availability on tree growth through enhanced net photosynthetic rates (Huang et al. 2007; Streit et al. 2014, but see Körner 2003). On the other hand, rising temperatures could also stimulate photosynthesis, growth, and thus productivity, in cold-limited sites such as high-elevation forests (Gunderson et al. 2009; Salzer et al. 2009; Way & Oren 2010) although carbon acquisition (photosynthesis) is less limited by low temperatures than carbon use in
tissue formation (Körner 2015). Several studies have addressed tree responses to higher \(c_a \) and warming through the inference of long-term changes in intrinsic water-use efficiency (or carbon gain per unit of water lost, hereafter iWUE) and its relationship with growth, reporting contrasting or a lack of relationships between them (Saurer et al. 2004; Silva et al. 2009; Andreu-Hayles et al. 2011; Peñuelas et al. 2011; Silva & Horwath 2013; Fardusi et al. 2016). Interestingly, tree age has been found to be a relevant factor acting on the rate of growth change as \(c_a \) rises. For instance, Voelker et al. (2006) reported an ontogenetic decline in the rate of \(c_a \) growth stimulation in \textit{Quercus} and \textit{Pinus} species, and Camarero et al. (2015a) found that the largest growth improvements of mountain pines occurred in young trees. However, less is known about old-trees, making them interesting subjects to evaluate long-term functional responses to rapid environmental changes.

Indeed, whether old-forest productivity is enhanced or not under future environmental conditions may strongly influence terrestrial carbon cycles (Babst et al. 2014a). The role played by forests as carbon sinks warrants accurate investigation of both radial growth and wood density to improve the estimations of carbon uptake as woody biomass (Bouriaud et al. 2015). Wood density is related to carbon fixation and water economy (Babst et al. 2014b), but its relationship with iWUE has rarely been addressed despite being a key trait linking hydraulic conductivity, growth, carbon use to synthesize wood and mechanical strength (but see Ponton et al. 2001; Olano et al. 2014; Pellizzari et al. 2016 for studies relating C isotopes with wood anatomy). In conifers, a less dense earlywood (often represented by a lower ring minimum density, MID) usually translates into wider conduit lumen areas, which provides higher hydraulic conductivity (Camarero et al. 2014). Conversely, a denser latewood (represented by higher maximum density, MXD) is linked to a higher carbon investment in thickening
and lignification of cell walls (Hacke et al. 2001). Therefore, the specific tree processes contributing to changes in growth and wood density have to be investigated to understand responses to current environmental changes, the associated carbon allocation trade-offs and the mechanisms involved.

Old trees may modify their water and carbon economies in response to environmental changes. In the long-term, these changes can be estimated using stable isotopes in tree rings (Farquhar et al. 1982; McCarroll & Loader 2004). For instance, the relative importance of changes in stomatal conductance (g_s) and photosynthetic rate (A) affecting tree performance can be determined by the simultaneous study of carbon ($\delta^{13}C$) and oxygen ($\delta^{18}O$) isotope composition (e.g. Nock et al. 2010). While many studies have reported current increasing trends in iWUE (Saurer et al. 2014) it is not always obvious whether they are the result of photosynthetic stimulation (A increase), stomatal regulation (g_s decrease) or a combination of both (e.g. Streit et al. 2014).

Considering that ^{18}O enrichment in tree-ring wood may be influenced by a reduction in relative humidity (as related to lower g_s; Saurer et al. 1997; Treydte et al. 2014) but not by changes in A, the combined study of $\delta^{13}C$ and $\delta^{18}O$ allows elucidating whether biochemical or stomatal controls of photosynthesis underlie changes in iWUE (Scheidegger et al. 2000; Barbour et al. 2002; Grams et al. 2007).

High-elevation forests dominated by tree species such as Mountain pine (Pinus uncinata) are expected to be especially sensitive to ongoing changes in environmental conditions (Körner 2012). In the case of the Pyrenees, radial growth of Mountain pine is limited by low temperatures during the growing season and the previous fall (Tardif et al. 2003). Additionally, Mountain pine trees from wet sites exhibit growth enhancement concurrent with the c_a rise, which is consistent with a fertilization effect only on those particularly wet habitats (Camarero et al. 2015b). Therefore, we hypothesize that
temperature and c_a increases might benefit these old forests through mechanisms such as an increase in C sink activities, an extended growing season, higher carbon inputs or a combination of them. However, drought stress due to higher evapotranspiration could be an emergent limiting factor by reducing stomatal conductance and photosynthetic rates in Mountain pine forests, especially in sites located on rocky substrates and steep slopes or experiencing higher warming rates (Galván et al. 2015; Churakova (Sidorova) et al. 2016).

The aim of our study is to determine if the performance of old Mountain pines (comprising ages from 412 to 731 years) inhabiting cold-limited and high-elevation sites has been modified by the industrial rise in c_a and temperatures. To this end, we quantify long-term changes in radial growth, wood density, δ^{13}C and δ^{18}O by comparing several Pyrenean forests with similarly aged trees but different local conditions. Particularly, we pose the following questions to understand possible trade-offs of carbon allocation to secondary growth: i) which are the main differences in growth, wood density and physiological adjustments of old pines from high-elevation forests with distinct temperatures and humidity conditions between pre- (1700-1849) and industrial (1850-2008) periods?; ii) are these old pines experiencing growth enhancement in response to warmer conditions and/or higher c_a?; iii) are shifts in iWUE the result of changes in the tree’s photosynthetic capacity (A) or stomatal conductance (g_s) and iv) which are the relationships among growth, wood density (MID, MXD), δ^{18}O and iWUE and do they change through time? We hypothesize that higher c_a and current warmer temperatures may sustain or even enhance old trees’ growth. Based on the conceptual framework outlined in Figure 1, we test the following hypotheses: (i) improved iWUE may be positively linked to enhanced growth and increased MXD since the industrial period; (ii) MID and MXD are positively correlated if both variables are limited by low
temperatures which drive cambium activity, although a negative correlation could be expected if lower lumen area of earlywood tracheids (higher MID) limits the carbon acquisition for MXD; (iii) a greater growth is expected under higher hydraulic conductivity due to a higher efficiency (larger conduit area and thus, lower MID) under a warmer climate; and (iv) higher MID (lower potential hydraulic conductivity) would be related to increased iWUE if a reduction in hydraulic conductivity is linked to decreased g_s.

