Effect of polymer coating composition on the aggregation rates of Ag nanoparticles in NaCl solutions and seawaters

Pablo Lodeiroa,\textasteriskcentered, Eric P. Achterberga,\textasteriskcentered, Carlos Rey-Castroc and Mohammad S. El-Shahawid,\textasteriskcentered

aOcean and Earth Science, University of Southampton, National Oceanography Centre, European Way, SO14 3ZH Southampton, UK.

bGEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany

cDepartament de Química, Universitat de Lleida and AGROTECNIO, Rovira i Virgili University, Rovira Roura 191, 25198, Lleida, Spain

dDepartment of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia (on sabbatical leave)

1On sabbatical leave from the Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt.

*Corresponding Author: plodeiro@geomar.de
Abstract

The aggregation behaviour of polymer-coated silver nanoparticles (AgNPs) was characterized in NaCl solutions, and in two seawaters of different salinities and dissolved organic matter (DOM) contents. Representative organic coatings i.e. tannic acid (TA), alginic acid (ALG), two gum Arabic samples (GAL and GAH), branched polyethylenimine (BPEI), and non-ionic surfactants (reference material NM-300K) were selected to cover a wide range of zeta-potentials. The stability in NaCl solutions, as determined from the rate of variation in hydrodynamic size within a timeframe of one hour, followed the order BPEI >> NM-300K ≈ GAL >> ALG ≈ TA >> GAH. In the seawater samples the order was NM-300K ≈ GAL >> ALG > GAH > TA ≈ BPEI, and only TA, GAL and NM-300K batches behaved as expected from the NaCl experiments. Remarkably, the BPEI sample showed the largest aggregation rate in the seawater sample with the highest DOM concentration (277 μM C). The GAH sample displayed a non-monotonic variation in aggregation rate with NaCl concentration, apparently due to concomitant precipitation of AgCl. The results indicate that non-electrostatic stabilization mechanisms and DOM-coating interactions are important for the prediction of stability and persistence of polymer-coated AgNPs in seawater.

Keywords: Silver nanoparticles; aggregation; seawater; organic coatings; NaCl media.
1. Introduction

Silver nanoparticles (AgNPs) have been extensively studied because of their widespread use in consumer products (McGillicuddy et al., 2017). However, the impact of AgNPs on the natural environment is not yet fully understood. There are still uncertainties with respect to the behaviour of specific nanoparticles (NPs) upon discharge into natural waters (Bour et al., 2015; Pokhrel et al., 2014; Sharma, 2013). Aggregation studies are therefore critical to enhance our mechanistic and quantitative process understanding and will allow us to model the behaviour and fate of NPs in the environment, including quantification of their risks (Afshinnia et al., 2017; Chekli et al., 2015; Lodeiro et al., 2016). Mechanistic mathematical models have been developed in recent years for the assessment of projected environmental NP concentrations, mostly based on conceptual variations of the population balance equation. These models include homo- and heteroaggregation rate expressions (based on the Smoluchowski equation) with variable attachment efficiencies, gravitational settling rates coupled or not to fractal models of the aggregate structure and possible breakage of agglomerates (Arvidsson et al., 2011; Dale et al., 2017; Gregory, 2005; Quik et al., 2014; Scheringer et al., 2014). Although there is still a large uncertainty in many of the required physicochemical input parameters, several simulation scenarios have highlighted the importance of heteroaggregation rates with natural particulate matter (Praetorius et al., 2012). Furthermore, in absence of natural colloids, the scenarios have indicated the predominance of the perikinetic aggregation mechanism (Handy et al., 2008) (caused by Brownian motion) and the extreme sensitivity to collision efficiencies (Arvidsson et al., 2011). The values
of the effective aggregation rates and fractal structure parameters could, in
principle, be obtained in the laboratory from aggregation experiments
performed in synthetic solutions, as explained below. Several important
contributions have been recently presented on the effect of natural dissolved
organic matter (DOM) on the stability behaviour of NPs in samples
representative of environmental conditions (Afshinnia et al., 2018; Baalousha
et al., 2013a; Ellis et al., 2016) However, the specific role of the organic
coating composition in the interactions of NPs with DOM still remains largely
unknown.

The use of appropriate coatings is required to preserve the physical and
chemical stability of NPs. Polymer-coated AgNPs constitute a representative
element of extensively used NPs in commercial products (e.g. food
packaging, cosmetics, clothing, etc.) (Chernousova and Epple, 2013; Nowack
et al., 2011). The investigation of reference nanomaterials, e.g. NM-300K
AgNPs, is also relevant due to their use in hazard identification
measurements, testing studies, and safety evaluation of NPs (Tantra et al.,
2016). Thus, we studied here a characteristic range of manufactured NPs
(both commercial and laboratory samples) that constitute an important target
group for aggregation kinetic studies.

