EXAMPLES OF CENTER CYCLICITY BOUNDS
USING THE REDUCED BAUTIN DEPTH

ISAAC A. GARCÍA

Abstract. There is a method for bounding the cyclicity of non-degenerate monodromic singularities of polynomial planar families of vector fields X_λ which can work even in case that the Poincaré first return map has associated a non-radical Bautin ideal B. The method is based on the stabilization of the integral closures of an ascending chain of polynomial ideals in the ring of polynomials in the parameters λ of the family that stabilizes at B. In this work we use computational algebra methods to provide an explicit example in which the classical procedure to find the Bautin depth of B fails but the new approach is successful.

1. Introduction and statement of the main results

This work deals with real planar polynomial differential families $\dot{x} = -y + P(x, y; \lambda)$, $\dot{y} = x + Q(x, y; \lambda)$ being $P, Q \in \mathbb{R}[x, y]$ polynomials without independent and linear terms depending also polynomially in $\lambda \in \mathbb{R}^p$, the finite number of parameters of the family. As usual we consider $X_\lambda = (-y + P(x, y; \lambda)) \partial_x + (x + Q(x, y; \lambda)) \partial_y$, the associated vector field to the family. Under these hypotheses, the full family X_λ possesses a nondegenerate isolated monodromic singularity at the origin (nearby trajectories of X_λ rotate about it) having associated nonzero pure imaginary eigenvalues. Hence $(0, 0)$ is either a center or a focus.

Throughout this work we focus in the local sixteenth Hilbert problem at the origin of X_λ, or equivalently, we want to study the cyclicity $\text{Cyc}(X_\lambda, (0, 0))$ of the origin in family X_λ. Roughly speaking, the cyclicity $\text{Cyc}(X_\lambda, (0, 0))$ is defined as the maximum number of small amplitude limit cycles (isolated periodic orbits) that can bifurcate from $(0, 0)$ in family X_λ as λ varies.

2010 Mathematics Subject Classification. 37G15, 37G10, 34C07.

Key words and phrases. Center, polynomial vector fields, Bautin ideal, cyclicity, limit cycle.

The first author is partially supported by a MINECO grant number MTM2014-53703-P and by a CIRIT grant number 2014 SGR 1204.
Let Σ be a transversal section to the flow of X_λ in a neighborhood of the origin parameterized by $h \in [0, \hat{h})$ with endpoint $h = 0$ at the origin. Then we define, as usual, the displacement map $d : \Sigma \times \mathbb{R}^p \to \Sigma$ via $d(h; \lambda) = \Pi(h; \lambda) - h$, where Π denotes the Poincaré first return map which is well defined on Σ. Since $d(h; \lambda)$ is analytic at $h = 0$, we can expand in convergent power series $d(h; \lambda) = \sum_{i \geq 3} v_i(\lambda)h^i$ about $h = 0$. The coefficients v_i in this Taylor series are called Poincaré–Liapunov quantities and it can be seen that $v_i \in \mathbb{R}[\lambda]$. The reader can consult the book [12] for a detailed explanation about this construction.

Let \mathcal{B} be the Bautin ideal associated to the singularity at the origin of X_λ. Thus \mathcal{B} is the ideal in the polynomial ring $\mathbb{R}[\lambda]$ generated by all the Poincaré–Liapunov quantities. For each $j \in \mathbb{N}$ with $j \geq 3$, we define $B_j = \langle v_3(\lambda), \ldots, v_j(\lambda) \rangle$, the ideal in $\mathbb{R}[\lambda]$ generated by the first $j - 2$ Poincaré–Liapunov quantities. It is well-known that $v_{2j} \in B_{2j-1}$ for any subindex. Since \mathcal{B} is Noetherian, the Hilbert’s basis Theorem asserts that it is finitely generated, see for example [4]. Hence there is $k \in \mathbb{N}$, the smallest positive integer such that the ascending chain of ideals $B_3 \subseteq B_5 \subseteq \cdots \subseteq B_k = \mathcal{B}$ stabilizes. The paper [8] refers to k as the Bautin index of \mathcal{B}.

Following [12] we recall here the notion of minimal basis of \mathcal{B} with respect to the ordered Poincaré–Liapunov quantities (and call it along this work minimal basis formed by Poincaré–Liapunov quantities omitting, for simplicity, any mention to the order). Now we give this definition and see from it that we attain uniqueness of the cardinality of this minimal basis.

Definition 1. The basis $B = \{v_{j_1}(\lambda), \ldots, v_{j_m}(\lambda)\}$ of \mathcal{B} with order $3 \leq j_1 < \cdots < j_m$ is called a minimal basis formed by Poincaré–Liapunov quantities when the following properties hold:

(i) $v_i(\lambda) \equiv 0$ for $3 \leq i \leq j_1 - 1$ and $v_{j_1}(\lambda) \not\equiv 0$;

(ii) For $i \geq j_1 + 1$, if $v_i(\lambda) \not\in B_{i-1}$, then $v_i(\lambda) \in B$.

The cardinality m of a minimal basis formed by Poincaré–Liapunov quantities of \mathcal{B} is termed the Bautin depth of \mathcal{B} in [10].