Figure 1. Conceptual model describing the main hypothesis regarding BAI, MXD, MID and iWUE (and their interpretation in the black boxes) regarding long-term changes in performance of old trees from cold-limited forests under warmer temperatures and increasing c_a. Solid and broken lines represent expected positive and negative relationships, respectively. The relationships between MXD and MID, and between iWUE and MID are conditional (represented as dashed-dotted lines), as explained at the end of the introduction section (1). Variables’ abbreviations are: basal area increment (BAI); maximum wood density (MXD); minimum wood density (MID); intrinsic water use efficiency (iWUE), photosynthetic rates (A), and stomatal conductance (g_s).
2. Materials and Methods

2.1. Sampling species and sites

The study species is Mountain pine (*Pinus uncinata* Ram.), which dominates high-elevation forests in the Spanish Pyrenees, where it forms most forest limits and treelines (Camarero & Gutiérrez 1999). Mountain pine is a shade-intolerant, slow-growing conifer, which may reach 800-1000 years in age (Camarero & Gutiérrez 1999). Radial growth of Mountain pine peaks in July whilst latewood formation starts in August or September, and the growing period encompasses from May to October (Camarero et al. 1998).

The sampling sites are located in protected areas of the Spanish Pyrenees (Table 1): “Ordesa y Monte Perdido” National Park (hereafter ORD: 2,088 m a.s.l.; 42º 40' N, 00º 03' E); “Aigüestortes i Estany de Sant Maurici” National Park (hereafter AIG: 2,355 m a.s.l.; 42º 35' N, 00º 57' E); and Pedraforca Regional Park located in the “Cadí-Moixeró” Natural Park (hereafter PED: 2,100 m a.s.l.; 42º 14' N, 01º 42' E). These protected areas guarantee the preservation of old stands, which can be considered free of local anthropogenic disturbances (e.g., logging, fires). Pyrenean forests situated near the forest limit and the treeline usually form low-density, open-canopy stands that are located in steep and elevated sites over rocky substrates with thin soils forming isolated patches (Galván et al. 2014). Soils in ORD and PED are mainly basic and developed on calcareous substrates, whereas soils in AIG are acid (umbric leptosols) formed on granodiorites.

The three Pyrenean high-elevation forests are located just below the forest limit and exposed to cold and relatively wet climate conditions. Nonetheless, climate is distinct among the three areas (Table 1), allowing for comparison of old-tree responses under varying conditions. ORD is the lowest altitude site and AIG is the most elevated
one (Tables 1 and S1). PED is the easternmost, warmest and driest site despite receiving high rainfall in summer and autumn, i.e. in the late growing season, due to its proximity to the Mediterranean Sea. Contrastingly, ORD is the westernmost and wettest site and receives the highest precipitation in winter and spring, i.e. in the early growing season, due to a marked influence of Atlantic fronts. AIG represents the coldest and most continental site, with a mean annual temperature of 3.1 °C (Table 1). From 1950 to 2009 mean temperatures (CRU TS 3.1 dataset; 1901–2002, Harris et al. 2014) increased at rates of +0.3°, +0.3° and +0.2 °C per decade during the growing season (May-October) in ORD, AIG and PED, respectively. The warming rates were more pronounced during the last decades, particularly since the 1980s, but no changes were observed in precipitation regime. Warming rates of +2.8° to 4 °C are forecasted for the 21st century in the Spanish Pyrenees (López-Moreno et al. 2008).
Table 1. Description of the study sites and weather stations used to characterize the climatic gradient. The trends refer to the mean annual temperature (T) and total annual precipitation (P) during the growing season (May to October) calculated using the CRU 0.5º-gridded climate dataset (Harris et al., 2014) for the period 1950-2008 (** p-value < 0.05; *** p-value < 0.001 and ns represents non-significant results). Rain δ¹⁸O was estimated according to Ferrio and Voltas (2005).

<table>
<thead>
<tr>
<th>Study site</th>
<th>Coordinates</th>
<th>Aspect</th>
<th>Slope</th>
<th>Bedrock/soil type</th>
<th>Altitude of trees (m a.s.l.)</th>
<th>Local climate data</th>
<th>CRU climate data</th>
<th>Rain δ¹⁸O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORD</td>
<td>42° 39' 52'' N 0° 00' 59'' E</td>
<td>N</td>
<td>49°</td>
<td>Calcareous limestones, marls/ Entisol</td>
<td>2120 ± 89</td>
<td>Refugio de Góriz (2200 m, 8 km)</td>
<td>1982-2013</td>
<td>4.8</td>
</tr>
<tr>
<td>AIG</td>
<td>42° 38' 49'' N 0° 50' 05'' E</td>
<td>SE</td>
<td>35°</td>
<td>Siliceous granodiorite/ umbric leptosols</td>
<td>2293 ± 42</td>
<td>Port de la Bonaigua (2266 m, 5 km)</td>
<td>1998-2014</td>
<td>3.1</td>
</tr>
<tr>
<td>PED</td>
<td>42° 20' 57'' N 1° 57' 22'' E</td>
<td>NE</td>
<td>36°</td>
<td>Calcareous limestones, marls/ entisol</td>
<td>2205 ± 16</td>
<td>La Molina (1711 m, 21 km)</td>
<td>1955-1969</td>
<td>5.6</td>
</tr>
</tbody>
</table>
2.2. *Dendroecological methods*

A total of 10, 37 and 22 old trees (ages over 400 years) were sampled between 2008 and 2009 in ORD, AIG and PED sites, respectively, of which 10, 17 and 11 were also used for wood density measurements. Among them, four trees per site (those with the longest time spans, 412-731 years old; see Table S1 for details) were selected for δ^{13}C and δ^{18}O analyses.

Topographic (altitude, slope, aspect; see Table 1) and biometric variables (DBH: diameter at breast height –measured at 1.3 m; tree height) were recorded for each tree (see Table S1 in Supporting Information). All individuals were cored at 1.3 m using 5-, 10- and 12-mm Pressler increment borers taking at least five cores per tree. The mean DBH (\pmSD) was 66.4 ± 12.4 cm, 59.0 ± 7.4 cm and 58.7 ± 3 cm in ORD, AIG and PED respectively. Mean ages were 486 ± 31 years, 557 ± 22 years and 528 ± 40 years for ORD, AIG and PED, respectively.