Characterization of the aggregation behaviour of engineered nanoparticles in
synthetic electrolyte solutions is a typical physicochemical endpoint in the
assessment of their fate and behaviour in natural waters. This approach is
hindered by the representativeness of synthetic solution compositions with
respect to real samples, as well as the complexity of interactions between NP
coatings and constituents of the aqueous matrix. Chloride ions are present in
most natural waters and at high concentrations in seawaters (0.56 M at salinity 35). Thus, we used NaCl as a key reactive electrolyte to study AgNP aggregation. The results were compared to those obtained in seawaters to assess whether these simple solutions are representative of natural waters in terms of AgNP aggregation behaviour. Here we study the aggregation kinetics of five different polymer-coated AgNPs by dynamic light scattering (DLS) at increasing NaCl concentrations. The DLS technique allows the calculation of the z-average hydrodynamic diameter (d) and polydispersity index (Pdi) of the NPs, based on measurements of light scattered by NPs in solution (Brar and Verma, 2011). Accordingly, the size increase of AgNPs in aqueous media can be monitored over time using DLS (Baalousha et al., 2013b; Metreveli et al., 2016). In addition, we used two natural seawaters with different salinities and organic matter contents to investigate AgNPs behaviour in marine waters by DLS. We found significant differences in the aggregation behaviour of the AgNPs between NaCl and the seawater solutions, reflecting the additional complexities in natural waters. Unfortunately, the estimated low environmental NP concentrations (ppt range) (Massarsky et al., 2014) cannot be measured using DLS. Therefore, the limits of extrapolation of the obtained results (ppm range concentrations) to dilute systems must be considered cautiously. Alternative simple methods, such as UV-visible spectrophotometry using long path cells, allow a considerable reduction in the detection limit of NPs in seawaters (Lodeiro et al., 2017), although this method is likely more sensitive to Ag oxidation than DLS.
The aggregation kinetic studies in the present work were focused on the onset of aggregation when only small aggregates (<250 nm) are formed. Precipitation or sedimentation phenomena were not taken into account, and only Brownian aggregation was considered as a NP destabilization mechanism. The expected lifetime of AgNPs dispersions in the upper surface layers, right after their discharge into seawater, is assumed to depend on the role of the organic coatings on the short-term aggregation behaviour of the NPs. We are aware of the important limits of this approach regarding long-term behaviour and fate of AgNP aggregates. Nevertheless, the limitations of the DLS technique and the difficulties of simulating environmentally realistic hydrodynamic conditions in the lab (only Brownian aggregates are relevant in the quiescent conditions of DLS cuvettes) hinder the study of relatively large aggregates, which are also subjected to a vertical component of movement due to the combination of drag, buoyancy and gravitational forces. Settling of particles will therefore be relevant for longer times than those studied here and for subsurface water layers.

In summary, the main goals of this study are: First, to characterize the aggregation kinetics of AgNPs with six different organic coatings covering a wide range of molecular weights and electrostatic properties (neutral, positively and negatively charged) as a function of NaCl concentration. For this purpose, the z-averaged collision efficiencies, critical coagulation concentrations, and aggregation rate constants were derived from time-resolved DLS experiments. Second, to test the aggregation behaviour of the same NP batches in natural seawater samples of different salinities and DOM contents; and, finally, to compare the stability in seawater with that in NaCl
solutions of similar ionic strength. This will permit evaluation of the representativeness of NaCl as a model background electrolyte for the prediction of fate and behaviour in seawaters, and to obtain qualitative conclusions on the role of the coating composition and the presence of natural DOM.

2. Material and methods

2.1 Materials

The chemicals used throughout the experiments were purchased from Sigma-Aldrich (Dorset, UK) and Fisher Scientific (Leicestershire, UK). High-purity water (Millipore, Watford, UK) with a resistivity of 18.2 MΩ cm\(^{-1}\) was used. The natural surface seawater samples were collected in a Baltic fjord located in northwest Germany (54°22.1' N 10°11.7' E) and A Coruña Bay (43°21.8' N 8°23.4' W) in northwest Spain. The samples were filtered through a 0.45 μm pore size polycarbonate membrane filter (Whatman Int. Ltd) and stored in acid cleaned low-density polyethylene bottles (Nalgene) before use. The composition of the seawater samples is presented in Table S2.

AgNPs coated with alginate (ALG) and gum Arabic (GAH and GAL, where L denotes low Ag\(^+\) and H high Ag\(^+\) residual content after dialysis purification) were synthesized by chemical reduction of silver nitrate (see (Lodeiro et al., 2016) for details). In addition, the silver reference nanomaterial NM-300K (obtained from Fraunhofer Institute for Molecular Biology and Applied Ecology, Germany), AgNPs coated with tannic acid (TA) and branched Polyethylenimine (BPEI) (BioPure, nanoComposix Inc) were also studied. NM-300K consists of colloidal spherical AgNPs. The stabilizing capping agent
for NM-300K NPs is an aqueous mixture of non-ionic surfactants comprising 4% (w/w) polyoxyethylene glycerol trioleate and 4% (w/w) polyoxyethylene sorbitan monolaurate (Tween-20) (Klein et al., 2011).

