
January 11, 2018 16:30 PREPRINT FILE preprint

preprint UdL

c© Departament de Matematica

THE UNIQUE MIXED ALMOST MOORE GRAPH

WITH PARAMETERS k = 2, r = 2 AND z = 1.

DOMINIQUE BUSET

Université Libre de Bruxelles,
Belgium.

dbuset@ulb.ac.be

NACHO LÓPEZ
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Departament de Matemàtica, Universitat de Lleida
C/ Jaume II 69, 25001 Lleida, Spain.

miret@matematica.udl.es

Received Day Month Year

Revised Day Month Year

A natural upper bound for the maximum number of vertices in a mixed graph with maxi-

mum undirected degree r, maximum directed out-degree z and diameter k is given by the

mixed Moore bound. In this paper we prove that there is a unique mixed graph of diameter

k = 2 and parameters r = 2 and z = 1 containing the largest possible number of vertices,

which in this case is one less than the corresponding mixed Moore bound. Mixed graphs

with prescribed parameters and order one less than the corresponding Moore bound are

known as mixed almost Moore graphs.

Keywords: Moore graph; mixed graph; Diameter

1. Introduction

Network topologies based on mixed graphs arise in many practical situations, spe-

cially in those where the relationship between nodes (vertices) can be undirected

or directed, depending on whether the communication is two-way or only one-way.

Hence, a mixed graph G may contain (undirected) edges as well as directed edges

(also known as arcs). From this point of view, a graph [resp. directed graph or di-

graph] has all its edges undirected [resp. directed]. The undirected degree of a vertex

v, denoted by d(v) is the number of edges incident to v. The out-degree [resp. in-

degree] of v, denoted by d+(v) [resp. d−(v)], is the number of arcs emanating from

[resp. to] v. If d+(v) = d−(v) = z and d(v) = r, for all v ∈ V , then G is said to
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be totally regular of degree d, where d = r + z. A walk of length ℓ ≥ 0 from u to v

is a sequence of ℓ + 1 vertices, u0u1 . . . uℓ−1uℓ, such that u = u0, v = uℓ and each

pair ui−1ui for i = 0, . . . , ℓ − 1 is either an edge or an arc of G. A directed walk is

a walk containing only arcs. An undirected walk is a walk containing only edges. A

walk whose vertices are all different is called a path. The length of a shortest path

from u to v is the distance from u to v, and it is denoted by dist(u, v). Note that

dist(u, v) may be different from dist(v, u), when shortest paths between u and v in-

volve arcs. The maximum distance between any pair of vertices is the diameter k of

G. A directed cycle [resp. undirected cycle] of length ℓ is a walk of length ℓ involving

only arcs [resp. edges] whose vertices are all different except u = v.

The Degree/Diameter problem for mixed graphs asks for the maximum number of

vertices n in a mixed graph with maximum undirected degree r, maximum directed

out-degree z and diameter k. This problem has been extensively studied both for

the pure undirected case (z = 0) and for the pure directed case (r = 0), but there

are fewer results for the general mixed case. The maximum number of vertices n

for a mixed graph of diameter k = 2 with prescribed degree parameters r and z is

upper bounded by

n ≤ M(r, z, 2) = 1 + z + (r + z)2

where M(r, z, 2) is known as the mixed Moore bound of diameter 2 and it can be

easily computed just by counting the maximum number of vertices at distance ≤ 2

from any given vertex in a mixed graph with maximum undirected degree r and

maximum directed out-degree z. Mixed graphs of diameter k, maximum undirected

degree r ≥ 1, maximum out-degree z ≥ 1 and order M(r, z, k) are called mixed

Moore graphs. The study of mixed Moore graphs was initiated by Bosak1, but it

has received much attention in the last decade (see Buset et al.2, Nguyen et al.8,9,

Jørgensen3, López et al.4,5,6,7, etc.). It is known that mixed Moore graphs are totally

regular of degree d = r+z and they have the property that for any ordered pair (u, v)

of vertices there is a unique trail of length at most k between them. The general

problem of finding mixed graphs of maximum order given the parameters r, z, k

remains unsettled, even for diameter k = 2. Bosák1 gives the following necessary

condition for the existence of a mixed Moore graph of diameter k = 2:

Theorem 1.1. Let G be a (proper) mixed Moore graph of diameter 2. Then, G is

totally regular with directed degree z ≥ 1 and undirected degree r ≥ 1. Moreover,

there must exist a positive odd integer c such that

r =
1

4
(c2 + 3) and c | (4z − 3)(4z + 5). (1.2)