Two cores per tree were mounted and sanded with sandpapers of progressively fine grain until tree rings were clearly visible to obtain growth data (Stokes & Smiley 1968). Then, the samples were visually cross-dated and measured to a precision of 0.01 mm using a LINTAB measuring device (Rinntech, Heidelberg, Germany). Cross-dating and ring width measurements were evaluated using COFECHA, which calculates cross correlations between individual series of each core and a master chronology, obtained averaging all measured series in each site (Holmes 1983).

Ring-width series were converted to basal area increment (BAI) assuming concentric circularity. BAI removes variation in growth attributable to increasing stem circumference and captures changes in growth better than linear measures such as tree-ring width (Biondi & Qeadan 2008). The annual BAI was calculated as follows:

\[
\text{BAI} = \pi (r_i^2 - r_{i-1}^2)
\] (1)
where \(r_t \) and \(r_{t-1} \) are the stem radii in the current \((t)\) and previous \((t-1)\) years. In the case of cores without pith, we estimated the length of the missing part of the radius by fitting a geometric pith locator to the innermost rings (Duncan 1989).

2.3. Wood density

The trees selected for density and isotope analyses corresponded to the oldest trees with the highest correlation with tree-ring width site chronology (see Table S2 in Supporting Information). Two cores (10-12-mm) from each selected tree were used for density measurements. These cores were glued onto wooden supports and thin wooden laths (1 mm) were cut out with a twin-bladed saw. Density was measured with an Itrax Wood Scanner from Cox Analytical Systems (http://www.coxsys.se) at the Dendrolab of the University of Stockholm (Sweden), where laths are scanned using a focused high-energy X-ray beam. The radiographic images were analysed with the software WinDendro (Regent Instruments, Canada), which performs a light calibration of the grey values using a calibration wedge (Grud 2008).

2.4. Wood carbon and oxygen isotopes: tree-ring selection and cellulose extraction

The best four cross-dating old trees per site were used in order to maximize the isotopic signal common to the sampled trees while keeping the workload of sample processing under reasonable limits. Whole non-sanded tree rings were separated manually from one core of each selected tree for the period 1850-2008, and pools of 10 rings corresponding to each decade were considered for the 1450s-1840s period in ORD and AIG sites. In PED, two years per decade (corresponding to the initial and the central year) were measured for the period of 1450-1890, and both years were averaged for each decade for statistical analyses. We analysed the entire tree rings because the narrow width of
the rings in these old trees did not provide sufficient material for analysing earlywood and latewood separately. We extracted cellulose from 2 mg of wood per individual sample. Cellulose extraction was performed to obtain purified α-cellulose based on a modification of the method of Leavitt & Danzer (1993) for the removal of extractives and lignin, as detailed in Ferrio & Voltas (2005).

2.5. Carbon and oxygen isotopes

For δ13C, dry α-cellulose was weighed (0.30–0.40 mg) into tin foil capsules and combusted using a Flash EA-1112 elemental analyser interfaced with a Finnigan MAT Delta C isotope ratio mass spectrometer (Thermo Fisher Scientific Inc.). For δ18O, 0.30–0.40 mg of dry α-cellulose was weighed into silver foil capsules and combusted using a Carlo Erba 1108 elemental analyser (Carlo Erba Instruments Ltd., Milan, Italy) interfaced with a Finnigan Deltaplus XP isotope ratio mass spectrometer (Thermo Fisher Scientific Inc.). Isotope ratios were expressed as per mil deviations using the δ notation relative to Vienna Pee Dee Belemnite (VPDB) standard (for carbon) and Vienna Standard Mean Ocean Water (VSMOW) standard (for oxygen):

\[\delta^{\text{X}} \text{‰} = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000 \]

where δX stands for the isotopic composition, in parts per mil (‰) of the heavier isotope, and \(R_{\text{sample}} \) and \(R_{\text{standard}} \) represent the \(^{13}\text{C}/^{12}\text{C} \) or \(^{18}\text{O}/^{16}\text{O} \) ratios of the sample and the VPDB or VSMOW international standards, respectively (Farquhar, Oleary & Berry 1982). The accuracy of the analyses (SD of working standards) was 0.06‰ (δ13C) and 0.25‰ (δ18O).

To account for changes in the δ13C of atmospheric CO\textsubscript{2} (δ13C\textsubscript{a}), we calculated carbon isotope discrimination in cellulose (Δ13C) from δ13C\textsubscript{a} and plant δ13C (δ13C\textsubscript{p}), as described by Farquhar & Richards (1984):
\[\Delta^{13}C = \frac{(\delta^{13}c_a - \delta^{13}c_p)}{(1+\delta^{13}c_p/1000)} \] \hspace{1cm} (3)

2.6. Intrinsic water-use efficiency

Following Farquhar et al. (1982) we estimated intrinsic water-use efficiency (iWUE) using the equation:

\[iWUE = \frac{A}{g_s} = c_a \left[1 - \left(\frac{c_i}{c_a} \right) \right] 0.625, \] \hspace{1cm} (4)

where \(A\) is the rate of net photosynthesis, \(g_s\) is stomatal conductance to \(H_2O\), \(c_i\) is intercellular \(CO_2\) concentration, \(c_a\) is the ambient air \(CO_2\) concentration, and 0.625 is the relative diffusivity of \(CO_2\) compared to that of water vapour due to the higher molecular weight of the former \((0.625 \ g_{H2O} = g_{CO2})\). To determine \(c_i\) we used the following equation proposed by Francey & Farquhar (1982):

\[c_i = \frac{((\Delta^{13}C - a) \times c_a)}{(b - a)}, \] \hspace{1cm} (5)

where \(\Delta^{13}C\) is the isotope discrimination (see eq. 3), \(a\) is the diffusion fractionation across the boundary layer and the stomata \((4.4\%)\), and \(b\) is the Rubisco enzymatic biologic fractionation \((27.0\%)\). The long-term \(c_a\) and atmospheric \(\delta^{13}C\) data from 1971 to 1994 were obtained from McCarroll & Loader (2004). Additional data for \(c_a\) and \(\delta^{13}c_a\) were taken from the Earth System Research Laboratory web site (http://www.esrl.noaa.gov/gmd/about/aboutgmd.htm; see Fig. S1 for \(c_a\)). Lastly, three theoretical scenarios for changes in iWUE as a function of changes in \(c_a\) and \(c_i\) (constant \(c_i\), constant \(c_i/c_a\) and constant \(c_a-c_i\)) were calculated following (Saurer et al. 2004).