2.2 Dynamic light scattering measurements

The z-average hydrodynamic diameter and zeta-potential values were measured using a Zetasizer (Nano-ZS, Malvern instruments Ltd) with a He-Ne laser (633 nm). The scattered light from the DLS measurements was collected and detected at an angle of 173º. The analysis of the obtained autocorrelation function using Malvern software (cumulants method) provided the intensity-weighted particle size distributions, measured as the z-average hydrodynamic diameter (d). An indication of the width of the size distribution was also acquired using the polydispersity index (Pdi) from the DLS data. The viscosity and refractive index values used in the Malvern software are shown in Table S3. Moreover, electrophoretic mobility measurements were transformed to zeta-potentials using Henry’s equation under the Smoluchowski’s approximation using the software provided by the Malvern instrument (Ohshima, 2006). At least two replicates for each experiment were measured. In the first replicate the attenuation factor and laser position were set to automatic on the equipment, while for the second one and successive replicates, the manual option using the previously obtained optimal parameters was selected. In this way, more data at the on-set of the aggregation process could be obtained (at least 15-20 s are needed to obtain a value for d). The raw d versus t curves used for the CCC calculations (Figure 1) were fitted to a polynomial spline function. A new set of values was
interpolated at a fixed time step of 5 seconds, while the kinetic aggregation
constants were calculated using the raw data obtained from the experiments.
The pH of AgNP solutions was adjusted to pH 8.0 ± 0.2 by addition of
appropriate quantities of NaOH and measured using a ThermoScientific pH
meter Orionstar A111 (calibrated using buffer solutions of pH 4.01 and 7.00).
AgNP concentrations (total Ag) of 4.5 mg/L (GAH) and 9.7-10.0 mg/L,
dispersed in different NaCl concentrations (from 0 to 2000 mM) and two
seawaters were analysed in terms of d evolution over time. Appropriate
quantities of concentrated AgNP solution were added to a DLS cuvette
containing the solution under investigation (NaCl or seawater), mixed and
immediately introduced in the instrument. The relatively high concentrations
(4.5 and 9.7-10.0 mg/L) used were imposed by the minimum concentration
recommended by the instrument manufacturer, which is 0.1 mg/L for a particle
size of 10-100 nm.

2.3 Theoretical modeling
Colloidal particles in aqueous solution interact through attractive or repulsive
forces. Those interactions depend on the surface properties of the particles,
and are usually short-range in nature. The Derjaguin–Landau–Verwey–
Overbeak (DLVO) theory describes the potential energy of interactions
between colloids in terms of van der Waals and electric double layer
interactions (Derjaguin and Landau, 1941; Gregory, 2005; Verwey et al.,
1948). The balance between the additive forces determines colloidal stability.
This theory has been widely applied to understand NP aggregation under
different conditions (Afshinnia et al., 2017; Lin et al., 2015; Zhu et al., 2016).
Potential energy diagrams obtained from DLVO theory are useful to our understanding of colloids/NPs stability, as they can be used to predict the probability of particle aggregation. However, other forces not considered in the DLVO theory (non-DLVO forces), such as steric and hydrophobic interactions, hydration effects, or polymer bridging, can also play a key role in colloid/NP stability (Grasso et al., 2002).

The total interaction energy between two particles considering the Derjaguin integration approximation reads (Gregory, 2005):

\[V_T = -\frac{A_{hi}}{12} \left[\frac{1}{x^2+2x} + \frac{1}{x^2+2x+1} + 2 \ln \left(\frac{x^2+2x}{x^2+2x+1} \right) \right] + \pi \varepsilon \varepsilon_0 d \zeta^2 e^{-\kappa h} \] \hspace{1cm} (1)

where \(A_{hi} \) (J) is the Hamaker constant, \(x = \frac{h}{d} \), \(h \) (nm) is the separation distance between particles, \(d \) (nm) the diameter of the particles, \(\varepsilon \) the relative permittivity, \(\varepsilon_0 \) (C/Vm) the permittivity of free space, \(\kappa \) (nm\(^{-1}\)) the Debye-Hückel constant and \(\zeta \) (V) the zeta-potential. The first term in the right side of the equation accounts for the van der Waals attractive energy and the second for the electrical interactions. Equation 1 applies to equal spherical particles with identical zeta-potential (<50 mV), 1:1 electrolytes and for \(h < 5 \text{ nm} \ll d \).

Although these conditions are restrictive, equation 1 is still useful as a first approximation to infer the stability of the AgNP solutions used in this study.

Upon addition of charged NPs to quiescent electrolyte solutions of different concentrations, the aggregation rates may show two distinct regimes: reaction controlled aggregation (RCA) and diffusion controlled aggregation (DCA). The former is a relatively slow aggregation regime, where the aggregation rate increases and the interaction energy barrier decreases with increasing electrolyte concentration. In contrast, in the DCA regime, the aggregation rate
is fast and constant due to the suppression of the interaction energy barrier that occurs at high electrolyte concentration.

We described the aggregation kinetics of AgNPs according to the classical Smoluchowski theory (Elimelech et al., 1995; Gregory, 2005). Aggregation is considered an irreversible second order process where the rate of collision (collision frequency) is proportional to the product of the concentrations of two identical interacting spherical particles. As not all the collisions will be successful in producing aggregates, the aggregation/collision efficiency, α, is introduced. If the initial particle concentration is the same for various electrolyte concentrations, then α can be calculated dividing the slopes of the z-average hydrodynamic diameters (d) vs. time plot in the RCA regime by the slope in the DCA regime (Kretzschmar et al., 1998):

$$\alpha = \frac{\left(\frac{dd}{dt} \right)_{t \to 0, \text{RCA}}}{\left(\frac{dd}{dt} \right)_{t \to 0, \text{DCA}}}$$

These values of α can be regarded as “z-averaged collision efficiencies”, to reflect the fact that they have been obtained from time-resolved DLS measurements (Gallego-Urrea et al., 2016). The use of this technique for the derivation of aggregation rates has been critically discussed in recent works (Gallego-Urrea et al., 2014). Nevertheless, from Eq. 2 it is possible to determine α without knowledge of the aggregation rate constant. In the present case, the α values were obtained at the onset of aggregation for $d \leq 2-5d_0$, where d_0 is the first value measured for the z-average hydrodynamic diameter. The values for the slopes of the d vs t plot used to calculate α are shown in Table S1.
Plotting α versus the electrolyte concentration allows the determination of the critical coagulation concentration (CCC), as the intersection between RCA and DCA regimes. The CCC represents the minimum electrolyte concentration required to destabilize the NPs, and provides a simple and useful stability limit of a NP suspension.