For those pairs (r, z) not satisfying Theorem 1, the maximum order of a hypothetical

mixed graph in this context is M(r, z, 2) − 1, and these graphs are known as mixed

almost Moore graphs of diameter 2. These extremal graphs were first studied recently

by López and Miret4.
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Construction

The mixed Moore bound for diameter k = 2, undirected degree r = 2 and directed

out-degree z = 1 states that the maximum order for a mixed graph with those pa-

rameters has at most M(2, 1, 2) = 11 vertices. Such a graph does not exist because

the pair (r, z) = (2, 1) does not satisfy the conditions given in Theorem 1. Hence,

such an extremal graph in the context of the degree/diameter problem, should have

at most 10 vertices. A mixed graph G of order 10, diameter 2, maximum undirected

degree r = 2 and maximum directed out-degree z = 1 can be constructed as follows:

The vertex set of G is the union of the two sets U and U ′, where U = {ui | i ∈ Z5}

and U ′ = {u′i | i ∈ Z5}. Then, the edges are defined by the symmetric relationships

ui ∼ ui±1 and u′i ∼ u′i±2, where the subscripts operations are taken over Z5. Besides,

the arcs are defined by ui → u′i+1 and u′i → ui+1 (see Fig. 1).

u0

u4

u3 u2

u1

u′

0

u′

4

u′

3
u′

2

u′

1

Fig. 1. The unique mixed almost Moore graph of diameter k = 2 and parameters r = 2 and z = 1.

This mixed graph G is totally regular, but it is not vertex-transitive.

The automorphism group of G is the permutation group generated by
(

u0 u1 u2 u3 u4
)(

u′0 u′1 u′2 u′3 u′4
)

, that is, every automorphism of G is one of

the five rotations of the outter pentagon and inner star that keep the symmetry of

the Fig. 1. Another way to construct G is by voltage assignment, using a dipole as

basis graph and Z5 as basis group. G was first introduced by López and Miret4 where

the characteristic polynomial of any totally regular mixed almost Moore graph of

diameter 2 is computed. In particular, for r = 2 and z = 1, it is shown that such
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characteristic polynomial must be

φ(x) = (x− 3)(x+ 2)a1(x− 1)b1xa2(x+ 1)b2
10
∏

i=3

Φi(x
2 + x− 1)

m(i)
2 ,

where ai and bi are positive integers and m(i) =
∑

i|l ml, where (m1, . . . ,m10) is the

permutation cycle structure of the graph. The characteristic polynomial depends on

some cyclotomic polynomials denoted by Φi(x). It can be seen that those parameters

must satisfy some hard restrictions in this case, like (a2 − b2) − 3(a1 − b1) = 3,

mi = 0,∀i > 5, etc. from where one can restrict the existence of φ(x) for just six

cases. One of them (a1 = a2 = b2 = 0, b1 = 1 and mi = 0 ∀i 6= 5, m5 = 2) gives the

characteristic polynomial of G, which is

φG(x) = (x− 3)(x − 1)Φ5(x
2 + x− 1).

Although this spectral approach would give us just one possible characteristic poly-

nomial for a mixed almost mixed Moore graph, this result does not provide a proof

of the uniqueness of G, since other cospectral graphs could be non isomorphic to

G. Next section will show that G is in fact unique, that is, there is only one mixed

almost Moore graph of diameter 2 and parameters r = 2 and z = 1.

Uniqueness

Let G be a mixed graph of 10 vertices, diameter 2, maximum undirected degree

r = 2 and maximum directed out-degree z = 1. In this section we will show that G

must be unique. Our proof proceeds by building up the arcs and edges of the graph

in a systematic fashion. At any point in this construction, we say that a vertex v of G

is full-edges [resp. full-arcs] if all the extremities of the edges [resp. arcs] emanating

from v are known. A vertex v of G is called complete if it is full-edges and full-arcs.

Let us start with a useful lemma that will provide us some restrictions on the

subgraphs that may exist in G. We notice that for such mixed graph G, every vertex

must be incident to exactly two edges and one outcoming arc, since otherwise it is

not possible to reach all the remaining vertices at distance ≤ 2 from a given vertex.

Nevertheless, it is not clear that this must be true for the incoming arcs, that is,

such graph might not be totally regular a priori. Hence, we do not assume such

regularity for the in-degree in the following results.

Lemma 1.1. Let G be a mixed almost Moore graph of diameter 2, maximum undi-

rected degree r = 2 and maximum directed out-degree z = 1. Then,

(a) There is no edge at distance 1 from any vertex of G.

(b) Every arc of G is included either in
−→
C 3 (directed cycle of length 3) or in a

−→
C 3 with an arc replaced by an edge.