2.7. Climate data

To estimate past annual temperature variability (Fig. S1) we used two climate reconstructions based on tree-ring density (Dorado Liñán et al. 2012); 1450-2008 period) and on historical temperature records (Agustí-Panareda et al. 2000; 1781-1997
period). These records were normalized and plotted as temperature anomalies (Fig. S1).

Recent (1950-2008 period) mean monthly temperature and total monthly precipitation were obtained for each site from the CRU TS3.1 gridded 0.5° resolution dataset product (Harris et al. 2014), and used for correlation analyses involving tree variables (BAI, MXD, MID, δ¹⁸O and iWUE).

2.8. Data analyses

Differences among sites and through time were conducted using analyses of covariance (ANCOVA) for each response tree variable (BAI, MXD, MID, δ¹⁸O and iWUE), with site as fixed factor and year as a covariate. The pre- (from 1700 to 1849, decadal values) and industrial periods (from 1850 to 2008, annual values) were analyzed separately. The covariance structure was modeled as first-order autoregressive (i.e., AR[1]) to account for correlated errors in the case of yearly data. Temporal trends were also estimated separately for each site and pairwise comparisons among the three sites were performed using Tukey HSD tests. For each tree variable we assessed significant differences between the two periods through Student t tests. Pearson correlation coefficients were computed to assess the relationships between tree and seasonal climatic variables. Moving correlations of 40 years lagged by one year were also computed among iWUE and δ¹⁸O to check for changes in the association between these two variables.

The predictive ability of the three iWUE scenarios was evaluated using the Root Mean Square Predictive Difference (RMSPD, Choury et al. 2017). The RMSPD is the root square of the sum of absolute differences between actual and predicted values divided by the number of observations. All statistical analyses were conducted using the R language version 3.1.1. (R Development Core Team, 2014).
3. Results

3.1. Long-term trends in growth and wood density

During the pre-industrial period we found slightly decreasing BAI trends over time, in contrast with the positive BAI trends found during the industrial period (Table 2, Fig. 2). However, we observed that such increases were highest at AIG followed by ORD, while BAI values at PED were sustained during this industrial period (Table 3). BAI and MXD clearly dropped during cold periods (Fig. S1), particularly in the early 18th (1700s) and 19th centuries (1810-1830) or during the 1970s (Figs. 2, 3). We observed overall declining MXD values but stable MID values in the pre-industrial period, although significant differences were found among sites (Table 2). Considering the industrial period, declining trends were found for MXD and MID, with the exception of MXD in PED (Tables 2, 3; Fig. 3).
Table 2. Significant differences across time, among sites (ORD, AIG, PED) and their interaction for each study trait and two different periods corresponding to pre- (1700-1849, decadal values) and industrial (1850-2008, annual values) periods. Variables’ abbreviations are: basal area increment (BAI); maximum wood density (MXD); minimum wood density (MID); oxygen isotopic composition (δ^{18}O) and intrinsic water use efficiency (iWUE). Site differences are also provided, where symbols “>” and “=” indicate a significant higher value and a non-significant difference between sites, respectively.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Pre-industrial period (1700-1849)</th>
<th>Industrial period (1850-2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>P value</td>
</tr>
<tr>
<td>BAI</td>
<td>Site</td>
<td>38.54</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>Site* Time</td>
<td>3.67</td>
</tr>
<tr>
<td>MXD</td>
<td>Site</td>
<td>403.73</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td>21.24</td>
</tr>
<tr>
<td></td>
<td>Site* Time</td>
<td>9.29</td>
</tr>
<tr>
<td>MID</td>
<td>Site</td>
<td>123.48</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Site* Time</td>
<td>5.48</td>
</tr>
<tr>
<td>δ^{18}O</td>
<td>Site</td>
<td>169.9</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Site* Time</td>
<td>2.2</td>
</tr>
<tr>
<td>iWUE</td>
<td>Site</td>
<td>104.4</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>Site* Time</td>
<td>1.13</td>
</tr>
</tbody>
</table>
Figure 2. Mean annual basal area increment for the period 1450-2008 of the selected old Mountain pine trees (colored lines) and mean of all individuals older than 400 years at each site (black lines) for the three study sites (a) ORD, b) AIG and c) PED). Colored and gray areas are the SEs of the mean of selected and all trees, respectively. The dotted vertical line indicates the beginning of the industrial period (1850-2008).
Figure 3. Mean annual maximum (MXD, a, c, e) and minimum (MID, b, d, f) wood density values for the 1450-2008 period considering the selected Mountain pine old trees (represented with colored lines) in relation with all measured individuals (black lines) at each of the three study sites: ORD (a, b), AIG (c, d) and PED (e, f). Colored and gray areas are the SEs of the mean of selected and all trees, respectively. The dotted vertical lines indicate the beginning of the industrial period (1850-2008).

3.2. Oxygen isotope composition and intrinsic water use efficiency

Stable δ^{18}O trends were found at all sites since 1700 till 1850 (Table 2), and different trends in the industrial period were found over time due to δ^{18}O increases at PED observed since the 1960s (Table 3, Fig. 4a). Interestingly, δ^{18}O showed positive correlations with spring and,
specially, summer temperatures only at PED (Fig. S2d in Supporting Information), and also negative correlations with precipitation during the same seasons, indicating that increased $\delta^{18}O$ was related to warmer and drier conditions during the growing season only at the driest site.

Figure 4. Long-term changes of oxygen isotope ratios (a, $\delta^{18}O$) and intrinsic water use efficiency (b, iWUE) for the 1450-2008 period considering old Mountain pine trees from ORD, AIG and PED study sites. Decadal means are provided for the 1450-1849 period (1450-1889 for PED) and annual values are shown for the industrial period (1850-2008; 1890-2006 for PED). In panel b) the three simulated scenarios according to the different theoretical regulation of plant gas exchange that can occur at increasing atmospheric CO$_2$ concentrations (c_a) are shown: a constant intercellular CO$_2$ mole fraction (c_i), a constant c_i/c_a and a constant c_a-c_i. These theoretical
scenarios were compared with iWUE values taken from tree ring δ^{13}C in trees of the three study sites (ORD, AIG and PED). The dotted vertical line indicates the beginning of the industrial period (1850-2008).