In the case of a fully unstable dispersion where aggregation is controlled by mass transport due to Brownian diffusion ($\alpha = 1$), with a constant value of the absolute aggregation rate coefficient (k_a), the treatment of aggregation kinetics is simplified. Theoretically, k_a only depends on the solution temperature (T) and viscosity (μ) according to:

$$k_a = \frac{4k_BT}{3\mu}$$ \hspace{1cm} (3)

where k_B is the Boltzmann constant. However, the experimentally obtained k_a values (k_a) are usually different from the ones derived using Eq. 3 as a result of hydrodynamic interactions between particles (Holthoff et al., 1996).

The determination of the aggregate structure is also important for the establishment of the behaviour and fate of NPs. The dimensions and porosities of the aggregates affect the reactivity, surface area, solubility and thus toxicity of NPs (Angel et al., 2013). They also determine the effective buoyant densities, which in turn regulate the gravitational settling velocities (Lee et al., 2000) and, therefore, the persistence and residence time of the NP aggregates in surface mixed layers of natural waters. Aggregation is usually considered fractal in nature. In the DCA regime, the mass of a fractal aggregate is proportional to its radius of gyration raised to a power that characterizes the aggregate structure, namely the fractal dimension (D_f) (Gregory, 2005). Considering the average number of primary particles
contained in an aggregate (\bar{k}) and assuming that the aggregate radius is proportional to the radius of gyration, the experimentally obtained hydrodynamic diameter, d, can be related to \bar{k} using the following approximate expression:

$$d = d_0 \sqrt[3]{\bar{k}} = d_0 \sqrt[3]{1 + \alpha k N_0 t}$$ \hspace{1cm} (4)

The initial particle number concentration, N_0 (particles/m3), was calculated from the following formula:

$$N_0 = \frac{3}{4} \frac{c_i}{\rho n (d_i/2)^3}$$ \hspace{1cm} (5)

where ρ is the Ag density (1.05×10^{-20} g/nm3), c_i the initial AgNP concentration (4.5/9.7-10 mg/L) and d_i (nm) the z-average hydrodynamic diameter in high-purity water.

When $\alpha k N_0 t >> 1$, Eq. 4 becomes Eq. 6 and then, D_f can be obtained from the slope of the log t-log d plot in the DCA regime, according to (Lin et al., 1990):

$$d \propto t^{1/D_f}$$ \hspace{1cm} (6)

Note that these values of D_f are empirical parameters derived from hydrodynamic diameters. It is implicitly assumed that the aggregate structure remains constant within the time window of the experiments. This is a reasonable assumption in DCA regime, where aggregation is irreversible, as the depth of the primary minimum of the interaction potential is much greater than k_BT, and thus restructuring of the aggregated clusters is unlikely to occur (Kim and Berg, 2000).

In addition, an experimental value for k_a (k) was calculated by fitting the DLS kinetic curves in the DCA regime to Eq. 4. The kinetic constants, k, were optimised by the nonlinear least squares minimization tool of the software
OriginPro 8, based on the Levenberg–Marquardt algorithm. Errors on \(k \), reflecting fit quality and variability in the 2–3 replicates at each NaCl concentration, were used to calculate reported \(k \) error ranges. An alternative method to determine \(k \) more accurately requires the use of combined static and dynamic light scattering measurements (Holthoff et al., 1997).

3. Results and discussion

3.1. Aggregation kinetics in NaCl solutions

Details on the synthesis of ALG, GAL and GAH coated AgNPs, and their oxidation, size and surface plasmon band (SPB) evolution over time can be found in a previous paper (Lodeiro et al., 2016).

The studied AgNPs were stable over time in pure aqueous solution in terms of aggregation and oxidation. Nevertheless, with increasing NaCl concentrations and when added to natural seawaters, different behaviours were observed depending on the polymer coating. The molecular weight (MW) of the coatings, average Transmission Electron Microscopy (TEM) diameters, \(z \)-average hydrodynamic diameter in high-purity water (\(d_h \)), Pdi and zeta-potentials also measured in high-purity water are presented in Table 1.

<table>
<thead>
<tr>
<th>Coating</th>
<th>BPEI</th>
<th>ALG</th>
<th>GAH</th>
<th>GAL</th>
<th>TA</th>
<th>NM-300K</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW*</td>
<td>25,000</td>
<td>120,000-190,000</td>
<td>250,000</td>
<td>250,000</td>
<td>1,701.20</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Table1. Characterization data of the AgNPs coated with: branched Polyethylenimine (BPEI), alginate (ALG), gum arabic (GAH and GAL), tannic acid (TA) and NM-300K in high-purity water
The differences observed in the ratios between the NP diameters measured using DLS (d_i) and TEM are attributed to differences in the coating thickness and polydispersity of the NP samples. Interestingly, a linear correlation (R^2 of 0.9856) was found between the diameter increase measured using TEM and DLS, and the molecular weight of the coating.