(c) G has no subgraph isomorphic to T , where T is a triangle having a vertex u

with two incoming arcs, and the remaining two vertices sharing an edge.
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(d) G has no subgraph isomorphic to C4, that is, the (undirected) cycle graph of

length four.

Proof.

(a) If there exists an edge at distance 1 from a vertex v of G, then, due to

the restrictions on the maximum undirected degree, the maximum directed

degree and the diameter, G has at most 9 vertices (see Fig. 2), which is

impossible.

v v

Fig. 2. The two possible situations when G has an edge at distance 1 from any given vertex v. In

both cases the number of vertices of G is at most 9.

(b) For any arc (u, v) of G, there must exist a trail of length 2 from v to u (since

the diameter of G is 2). Let v,w, u be such a trail, where the relationship

v ∼ w and w ∼ u could be, a priori, either an arc or an edge. By (a), v ∼ w

and w ∼ u can not be both edges at the same time, so (u, v) is included

either in
−→
C 3 or in directed cycle of length 3 with an arc replaced by an edge.

(c) Suppose T is a subgraph of G. Since G has 10 vertices, G must contain the

subgraph depicted in Fig. 3, where T is the subgraph of G induced by the

vertices {v0, v2, v3}. From here on, we label the remaining vertices of G as

in the figure. Since the diameter of G is 2, there must exist a trail of length

2 from v3 to the vertices v0, v1 and v2, which are all full-edges. So, there

must be an arc from one of the vertices into the set {v7, v8, v9} to v0 [resp.

v1 and v2]. On the other hand, by (a), there is no edge between two of the

vertices into {v7, v8, v9}. Therefore, the 4 remaining edges incident to one

of the vertices of {v7, v8, v9} must have their extremities in {v4, v5, v6}. In

particular, there is an edge joining v6 and one of the vertices of {v7, v8, v9},

and then v6 is full-edges. However, there must be a trail of length 2 from v2
to v4 (resp. v5). These two paths must contain v6 and then there must be

an arc (v6, v4) and an arc (v6, v5), which is impossible.

(d) Suppose such a subgraph exists in G. Since G has 10 vertices, Gmust contain

the induced subgraph depicted in Fig. 3, where C4 is the subgraph induced

by {v0, v1, v2, v5}. Moreover, since the diameter of G is 2, there is a trail of

length 2 from v3 to every vertex in {v0, v1, v2}. So, there must be exactly

one arc from all of the vertices in {v7, v8, v9} to one vertex in {v0, v1, v2}.
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However, since there must exist a trail of length 2 from v3 to v5, one vertex

belonging to {v7, v8, v9} must be adjacent to v5 by an edge (because vertices

v7, v8 and v9 are full-arc) which is a contradiction because v5 is full-edges.

v1 v3v2

v0

v4 v5 v6 v7 v8 v9

v1 v3v2

v0

v4 v5 v6 v7 v8 v9

(c) (d)

Fig. 3.

Now, we are ready to prove the main result of the paper.

Theorem 1.2. There exists a unique mixed almost Moore graph of diameter 2,

maximum undirected degree r = 2 and maximum directed out-degree z = 1.

Proof. Let v0 ∈ V be any vertex of a mixed almost Moore graph G of diameter

2 and parameters r = 2 and z = 1. Lemma 1.1 gives us two cases, corresonding to

whether there exists an arc at distance 1 from v0 or not. Let us denote by v1 and

v2 those vertices joined by an edge to v0 and v3 the unique vertex such that (v0, v3)

is an arc.

Case I: Suppose there is an arc at distance 1 from v0. By symmetry and Lemma

1.1 (a) and (c), it is not restrictive to suppose that (v3, v2) is such arc. Since G has

10 vertices, and due to the restrictions on the degree and the diameter, the graph

depicted in Fig. 4 must be a subgraph of G. From here on, we follow the labeling of

the vertices depicted in the figures.

v1 v3v2

v0

v4 v5 v6 v7 v8 v9

Fig. 4.
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Since v3 must reach v1 in two steps, there must be an arc from v8 or v9 to v1
(note that v3 is already complete and v1 is full-edges). By symmetry, we can assume

that (v9, v1) is such arc. By Lemma 1.1 (a) and (c), vertex v9 cannot be adjacent to

v4, and then v8 must be adjacent to v4 by an arc or an edge (v3 must reach v4 in two

steps). By the various parts of Lemma 1.1, the remaining edge from v9 cannot be to

any of {v0, v2, v4, v8}, so, there is an edge v9 ∼ x where x ∈ {v5, v6, v7}. If x = v6,

then v6 is full-edges and then, to reach v7 from v9, the only possibility would give

the arc (v6, v7) which is impossible by Lemma 1.1 (c). Therefore, x ∈ {v5, v7} which

gives us two possibilities for the last edge incident to v9:

(Ia) Assume v9 ∼ v5 is an edge (see Fig. 5). The existence of this edge implies

that v5 must be adjacent to v6 and v7. Then, the only possibility to reach v8
from v1 by a trail of length 2 is through v4. So, there is an edge between v4
and v8 (we already know that v8 is adjacent to v4). Then, to reach v0 from

v5 by a 2-trail, (v7, v0) must be an arc of G (lemma 1.1 (a), and vertex v1
is already complete). Now, vertices v0 and v2 are complete, v8 is full-edges

and v7 is full-arc, so a 2-trail from v2 to v8 must contain the arc (v6, v8).

Every vertex of G is full-edges with the exception of v6 and v7. Moreover, v7
is full-arc, and its two incident edges are still unknown. It follows that the

only possibilities for these two edges are v7 ∼ v5 or v7 ∼ v6, which implies

that (v5, v6) must be an arc, but this is a contradiction with Lemma 1.1 (a)

(see the triangle with vertices v5, v6, v7).

(Ib) Suppose v9 ∼ v7 is an edge (see Fig. 5): Then the vertex v9 is complete. To

join v3 to v5 by a 2-trail, then v8 must be adjacent to v5 (v4 is not adjacent

to v5 and v2 is complete). The same argument applies to v4. Therefore, v8
is complete, and either (v8, v5) is an arc (and then v8 ∼ v4 is an edge) or

(v8, v4) is an arc (and v8 ∼ v5 is an edge). So, at this point we have that

v8 is connected to both v4 and v5. The 2-trail from v8 to v0 gives us a new

arc which must be (v5, v0). Again, the 2-trail from v7 to v0 gives us a new

edge which must be v7 ∼ v5. We also must have a 2-trail from v8 to v6
which must pass through v4. But since v4 must be at distance ≤ 2 from v2,

then the adjacency between v4 and v6 must be realized by the edge v4 ∼ v6
(v0, v2 and v7 are complete). Moreover, since v6 is full-edges, the 2-trail from

v2 to v8 must contain the arc (v6, v8). Therefore, v4 is full-edges and the

connection between v8 and v4 cannot be an edge and thus is an arc (v8, v4)

which implies that v8 ∼ v5 is an edge. To complete the graph, it suffices to

note that to reach v4 to v3 by a 2-trail, the only possibility is to add the arc

(v4, v9). Then, the mapping v0 7→ u′0, v1 7→ u′3, v2 7→ u′2, v3 7→ u1, v4 7→ u′1,

v5 7→ u4, v6 7→ u′4, v7 7→ u3, v8 7→ u0 and v9 7→ u2 between the set V of

vertices of G and the set U ∪U ′ described in Section 1 gives an isomorphism

between the graph obtained here and the graph depicted in Fig. 1.

So, in case I, G must be isomorphic to the already known graph. It follows that



January 11, 2018 16:30 PREPRINT FILE preprint

8 Dominique Buset, Nacho López and Josep M. Miret.

v1 v3v2

v0

v4

v5 v6 v7 v8

v9

v1 v3v2

v0

v4

v5 v6 v7 v8

v9

Case (Ia) Case (Ib)

Fig. 5. The two cases derived from the first case of the proof. Dashed lines mean that such

connection could be either an arc or an edge.

in Case II, we may assume that there is no oriented triangle with at least one edge.

We will see that in this case G cannot exist.

Case II: Assume there is no arc at distance 1 from v0, then, to reach v0 from

v3 by a 2-trail, there must exist a directed cycle v3, v7, v0. Since v3 must reach v1
[resp. v2], then one vertex of {v7, v8, v9} must be adjacent to v1 [resp. v2]. These

two adjacencies cannot be done simultanously by edges, since otherwise n ≤ 9, so at

least one of them is an arc, and by symmetry we can assume that this arc is (v8, v2)

(v7 is already full-arc). If the 2-trail from v3 to v1 passes through a vertex x, then

x ∼ v1 is either an arc and then x = v9, or an edge and then x ∈ {v8, v9} (note that

Lemma 1.1 implies x 6= v7). Let us examine those two cases:

(IIa) Let x ∼ v1 be an edge. Since n = 10, it follows that the remaining arcs and

edge starting at v1 and v2 cannot be incident to {v7, v8, v9}, and it is not

restrictive to assume that (v1, v4), (v2, v5) are the arcs and v2 ∼ v6 is the

edge (see Fig. 6). However, there must exist a 2-trail from v7 to v8 [resp.