Figure 5. Relationship between oxygen isotope ratios (δ^{18}O) and intrinsic water use efficiency (iWUE) among sites for the two different periods: pre-industrial (1700-1849, dashed line, lighter colors) and industrial period (1850-2008, continuous lines, darker colors). The three sites within each period are connected and the significant differences among variables are provided in Table 3 (pre-industrial vs. industrial periods) and in Table 2 (site differences). Rain δ^{18}O for each site (see also Table 1) is represented in the x-axis on top by different symbols representing each site (square, ORD; circle, AIG and triangle, PED).

iWUE slightly increased during the pre-industrial period (Table 2), but such increases were more pronounced in the industrial period, especially at AIG and PED (Fig. 4b). Overall, changes in iWUE were consistent with a constant c_i/c_a scenario (AIG: RMSPD at constant $c_i = 14.22$; constant $c_i/c_a = 2.97$, constant $c_a-c_i = 10.02$; PED: RMSPD at constant $c_i = 13.63$; constant $c_i/c_a = 3.49$, constant $c_a-c_i = 12.85$), with the exception of ORD, which behaved closer to a constant c_a-c_i scenario (RMSPD at constant $c_i = 39.23$; constant $c_i/c_a = 28.47$, constant $c_a-c_i = 21.06$). At the latter site, however, an increasing trend in iWUE emerged from 1980 onwards (Fig. 4b).
Table 3. Mean and standard error (SE) of the study variables for trees at ORD, AIG and PED sites before and after the industrialization: pre-industrial (1700-1849, decadal values) and industrial (1850-2008, annual values) periods. Positive and negative trends at $P < 0.05$ are indicated by (+) and (-), respectively and non-significant trends by (ns). The last two columns show t-test resulting from the comparison between the industrial and pre-industrial periods, with positive t values indicating higher values for the industrial than for the pre-industrial period, and negative t values indicating lower values for the industrial than for the pre-industrial period.

<table>
<thead>
<tr>
<th>Site</th>
<th>Variable</th>
<th>Pre-industrial period (1700-1849)</th>
<th>Industrial period (1850-2008)</th>
<th>t test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SE</td>
<td>Trend</td>
<td>Mean</td>
<td>SE</td>
</tr>
<tr>
<td>ORD</td>
<td>BAI</td>
<td>4.29</td>
<td>0.15</td>
<td>-</td>
<td>4.43</td>
</tr>
<tr>
<td></td>
<td>MXD</td>
<td>575.05</td>
<td>5.84</td>
<td>-</td>
<td>552.44</td>
</tr>
<tr>
<td></td>
<td>MID</td>
<td>349.17</td>
<td>3.84</td>
<td>ns</td>
<td>305.42</td>
</tr>
<tr>
<td></td>
<td>$\delta^{18}O$</td>
<td>30.20</td>
<td>0.07</td>
<td>ns</td>
<td>30.56</td>
</tr>
<tr>
<td></td>
<td>iWUE</td>
<td>79.18</td>
<td>0.43</td>
<td>+</td>
<td>83.69</td>
</tr>
<tr>
<td>AIG</td>
<td>BAI</td>
<td>3.32</td>
<td>0.17</td>
<td>ns</td>
<td>4.21</td>
</tr>
<tr>
<td></td>
<td>MXD</td>
<td>554.47</td>
<td>3.94</td>
<td>ns</td>
<td>537.59</td>
</tr>
<tr>
<td></td>
<td>MID</td>
<td>415.28</td>
<td>3.77</td>
<td>-</td>
<td>377.11</td>
</tr>
<tr>
<td></td>
<td>$\delta^{18}O$</td>
<td>32.38</td>
<td>0.12</td>
<td>ns</td>
<td>32.59</td>
</tr>
<tr>
<td></td>
<td>iWUE</td>
<td>86.95</td>
<td>0.42</td>
<td>ns</td>
<td>93.42</td>
</tr>
<tr>
<td>PED</td>
<td>BAI</td>
<td>5.27</td>
<td>0.21</td>
<td>ns</td>
<td>6.18</td>
</tr>
<tr>
<td></td>
<td>MXD</td>
<td>740.32</td>
<td>9.75</td>
<td>-</td>
<td>723.19</td>
</tr>
<tr>
<td></td>
<td>MID</td>
<td>365.8</td>
<td>2.28</td>
<td>ns</td>
<td>351.7</td>
</tr>
<tr>
<td></td>
<td>$\delta^{18}O$</td>
<td>30.16</td>
<td>0.09</td>
<td>ns</td>
<td>30.49</td>
</tr>
<tr>
<td></td>
<td>iWUE</td>
<td>87.54</td>
<td>0.67</td>
<td>ns</td>
<td>96.19</td>
</tr>
</tbody>
</table>

Variables’ abbreviations are: basal area increment (BAI, cm2 yr$^{-1}$); maximum wood density (MXD, Kg m$^{-3}$); minimum wood density (MID, Kg m$^{-3}$); oxygen composition ($\delta^{18}O$, ‰) and intrinsic water use efficiency (iWUE, µmol mol$^{-1}$).
3.3. Differences among sites

Highly positive correlations among old trees were found at the site level for BAI ($r = 0.62 - 0.96$) and wood density (MXD and MID, $r = 0.58 - 0.94$) (see Table S2 in Supporting Information). Therefore, we assumed that the selected aged trees adequately represent the study populations in these old forests (Figs. 2, 3). For the whole study period the highest BAI and MXD values were observed at PED and the lowest values at AIG (Table 2, Figs. 2, 3). Old trees at ORD exhibited similar BAI to those from AIG in the industrial period (i.e. 1850-2008). The highest MID was found at AIG, followed by PED and ORD (Table 2, Fig. 3). The wood δ¹⁸O was higher at AIG than at PED and ORD, which showed similar values (Table 2, Figs. 4a, 5).

During the pre-industrial period (1700-1849) PED and AIG trees showed similar iWUE, being higher than ORD trees. During the industrial period PED trees showed the highest iWUE (96.19 ± 0.74 µmol mol⁻¹), followed by AIG (93.42 ± 0.55 µmol mol⁻¹) and ORD trees (83.69 ± 0.29 µmol mol⁻¹), which also displayed the lowest iWUE during the whole study period (Tables 2, 3; Figs. 4b, 5).