In order to investigate the main stabilization mechanisms in the NP dispersions based on the DVLO theory, potential energy diagrams were obtained at different ionic strengths. Two main challenges were faced when applying DVLO theory to describe the interaction forces between the AgNPs in solution. First, an accurate value for the Hamaker constant (A_H) was not available. Second, the fact that experimental determination of electrophoretic mobilities in Ag/NaCl solutions using DLS is not straightforward (Lowry et al., 2016). Precipitation of AgCl and oxidation of organic macromolecules on the electrophoretic cell electrodes produces inaccurate measurements, especially at high NaCl concentrations. Unfortunately, we could not find any solution to solve this problem. Here we used a theoretical A_H value of 3.51×10^{-20} J as obtained from Pinchuk et al. (Pinchuk, 2012). Possible modifications in the A_H value as a result of different polymer coatings (size effects) were not

<table>
<thead>
<tr>
<th></th>
<th>TEM (nm)</th>
<th>d_i (nm)</th>
<th>Pdi</th>
<th>zeta-potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30.5 ± 2.7*</td>
<td>51 ± 1</td>
<td>0.17±0.02</td>
<td>+56*</td>
</tr>
<tr>
<td></td>
<td>9.7 ± 0.44</td>
<td>48 ± 2</td>
<td>0.52±0.02</td>
<td>-70 ± 7</td>
</tr>
<tr>
<td></td>
<td>n.a.</td>
<td>112 ± 9</td>
<td>0.29±0.02</td>
<td>-43 ± 6</td>
</tr>
<tr>
<td></td>
<td>10 ± 0.29</td>
<td>63 ± 3</td>
<td>0.44±0.03</td>
<td>-41 ± 7</td>
</tr>
<tr>
<td></td>
<td>31.2 ± 2.4*</td>
<td>34 ± 3</td>
<td>0.27±0.02</td>
<td>-39*</td>
</tr>
<tr>
<td></td>
<td>15*</td>
<td>48 ± 4</td>
<td>0.37±0.1</td>
<td>-4 ± 1</td>
</tr>
</tbody>
</table>

*Values provided by the manufacturer; n.a.: not available.
considered. Moreover, the use of zeta-potential instead of surface charge values in Eq. 1 implies an additional limitation, especially for particles with macromolecular coatings. The zeta-potential is not a direct measure of the surface charge, but a theoretical calculation of the electrostatic potential on the hydrodynamic shear (slipping plane) surrounding the particle. Bearing those limitations in mind, potential energy diagrams were obtained (Figure S1). The DLVO potential energy diagrams for ALG and GAH coated AgNPs showed that the net energy barrier is reduced at increasing NaCl concentrations, favouring AgNP aggregation. This is in accordance with our aggregation experiments. In contrast, there is no energy barrier present at any of the electrolyte concentrations for NM-300K AgNPs and, according to the potential energy diagrams, their aggregation should be favourable regardless of NaCl concentration. However, we experimentally observed a good stability of NM-300K AgNPs throughout the full range of NaCl concentrations. Large amounts of adsorbed polymers, e.g. Tween-20 in NM-300K NPs, can confer extra stability (steric stabilization) and could explain the anomalous DLVO prediction (Gregory, 2005). DLVO theory explains the aggregation process qualitatively, but it does not provide quantitative information for the aggregation rate constants (Afshinnia et al., 2017). Hydrodynamic interactions together with the presence of macromolecular coatings adsorbed on the particle surface are usually the main reasons for this inconsistency (Grasso et al., 2002). When AgNPs are added to NaCl solutions, the induced aggregation is triggered by an increase in ionic strength that compresses the electrical double layer surrounding the NPs, and also by specific electrolyte interactions.
with the NP metallic surface and/or coating. At low NaCl concentrations (<20 mM), the formation of an AgCl layer is expected (Peterson et al., 2016; Zhang et al., 2015). The AgCl coating passivates the NP surface and reduces its charge, hindering NP oxidation. Hence, the ionic strength required to induce AgNP aggregation is usually lower for NaCl than for other halide salts that do not interact with the NP surface (Botasini and Méndez, 2013; Espinoza et al., 2012). This fact is relevant for the study of AgNPs in seawaters, where NaCl concentrations are high (e.g. 0.56 M for salinity 35).

The aggregation kinetics in NaCl solutions of ALG, GAL, GAH, NM-300K, BPEI and TA coated AgNPs were studied using DLS (Figures 1 and S2). Supply of NaCl destabilized an initially stable suspension of AgNPs, inducing the formation of NP aggregates over time. We used the onset of the aggregation process \(d \leq 2-5 d_0\) to calculate \(D_i\), \(\alpha\), CCC and \(k\) for the studied AgNPs, when possible.

An increase in \(d\) over time was observed at NaCl concentrations from 20 (GAH), 40 (TA), 50 (ALG) and 550 (NM-300K) mM. AgNPs coated with GAL and BPEI showed different behaviours. We only found a slight increase of \(d\) from ~44 to 74 nm for AgNP-GAL at \([\text{NaCl}] = 997\) mM after 50 min. For AgNP-BPEI no noticeable aggregation was observed over the time window studied (~1 h) at NaCl concentrations up to 997 mM. Moreover, a decrease of the z-average hydrodynamic diameters at low NaCl concentrations was observed for some of the coatings, when compared to the values found in high-purity water (Figures 1 and S2). As mentioned above, our hypothesis is that interactions of NaCl with the surface and coating of the NPs may play a key role due to the increase in the ionic strength and/or specific electrolyte
interactions. Accordingly, the observed trend for this decrease in the z-
average hydrodynamic diameters is the following: GAH>GAL>TA>ALG>NM-
300K>BPEI. This trend is in accordance with our hypothesis: for large neutral
organic coatings (e.g. NM-300K) or highly charged stable polymers (e.g.
BPEI) no significant differences were observed between \(d \) values in high-
purity water and NaCl at low concentrations. On the contrary, the weakest
electrostatic stabilized coatings (e.g. GA and TA) show the largest differences
in the z-average hydrodynamic diameters in NaCl compared to high-purity
water.