v9], and by Lemma 1.1 (a), v7 (which is full-arc) is not adjacent to either

v8 or v9. Therefore, there is one vertex y such that v7 ∼ y and y connects

to v8. The vertex y cannot be v6, because it would imply the existence of

the arc (v6, v8) which lead us to case I, already treated. So y ∈ {v4, v5}. If

x = v8, that is, v1 ∼ v8 is an edge, then (y, v8) is an arc, which implies

that y = v5 (to avoid the already treated case I with arcs (v1, v4), (v4, v8)

and edge v8 ∼ v1) and v7 ∼ v5 must be an edge of G. But then, we must

connect v1 to every vertex into the set {v5, v6, v7, v9} by 2-trail which must

pass through v4 (v1, v0, v8 are complete). However, we can connect v4 to at

most 3 vertices and not 4 which gives us a contradiction. Hence, x = v9, that

is, v1 ∼ v9 is an edge of G. Therefore, there is a vertex y′ ∈ {v5, v6} such

that v7 ∼ y′ and y′ connects to v9 (note that y′ = v4 falls into case I with

the arcs (v1, v4), (v4, v9) and the edge (v1, v9)). So v9 is full-edges and we

already knew that y ∈ {v4, v5}. Therefore, to go from v9 to v2 by a 2-trail,
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the unique out-arc from v9 must have its extremity in {v2, v6} − {y′} (v0, v4
and v8 are eliminated because of Lemma 1.1 (a) and (c) and Case I). But

if (v9, v6) is an arc, then y′ = v5 which shall be full-arc and so in order to

reach v9 to v5 by a 2-trail, we must have an edge between v5 and one of the

vertices in {v1, v3, v6} which is a contradiction. It follows that (v9, v2) must

be an arc of G. In order to avoid the case already treated, we get y′ 6= v6
which implies y′ = v5, that is, we have the edge v7 ∼ v5. But then, we must

connect v1 to vertices {v5, v6, v7, v8} by 2-trails which must pass through

vertex v4, and there are only 3 connections, which gives us a contradiction

for this case.

(IIb) Let (x, v1) be an arc. This arc must be (v9, v1). Vertices v4, v5, v6 must have a

connection coming from v1 and v2. We can assume that the arc and an edge

from v1 are (v1, v4) and v1 ∼ v5, respectively, and v2 ∼ v6 with an arc or an

edge. Moreover, since v9 must be at distance 2 from v1, there must exist an

arc (v4, v9). Also, there must exist a vertex x ∈ {v4, v5, v9} joined with an

edge or an arc with origin v2 (the other vertices are impossible because of

Lemma 1.1). Again we have two cases to take into account:

If v2 ∼ x is an edge, then x ∈ {v4, v9} and (v2, v6) is an arc. However,

if v2 ∼ v4 is an edge, then v1 must reach respectively v6, v7, v8 by 2-trails

which must contain the 3 remaining unknown arcs and edges from v4 and

v5. By Lemma 1.1 the unique edge with v4 as origin, must be v4 ∼ v7, and

then the arc/edge with origin v5 must have for extremities v6 and v8. Since

v8 must be related to v1 by a 2-trail, the only edge from v8 to construct this

2-trail must be v8 ∼ v5 and then (v5, v6) must be an arc. It follows that the

two last edges issue from v6 must have for extremities v7 and v9, respectively

(there is no edge between v7 and v9, and all the other vertices are full-edges).

Therefore, there is no possibility to reach v5 from v2 by a 2-trail, which is

a contradiction. Since v2 ∼ v4 cannot be an edge of G, the vertex x = v9
is now complete. However, v2 must be connected to v4, v5, v7, v8 by 2- trails

which must all pass through v6, and this is again impossible.

If v2 ∼ x is an arc, then v2 ∼ v6 is an edge. In order to connect v2
to v8 by a 2-trail, x ∼ v8 must be an arc, since otherwise the arcs (v2, x),

(v8, v2) and the edge (x, v8) would take us to case I, already treated). v4 and

v9 are already full-arc, so the only possibility is x = v5. There must exist

a 2-trail from v1 to reach v6, and then we must add the edge v4 ∼ v6 (v5
cannot be used because we would be in case I already treated). Then, there

is no possibility for the last edge incident to v9, which leads us to a final

contradiction.
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v1 v3v2

v0

v4 v5 v6 v7 v8 v9

v1 v3v2

v0

v4 v5 v6 v7 v8 v9

Case (IIa) Case (IIb)

Fig. 6. The two cases derived from the second case of the proof. Dashed lines means that such

connection could be either an arc or an edge.
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