3.4. Relationships between variables

During the pre-industrial period the study variables were almost always uncorrelated (Table 4). Two exceptions were found: a negative correlation between BAI and iWUE at ORD, which is overall the result of a slight increase in iWUE coupled with decreased BAI; and a negative correlation between BAI and MID at AIG, which was also significant during the industrial period (Table 4). In this period (1850-2008) we found that BAI and MID were positively correlated with MXD at all sites (Table 4). MXD and δ¹⁸O were also positively correlated, being this relationship stronger at PED. Instead, BAI and iWUE were not positively related, contrary to
expectations (Fig. 1). Interestingly, a positive correlation between δ¹⁸O and iWUE was found only at PED. Through moving correlation analysis (Fig. 6) we found that this positive relationship emerged at this warmest and driest site in the 1960s, thus pointing to stomatal closure driving the observed changes in iWUE.

Table 4. Pearson correlation coefficients among the mean study variables from selected trees at the study sites (ORD, AIG and PED) for two periods: pre-industrial (1700-1849, decadal values) and industrial (1850-2008, annual values) periods. In bold are the significant correlations at the 95% level and grey filling represents significant correlations at 99%.

<table>
<thead>
<tr>
<th>Site</th>
<th>Variable</th>
<th>Pre-industrial period (1700-1849)</th>
<th>Industrial period (1850-2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BAI</td>
<td>MID</td>
</tr>
<tr>
<td>ORD</td>
<td>MID</td>
<td>-0.39</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>MXD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>δ¹⁸O</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>iWUE</td>
<td>-0.76</td>
<td>0.32</td>
</tr>
<tr>
<td>AIG</td>
<td>MID</td>
<td>-0.81</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>MXD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>δ¹⁸O</td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>iWUE</td>
<td></td>
<td>0.08</td>
</tr>
</tbody>
</table>
4. Discussion

This study assessed long-term productivity and physiological performance of old Mountain pines inhabiting high-elevation forests subjected to cold temperatures. Such assessment was carried out over five centuries through the combined analyses of oxygen isotope ratios ($\delta^{18}O$) and $\Delta^{13}C$-based intrinsic water use efficiency (iWUE), together with growth and wood density as productivity indicators. Overall, our results show that old trees continued to accumulate carbon as wood during the industrial period in spite of being older than 400 years, although probably at
lower rates given the slight decreases in wood density observed over this period. Even if some periods exhibited declining growth, the overall positive BAI trends from 1850 to 2008 do not support those studies considering old forests as carbon neutral (Yoder et al. 1994); rather the opposite, we conclude that old trees remain active carbon sinks (Carey et al. 2001; Luyssaert et al. 2008; Stephenson et al. 2014). Increased growth of high-elevation conifer forests has been observed also in other mountain ranges and attributed to increased temperatures and an extended growing season enhancing net photosynthesis in these cold-limited ecosystems (Rolland et al. 1998; Salzer et al. 2009; Corona et al. 2015).

Despite the outlined long-term growth increase some exceptions were found, most of them punctual decreases coinciding with cold periods. Growth reductions may be determined by changes in air temperatures directly driving tissue formation (e.g. cell division and expansion), processes that have been shown to be more sensitive to low temperatures than photosynthesis (Körner 2003; Rossi et al. 2008; Körner 2012). In agreement, during the same cold periods (e.g., 1810s-1830s and 1970s) wood density also dropped. Reductions in MXD, whose variability is related to processes involved in biomass accumulation during the late growing season such as cell-wall thickening and lignification, could also be due to declines in carbon supply and partitioning (Thomas et al. 2007) if low temperatures result in photoinhibition (Adams III et al. 1994; Murata et al. 2007).

Xylem anatomical traits, and thus wood density, are related to carbon fixation but also to water exchange (Hacke et al. 2001). Specifically, while MXD provides more information about the carbon allocation to tracheid cell walls during the late growing season, the minimum wood density (MID) is more informative of the hydraulic conditions during the early growing season when radial-growth rates peak (Camarero et al. 2014). Our results point to a generalized
declining trend in wood density, at least from 1450 to 1700, which could reflect ontogenetic effects related e.g. to the transition from more dense heartwood to less dense sapwood (Chave et al. 2009) and the formation of younger tracheids with wider lumen areas from the pith towards the bark (Anfodillo et al. 2013; Carrer et al. 2015). Positive correlations between growth and MXD and between MXD and MID were mainly found after 1850. This suggests a consistent effect of temperature, as shown by positive correlations with these wood traits (Fig. S2). MXD in high-elevation conifer forests and in other cold habitats (e.g. boreal forests) has been shown to be highly sensitive to temperatures during the late growing season (e.g., Büntgen et al. 2008), integrating influences from meteorological conditions over much of the growing season by assimilates deposition in cell walls. The positive relationships between MXD and δ\(^{18}\)O could also reflect a common controlling factor such as temperature rather than a causal relationship. Interestingly, higher growth coupled with lower MID was especially found in AIG, the site with the highest MID values. We hypothesize that the AIG old trees bearing the lowest conduit area are the most potentially benefitted by climate warming through growth enhancement, the production of wider tracheid lumens and an improved hydraulic conductivity (Hacke et al. 2001; Ziaco et al. 2014). Non-significant correlations were found between iWUE and density traits, which points to a general independence of tracheid lumen area and carbon allocation to cell walls from iWUE, except at PED. Olano et al. (2014) also found a lack of correlation between conductive traits and iWUE in Juniperus thurifera but they reported negative relationships between iWUE and cell-wall thickness. Instead, our results point to higher wall thickness with greater iWUE at PED, likely due to higher C allocation to cell walls (Babst et al. 2014b).