Besides, several of the obtained aggregation kinetic profiles showed a slight
to moderate decrease in \(d \) at the very beginning of aggregation (20-30 s after
mixing), compared to the values obtained in high-purity water (Figure S3).
This phenomenon is not unprecedented. In fact, the formation of new NPs (Ag
or AgCl NPs) from silver species reduction and AgCl precipitation has been
reported to lead to apparent average smaller sizes of NPs at initial stages
(Baalousha et al., 2013b). Accordingly, a reduction in the surface plasmon
resonance band area was also observed at the onset of aggregation for ALG
and GAH coated AgNPs measured by UV-visible spectrophotometry (Lodeiro
et al., 2016). Moreover, this decrease in \(d \) values can be also ascribed to
partial dissolution of AgNPs or disruption of the chemical equilibrium of the
coatings.

The aggregation kinetic data obtained by DLS should be interpreted with
caution. As mentioned before, DLS observations might include not only
responses of AgNPs originally present in solution, but also the possible
formation of concomitant (nano)particles of AgCl or even new AgNPs (by
reduction of residual Ag+ ions present in the stock dispersion), making data interpretation more challenging. Moreover, the cumulant analysis used to obtain the d values is only recommended for spherical, narrowly distributed and monodisperse systems.

The aggregation z-averaged collision efficiencies, α, for GAH, TA, ALG and NM-300K coated AgNPs in NaCl solutions were calculated using Eq. 2. The CCC values (Table 2) indicated that NM-300K was more stable than GAH, TA or ALG coated AgNPs in NaCl solutions (Figure 1). The enhanced stability is attributed to the stronger steric interaction provided by the non-ionic NM-300K coating. The presence of residual Ag+ ions in the GAH AgNP stock solution influences its aggregation behaviour.

In fact, the GAH AgNP solutions displayed a non-monotonic trend of aggregation rate with NaCl concentration: at high NaCl concentrations (≥ 343 mM) the DLS data showed constant d values (Figure 1a). The concentration of the silver ions/species in the measured GAH NP solutions was $\sim 1.6 \times 10^{-5}$ M, higher than the solubility product of AgCl at [Cl-] > 22 μM. Therefore, some contribution from AgCl precipitation, probably modifying the NP surface/coating, is expected. The stability of ALG AgNPs showed a contribution from electrostatic repulsion due to deprotonation of the carboxylate groups present in alginate at pH 8 (Rey-Castro et al., 2004).

Accordingly, we measured only a relatively slight decrease in zeta-potential (from -70 to -40 mV) with increasing NaCl concentrations (from 0 to 85 mM). Some steric effect from the ALG coating is also anticipated. However, it is not unlikely that electrostatic interactions prevail over steric stabilization in the
case of the TA coating due to the weak acidity of tannic acid, pK\textsubscript{a} 8.2 (Cruz et al., 2000) that provides a zeta-potential of -39.1 mV in high-purity water.

Figure 1. Left panel: Evolution of the z-average hydrodynamic diameter (d) over time in aqueous solution at pH 8.0 measured by DLS at increasing NaCl
concentrations (mM) for: a) GAH; b) TA; c) ALG and d) NM-300K coated AgNPs at concentrations of 4.5 (GAH) and 9.7-10 mg/L (TA, ALG and NM-300K). Aggregation of these AgNPs was observed at NaCl concentrations from 20 (GAH), 40 (TA), 50 (ALG) and 550 (NM-300K) mM. Right panel: Values of α obtained from the slopes of straight lines fitted to the data \(d \leq 2-5d_0\) presented in the left panel. The intersection between the RCA and DCA regimes (dashed lines) provides the CCC values, used as stability limit for the AgNP suspensions.

Interestingly, the polysaccharides ALG and GA somehow seem to provide a weaker steric hindrance to aggregation in ALG/GAH coated AgNPs than the synthetic non-ionic surfactants in NM-300K. On the other hand, BPEI AgNPs, which are the only positively charged NPs examined in the current study, remained stable in NaCl solutions up to 997 mM and in this case, both steric and electrostatic stabilization are expected. For most of the coatings, the NP aggregation behaviours were comparable between DLS or UV-visible spectrophotometry techniques. For example, the CCC values shown in this work are in agreement with those previously obtained for ALG (80 mM) and GAH (45 mM) coated AgNPs at the same NP concentration (Lodeiro et al., 2016). A good agreement was also found between DLS and UV-visible measurements for AgNP-GAL. At NaCl concentrations <153 mM and experimental durations shorter than 1000 s, the plasmon resonance band (PRB) area and \(d\) showed very small changes. In contrast, DLS measurements showed slightly higher stabilities of the AgNPs (lower \(\alpha\) values) at low NaCl concentrations. Moreover, results...
observed for GAH AgNP aggregation kinetics by UV-visible measurements indicated a higher stability of GAH AgNPs in solution than in the DLS measurements conducted over longer time periods (>1 h). The constant d
values observed at NaCl concentrations ≥ 343 mM using DLS were also reflected in the PRB area observations, which indicated an approximate 12%
decrease within an equivalent time window (Lodeiro et al., 2016).
The packing density of the aggregates in the DCA regime was calculated using Eq. 6. If the collision efficiency is low (RCA regime) Eq. 6 is no longer valid, and D_f should be obtained by static light scattering or transmission electron microscopy measurements (Baalousha et al., 2008; He et al., 2013).
The obtained D_f values (Table 2) are in agreement with those expected from colloid aggregation theory, ~1.7-1.8 (Lin et al., 1990; Zhang, 2014) and also with the estimated values from other studies using different AgNPs (Bertrand et al., 2016; He et al., 2013).