A lack of significant positive relationships between radial growth and iWUE was found during the industrial period. As a consequence, the substantial enhancement in iWUE since 1850
caused by c_a increase is unlikely responsible for the generalized growth enhancement (Andreu-Hayles et al. 2011). Non-significant or negative relationships between iWUE and growth are commonly explained as a predominant influence of stressors (e.g. increasing drought stress leading to stomatal closure) whose effects override any potential c_a fertilization on tree growth (Peñuelas et al. 2011; Silva et al. 2013; Levesque et al. 2014; Liu et al. 2014; Camarero et al. 2015c). However, our results derived from $\delta^{18}O$ records did not report general reductions in g_s, which will be the primary response to drought, likely due to the wet and cold conditions of these high-elevation forests. The exception was found in PED since 1960, when simultaneous increases in $\delta^{18}O$ and iWUE indicate stomatal closure likely due to an emerging climate stress related to increased atmospheric drought (Barbour et al. 2000; Grams et al. 2007). Andreu-Hayles et al. (2011) found similar results and suggested that a decrease of g_s should explain this pattern, now confirmed in the case of PED by the $\delta^{18}O$ trends. Such alteration in the performance of old trees was not observed in the other two sites, which is likely explained by the drier conditions found in PED due to increased temperatures despite the general wet nature of these high-elevation forests. In fact, the decreased g_s related to higher temperatures and lower precipitation during the growing season was only found in the PED forest (Fig. S2) supporting this climate effect, which is well captured by O and C isotopes (Planells et al. 2005). As a consequence, our results point to an isohydric behaviour (i.e. strict stomatal control to reduce transpiration) under decreasing relative humidity since 1960 and, thus, to stomatal limitation of photosynthesis in old pines from this high-elevation forest (Flexas & Medrano 2002). Importantly, this emerging drought stress has been inferred for other Mountain pine forests based on climate-growth associations, which indicates that climate warming could alter the future growth and functioning of high-elevation cold-limited forests (Galván et al. 2015).
In the case of AIG and ORD sites, the iWUE improvement during the industrial period may be caused by an increase in A given that $\delta^{18}O$-derived g_s was maintained rather stable from the 1850s onwards (Scheidegger et al. 2000). Similarly, Fernández-Martínez & Fleck (2016) found increased photosynthetic rates and iWUE for Mountain pine without changes in g_s under elevated c_a. Thus, sufficient water availability, higher c_a and warm temperatures may enhance A and lead to increased C inputs in these high-elevation forests (Streit et al. 2014). However, the growth-iWUE uncoupling indicates that the photo-assimilates were likely allocated to other aboveground or belowground organs or even stored as non-structural carbohydrates (Palacio et al. 2014). Another possible explanation could be a higher carbon loss resulting from higher respiration rates with increasing temperatures during the industrial period (see also Nock et al. 2010). Thus, the increasing growth during the industrial period would be a consequence of greater meristem activity or an extended wood phenology under warmer temperatures (Körner 2015; Delpierre et al. 2016) rather than the result of enhanced photosynthetic rates.

The differences observed in Mountain pine tree performance among sites highlight that local conditions are relevant to understand the responses of old trees to the changing climate and the rise in c_a. For instance, trees from the warmest and driest site (PED), bearing the highest growth and maximum wood density (MXD) seemed the most stressed during the last decades according to the inferred changes in g_s. Interestingly, although PED and ORD trees had similar wood $\delta^{18}O$ values suggesting a comparable g_s, a lower iWUE was found in ORD. Rain $\delta^{18}O$ estimated using monthly precipitation and temperature data (Ferrio & Voltas 2005) indicated higher site values in ORD than in PED (Table 1, Fig. 4), which denotes that such similar wood $\delta^{18}O$ records observed among study sites were likely the outcome of a higher stomatal control of water losses in PED. Trees from AIG had lower g_s (inferred from higher $\delta^{18}O$ despite the
intermediate values of rain δ^{18}O) in relation with the other two forests, which could be due to its
higher altitude, as shown by Keitel et al. (2006), or related to enhanced humidity due to its
location close to the more humid north-facing French Pyrenees.

Lastly, we are aware of possible biases in the interpretation of carbon and oxygen
isotopic signatures. For instance, multiple C sources are integrated in tree-ring δ^{13}C, from leaf
photoassimilates to stored C pools (Seibt et al. 2008). Furthermore, the use of different source
waters along the growing season could be influencing wood δ^{18}O (Roden & Siegwolf 2012). We
further acknowledge that other local factors such as the contrasting nutrient availability in the
soil (basic soils in ORD and PED vs. acid ones in AIG) could also be responsible for contrasting
tree responses at site level given that Mountain pine photosynthesis can be constrained in sites
with poor soils and low N concentration (Fernández-Martínez & Fleck 2016). Therefore, growth
fertilization could also be expected if N loads increase in the future, albeit current N deposition
rates are relatively low in these areas (Badeau et al. 1996; but see Boutin et al. 2015). A higher
sample replication and the use of mechanistic approaches based on multiple isotope
measurements in old trees will be further needed to test our findings and to evaluate the
applicability of our interpretations.

To conclude, we have shown that old Mountain pine trees continue accumulating carbon
as woody biomass. Warmer temperatures in these cold-limited ecosystems are enhancing or
sustaining growth of aged trees in the study high-elevation old forests. It is plausible that climate
warming in these cold environments is enhancing growth thanks to a greater meristem activity
during a longer growing season. Positive correlations between growth and maximum wood
density suggest a consistent effect of temperature on both traits. During the industrial period the
uncoupling between growth and rising iWUE was not due to a reduced stomatal conductance,
and it could be explained because increased photosynthetic rates did not translate into greater
growth but into carbon allocation to other organs. In the driest site instead, a strong stomatal
control to reduce transpiration under decreasing relative humidity was found in recent decades,
which suggests that drought stress could be emerging in some of these high-elevation forests if
they are subjected to progressively warm and dry conditions.

5. Acknowledgements

We are very grateful to several projects financed by “Organismo Autónomo de Parques
Nacionales” (projects 12/2008 387/2011). E.G. was funded by a Juan de la Cierva post-doctoral
research contract (FJCI-2014-19615, MEC, Spain). Spanish (AMB95-0160, CGL2011-26654)
and EU projects ISONET (contract EV K2-2001-00237) and MILLENNIUM (017008–2) also
supported this study by contributing additional datasets.
6. References

Saurer, M., Borella, S. & Leuenberger, M. (1997) δ^{18}O of tree rings of beech (Fagus silvatica) as a record of d18O of the growing season precipitation. Tellus B, 49, 80-92.