Table 2. Critical coagulation concentration (CCC) values obtained from Eq. 2 at different NaCl concentrations. Fractal dimension (D_f) values obtained from Eq. 6, experimental aggregation rate constants (k) obtained from Eq. 4, both on the DCA regime, and initial particle number concentration (N_0). Data and fits are presented in Figures 1 (CCC), S4 (D_f) and 2 (k)

<table>
<thead>
<tr>
<th>AgNP coating</th>
<th>CCC (mM)</th>
<th>D_f</th>
<th>k (m3·s$^{-1}$)</th>
<th>N_0 (NP/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>×10$^{-18}$</td>
<td>×10$^{-16}$</td>
</tr>
<tr>
<td>GAH</td>
<td>41 ± 7.2</td>
<td>2.0 ± 0.3$^{1/}$ / 1.99 ± 0.042</td>
<td>2.9±0.6</td>
<td>0.49</td>
</tr>
<tr>
<td>TA</td>
<td>82 ± 5.0</td>
<td>1.73 ± 0.09a / 1.78±0.08b</td>
<td>1.1±0.2</td>
<td>4.63</td>
</tr>
<tr>
<td>ALG</td>
<td>84 ± 2.2</td>
<td>1.8 ± 0.1$^{3/}$ / 1.70 ± 0.08a</td>
<td>2.2±0.2</td>
<td>1.60</td>
</tr>
</tbody>
</table>
The obtained aggregation curves in the DCA regime were fitted to Eq. 3 to estimate the experimental values of the absolute aggregation constant, k, (Figure 2). The required D_f values were obtained using Eq. 6 (Table 2).

Figure 2. Aggregation kinetics in the diffusion controlled aggregation (DCA) regime for: a) GAH; b) TA; c) ALG and d) NM-300K coated AgNPs. The lines represent the fit of the corresponding aggregation kinetics using Eq. 4, where

<table>
<thead>
<tr>
<th>NM-300K</th>
<th>986 ± 100</th>
<th>1.81±0.03° / 1.86±0.07°</th>
<th>0.15±0.03</th>
<th>1.65</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPEI</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>–</td>
</tr>
<tr>
<td>GAL</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>–</td>
</tr>
</tbody>
</table>

$[\text{NaCl}]= 50^1, 58^2, 153^3, 537^4, 997^5, 1200^6$ and 2000° mM; n.a.: not available (the dispersions were stable throughout the range of NaCl concentrations studied)
k was used as the only fitting parameter. The numbers between parentheses represent the fitting error. The obtained aggregation rate constants for GAH and ALG coated AgNPs were of the same order of magnitude as the theoretical k_a value, while for TA and NM-300K k values were one order of magnitude lower.

Experimental aggregation rate constants were usually 2-4 fold lower than the expected theoretical k_a value ($6.1 \times 10^{-18} \text{ m}^3 \cdot \text{s}^{-1}$ in a 550 mM NaCl solution) (Holthoff et al., 1997). In agreement, our results for GAH and ALG coated AgNPs showed aggregation rate constants ~2-5 fold smaller than k_a (Table 2). In contrast, the experimental k value obtained for NM-300K coated AgNPs was considerably lower (Table 2). The errors show the standard deviation between two measurements undertaken on the DCA regime (Figure 2), where the k values should not change with NaCl concentration. The discrepancies in the obtained k values can be explained by hydrodynamic and/or counterion-specific interactions (Gregory, 2005). Moreover, the uncertainty in the initial size and particle number concentration calculations results in approximate k values. It would be important for future studies to compare the values obtained in this work using Equations 4 and 6 with those provided by static and dynamic light scattering measurements, which would allow a significant improvement in the reliability of experimental k values (Holthoff et al., 1996).

3.2. Aggregation kinetics in natural seawaters

We also conducted aggregation studies in seawaters from a Baltic fjord and an Atlantic coastal area in northwest Spain, which were compared with the
results of NaCl experiments. A detailed analysis of the seawater samples is provided in the electronic supplementary information (Table S2). The calculated ionic strength (I) values (Table S2) in the Baltic fjord (346 mM) and the Spanish coastal (706 mM) seawaters were higher than the CCC values obtained in NaCl solutions (where I is equal to concentration) for TA and ALG coated AgNPs (Table 2). For GAH, even if the obtained CCC value was considerably lower than I in the seawaters studied, a constant d value was observed at [NaCl] ≥ 343 mM. Therefore, if AgNP behaviour is mainly controlled by the ionic strength, a similar aggregation rate is expected at equivalent ionic strength once AgNPs were added to the natural seawaters. Remarkably, and opposite to what we observed in NaCl solutions, d_0 values in seawater were somewhat larger than those obtained in high-purity water for the studied coatings, except GA and TA coated AgNPs in Baltic fjord seawater (Figure S3). We hypothesize that the presence of organic matter in the seawater solutions influenced the DLS measurements and produced the increase in d_0 values.

The aggregation stability of each NP batch in NaCl and seawater media was compared on the basis of interpolated collision z-averaged collision efficiencies (α_i) for NaCl concentrations of ionic strength comparable with that of the seawater samples (346 and 706 mM). The collision efficiency in seawater (α_{SW}) was approximated as:

$$\alpha_{SW} = \frac{(dd/dt)_{t\to \infty, \text{seawater}}}{(dd/dt)_{t\to \infty, \text{DCA(NaCl)}}}$$ \hspace{1cm} (7)

Finally, both α_{SW} and $\alpha_{□}$ values were compared through a t-test. The $\alpha_{□}$ values were obtained for TA, ALG and NM-300K coated AgNPs (Table S4).
The BPEI and GAL coatings were stable throughout the range of NaCl concentrations studied, while the GAH coating presented a non-monotonic aggregation rate. Therefore, the interpolation of the z-averaged collision efficiencies was not possible in these cases.

The GAH NPs displayed an intermediate behaviour between low (153 mM) and high (343-537 mM) NaCl concentrations when added to the natural seawaters (Figure 3a), while the TA coated AgNPs showed very similar aggregation rates in the Baltic fjord (I= 346 mM) and in NaCl 153 and 537 mM (Figure 3b). In contrast, the ALG AgNPs were more stable in the seawaters studied than in NaCl solutions at equivalent ionic strengths (Figure 3c). Some of the AgNPs that were stable in NaCl solutions (GAL and NM-300K coated NPs) showed no significant aggregation in either the Baltic or the Spanish coastal seawaters during the time window studied. Moreover, at high ionic strengths (I ≥ 588 mM) both GAL and NM-300K AgNPs showed somewhat lower sizes in seawater than in NaCl solution (Figure 3d,e). On the other hand, BPEI AgNPs, which have a positively charged coating, showed a fast aggregation rate in the seawaters (Figure 3f), opposite to the stable behaviour observed in NaCl solutions at 997 mM ionic strength (Figure S2a). From the obtained results we can deduce that strongly steric-stabilized AgNPs (NM-300K and GAL) are stable in both NaCl solutions and natural seawaters within the studied range of salinities (17.19-34.65) and organic content (277-83.67 μM DOC). For electrostatically stabilized NPs, the absolute value of their charge and its sign played an important role; when electrostatic stabilization was high (ALG), the NPs showed slower aggregation in the natural seawaters studied compared to NaCl solutions at equivalent ionic strength.
Nevertheless, if weakly electrostatically stabilized NPs were used (GAH and TA coated AgNPs), fast aggregation was observed in both solutions.

Figure 3. Aggregation kinetics in Baltic fjord and Spanish coastal seawaters for: a) GAH, b) TA, c) ALG, d) NM-300K, e) GAL and f) BPEI coated AgNPs. The strongly steric-stabilized AgNPs (NM-300K and GAL) are stable in both
NaCl solutions and natural seawaters. The strongly electrostatically stabilized AgNPs (ALG) showed slower aggregation in the natural seawaters, while the weakly electrostatically stabilized NPs (GAH and TA) showed a fast aggregation in both solutions. The positively charged BPEI AgNPs are stable in NaCl solutions but not in seawater.

Surprisingly, BPEI AgNPs, a strongly electro-steric stabilized NP that is very stable in highly concentrated NaCl solutions, showed rapid aggregation after addition to seawaters, probably determined by its positively charged coating and the subsequent partial neutralization by the oppositely charged DOM in seawater. Dilution of Baltic fjord seawater with high-purity water progressively reduced the aggregation kinetic factor. When the dilution was 1:20, a constant d value was observed over time (Figure 3f). Dilution of Spanish coastal seawater also stabilized the BPEI AgNP solution. The dilution effect was more pronounced, and a 1:2 dilution was sufficient to significantly decrease the aggregation of the NPs, indicating dependence of the stabilization effect on the AgNP/DOM ratio.

This study illustrates that extrapolation of NP aggregation results obtained in synthetic solutions (e.g. NaCl) to natural seawaters is challenging. Hence, more research efforts are needed to investigate the role of other inorganic (major divalent cations and anions) and organic (DOM) components of the seawater matrix in stabilizing polymer-coated NPs. To do so, isolation and characterization of marine DOM, which represents a major endeavour, is required. The interactions of DOM with the coated NPs may presumably lead to the formation of complex ecocoronas (biomolecule shell), involving several
processes such as ligand exchange with coating polymers (preferential adsorption), bridging, electrostatic and/or steric stabilization mechanisms, etc. All these interactions should be taken into account when describing the aggregation process. Moreover, cautious extrapolation to very low NP concentrations of environmental relevance (ppt range) is advised, given the estimated theoretical background concentrations reported in literature as a result of diffuse NP contamination sources.

4. Conclusions

The z-averaged collision efficiencies, effective aggregation rates and fractal structures have been obtained in NaCl for the GAH, TA, ALG and NM-300K AgNP batches, whereas BPEI and GAL dispersions were practically stable up to ca. 1M NaCl. Only some of these nanomaterials (TA, NM-300K, GAL) have similar aggregation rates in seawater samples and NaCl solutions of comparable ionic strength.

In the cases of TA (and possibly ALG AgNPs in seawaters with very low DOM contents), aggregation and subsequent settling are, presumably, the more relevant fates (even in absence of heteroaggregation processes with natural particulate matter). On the other hand, NM-300K and GAL AgNPs are expected to be very stable and persistent/mobile in seawater (and thus potentially more available for uptake by marine biota). The AgNPs coated with BPEI and GAH showed complex behaviours in the seawater samples that are definitely not predicted using simple NaCl solutions, where BPEI coating seems to be affected by charge neutralization due to surface adsorption of marine DOM.
Supplementary material
Tables S1-S4 and Figures S1-S4.

Data statement
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Acknowledgements
This research was supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme [grant agreement number PIEF-GA-2012-329575]. CRC acknowledges support from FEDER and the Spanish Ministry of Education and Science [Project No. CTM2016-78798], and from European Union Seventh Framework Programme FP7-NMP.2012.1.3-3 [grant agreement no. 310584] (NANoREG).

References