Stephenson, N.L., Das, A.J., Condit, R., Russo, S.E., Baker, P.J., Beckman, N.G., Coomes, D.A.,
Lines, E.R., Morris, W.K., Ruger, N., Alvarez, E., Blundo, C., Bunyavejchewin, S.,
Chuyong, G., Davies, S.J., Duque, A., Ewango, C.N., Flores, O., Franklin, J.F., Grau,
H.R., Hao, Z., Harmon, M.E., Hubbell, S.P., Kenfack, D., Lin, Y., Makana, J.R., Malizia,
A., Malizia, L.R., Pabst, R.J., Pongpattananurak, N., Su, S.H., Sun, I.F., Tan, S., Thomas,

Stokes, M.A. & Smiley, T.L. (1968) An Introduction to Tree Ring Dating. University Chicago
Press, Chicago, IL, USA.

photosynthetic or stomatal regulation after 9 years of elevated CO$_2$ and 4 years of soil
warming in two conifer species at the alpine treeline. Plant, Cell and Environment, 37,
315-326.

growth in the Central Pyrenees: Climatic and site influences. Ecological Monographs, 73,
241-257.

Thomas, D.S., Montagu, K.D. & Conroy, J.P. (2007) Temperature effects on wood anatomy,
wood density, photosynthesis and biomass partitioning of Eucalyptus grandis seedlings.
Tree Physiology, 27, 251-260.

Treydte, K., Boda, S., Graf Pannatier, E., Fonti, P., Frank, D., Ullrich, B., Saurer, M., Siegwolf,
R., Battipaglia, G., Werner, W. & Gessler, A. (2014) Seasonal transfer of oxygen
isotopes from precipitation and soil to the tree ring: source water versus needle water
enrichment. New Phytologist, 202, 772-783.

Enhancement Declines with Age in Quercus and Pinus. Ecological Monographs, 76,
549-564.

trees from different functional groups and biomes: a review and synthesis of data. Tree
Physiology, 30, 669-688.

amount of respiration in woody organs of trees and forest communities. Journal of
Biology of Osaka City University, 16, 15–26.

reduced photosynthetic rates in old trees. Forest Science, 40, 513-527.

and tree-ring features of Great Basin conifers at a new mountain observatory.
Applications in Plant Science, 2, apps.1400054.
Fig. S1 Reconstructed temperature anomalies (with respect to the 1960-1990 mean) in the Spanish Pyrenees and estimated trends in atmospheric CO$_2$ concentrations (yellow area, right y axis). Temperature anomalies are based on Dorado-Liñan et al 2012 (blue dots) and Agusti-Pannareda and Thompson 2002 (green triangles) reconstructions. The dashed vertical line indicates the beginning of the industrial period.
Fig. S2 Correlation coefficients calculated between basal-area increment (BAI), maximum (MXD) and minimum (MID) wood densities, oxygen isotope ratios ($\delta^{18}O$) and intrinsic water-use efficiency (iWUE) with seasonal climate variables for the 1950-2008 period at the three study sites (Ordesa, Aigüestortes and Pedraforca). Horizontal dotted lines indicate significance levels ($P = 0.05$). Climatic variables’ abbreviations are: T, temperature and P, precipitation. Variables of the year prior to tree-ring formation are indicated with $t-1$ and separated with a vertical dotted line. Seasons are abbreviated as: aut, autumn (SON); win, winter (DJF); spr, spring (MAM); sum, summer (JJA).
Table S1 Summary of the characteristics of old trees selected at each site.

<table>
<thead>
<tr>
<th>Site</th>
<th>Tree</th>
<th>DBH (cm)</th>
<th>Height (m)</th>
<th>Altitude (m a.s.l.)</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordesa (ORD)</td>
<td>SC03</td>
<td>56.2</td>
<td>9.5</td>
<td>2081</td>
<td>637</td>
</tr>
<tr>
<td></td>
<td>SC07</td>
<td>103.6</td>
<td>8</td>
<td>2110</td>
<td>654</td>
</tr>
<tr>
<td></td>
<td>SC09</td>
<td>55.0</td>
<td>9.5</td>
<td>2247</td>
<td>659</td>
</tr>
<tr>
<td></td>
<td>SC11</td>
<td>51.0</td>
<td>10.5</td>
<td>2042</td>
<td>412</td>
</tr>
<tr>
<td>Aigüestortes (AIG)</td>
<td>NE21</td>
<td>77.0</td>
<td>7</td>
<td>2355</td>
<td>731</td>
</tr>
<tr>
<td></td>
<td>GE11</td>
<td>42.8</td>
<td>9</td>
<td>2268</td>
<td>603</td>
</tr>
<tr>
<td></td>
<td>GE16</td>
<td>64.5</td>
<td>7.5</td>
<td>2275</td>
<td>635</td>
</tr>
<tr>
<td></td>
<td>GE25</td>
<td>52.0</td>
<td>6</td>
<td>2273</td>
<td>633</td>
</tr>
<tr>
<td>Pedraforca (PED)</td>
<td>UP03</td>
<td>61.5</td>
<td>7.9</td>
<td>2196</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>UP04</td>
<td>64.3</td>
<td>6.5</td>
<td>2200</td>
<td>644</td>
</tr>
<tr>
<td></td>
<td>UP05</td>
<td>58.3</td>
<td>7.5</td>
<td>2229</td>
<td>516</td>
</tr>
<tr>
<td></td>
<td>UP09</td>
<td>50.6</td>
<td>10.8</td>
<td>2196</td>
<td>500</td>
</tr>
</tbody>
</table>

Table S2 Correlations calculated for all trees and the selected trees for each variable considering the whole study period. Variables’ abbreviations are: BAI, basal area increment; MXD, maximum wood density; MID; minimum wood density. Asterisks denote significant correlations (P < 0.0001). Sites are abbreviated as in Table S1.

<table>
<thead>
<tr>
<th>Site</th>
<th>BAI selected vs all</th>
<th>MXD selected vs all</th>
<th>MID selected vs all</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORD</td>
<td>0.62*</td>
<td>0.82*</td>
<td>0.93*</td>
</tr>
<tr>
<td>AIG</td>
<td>0.77*</td>
<td>0.94*</td>
<td>0.86*</td>
</tr>
<tr>
<td>PED</td>
<td>0.96*</td>
<td>0.83*</td>
<td>0.58*</td>
</tr>
</tbody>
</table>