Hopf bifurcations at foci are easy to analyze. In case the origin be a focus of X_{λ^*} there is some integer $\ell \geq 1$ (called the order of the focus) such that $v_3(\lambda^*) = \cdots = v_{2\ell}(\lambda^*) = 0$ but $v_{2\ell+1}(\lambda^*) \neq 0$. In that case $d(h; \lambda^*) = \sum_{i \geq 2\ell+1} v_i(\lambda^*)h^i \sim h^{2\ell+1}$ and therefore, for $||\lambda - \lambda^*|| \ll 1$, the cyclicity $\text{Cyc}(X_{\lambda^*}, (0, 0)) \leq \ell - 1$, see Proposition 6.1.2 in [12].

On the contrary, Hopf bifurcations from a center are harder to analyze and, from now, we will focus on this kind of bifurcations. By definition, X_{λ^*} possesses a center at the origin when $d(h; \lambda^*) \equiv 0$, or equivalently when $v_i(\lambda^*) = 0$ for all $i \in \mathbb{N}$. In the seminal paper
it is shown that, for parameters $\|\lambda - \lambda^*\| \ll 1$, we can express
\[d(h, \lambda) = \sum_{j=1}^{m} v_j(\lambda) [1 + \psi_j(h, \lambda)] h^j, \]
where m is the Bautin depth of B, $\{v_1, \ldots, v_m\}$ a minimal basis of B, and ψ_j are certain analytic functions, see also [12, 13]. From here it is not difficult to prove (see Lemma 6.1.6 and Theorem 6.1.7 of [12]) that $\text{Cyc}(X_\lambda, (0, 0)) \leq m - 1$ when $\|\lambda - \lambda^*\| \ll 1$.

Remark 2. Usually, the monodromic singularity is unfolded with the more general family $\hat{X}_\lambda = (y - \lambda_1 x + P(x, y; \lambda)) \partial_x + (x + \lambda_1 y + Q(x, y; \lambda)) \partial_y$ that permits a strong focus at the origin when the additional parameter $\lambda_1 \neq 0$. Then one more limit cycle can bifurcate from the origin and the above focus and center cyclicity bounds become now $\text{Cyc}(\hat{X}_\lambda, (0, 0)) \leq \ell$ and $\text{Cyc}(\hat{X}_\lambda, (0, 0)) \leq m$, respectively.

For a field K we denote by $V_K(I) \subset K$ the affine variety associated to a polynomial ideal I in $K[x]$ with $x \in K$. Therefore $V_K(I)$ is the set of common zeros in K of all elements of I. Also, the radical of I is defined as the ideal $\sqrt{I} = \{r \in R : r^n \in I$ for some $n \in \mathbb{N}\}$. Finally, I is called radical if $I = \sqrt{I}$. See [4] for more details.

The center problem associated to the origin of family X_λ consists in determining the center variety $V^R(B)$. This means that X_λ^* has a center at the origin if and only if $\lambda^* \in V^R(B)$. We recall here that it may happen $V^R(B) = V^R(B_r)$ for some integer r but $V_C(B) \neq V_C(B_r)$.

The computation of the Bautin depth m of B is, in general, a difficult task. Here we present a method that allows us to determine m in radical Bautin ideals under some conditions. It is proved in [7] for some kind of monodromic nilpotent singularities but it can also be applied to our framework in the context of nondegenerate singularities.

Theorem 3 ([7]). Assume that the ideal $B_r \subseteq B$, has a minimal basis formed by Poincaré–Liapunov quantities of cardinality m. Suppose that B_r is radical and that the equality of complex varieties $V^C(B) = V^C(B_r)$ holds. Then $B = B_r$ and, in particular, m is the Bautin depth of B.

Of course, Theorem 3 cannot be applied when B is non-radical. In this case, an upper bound of $\text{Cyc}(X_\lambda, (0, 0))$ not based on the computation of the Bautin depth can be established following the ideas of the work [8]. Before stating the results of [8] we need the following definition, see the books [9] and [14] for more details.

Definition 4. Let R be an arbitrary Noetherian ring and I an ideal in R. An element $r \in R$ is said to be integral over I if there exist $n \in \mathbb{N}$ and elements $b_i \in I$ such that $r^n + b_1 r^{n-1} + b_2 r^{n-2} + \cdots + b_n = 0$. The
set of all elements of R that are integral over \mathcal{I} is called the integral closure of \mathcal{I} and is denoted by $\bar{\mathcal{I}}$. It follows that $\bar{\mathcal{I}}$ is an ideal such that $\mathcal{I} \subseteq \bar{\mathcal{I}} \subseteq \sqrt{\mathcal{I}}$.

In [8], the authors introduce the so-called reduced Bautin index \bar{k} of \mathcal{B} defined as the smallest integer such that the integral closure $\bar{\mathcal{B}}_k$ of \mathcal{B}_k is just $\bar{\mathcal{B}}$, the integral closure of the Bautin ideal \mathcal{B}. More specifically, [8] consider the ascending chain of integral closures $\mathcal{B}_3 \subseteq \mathcal{B}_5 \subseteq \cdots \subseteq \mathcal{B}_k = \bar{\mathcal{B}}$. The deep result in [8] concludes that $\text{Cyc}(\mathcal{X}_\lambda, (0,0)) \leq \bar{k}$. Notice that $\bar{k} \leq k$ since $\mathcal{B}_j \subseteq \bar{\mathcal{B}}_j$ for any $j \in \mathbb{N}$.

Finally, in [5] the reduced Bautin depth $\kappa \in \mathbb{N}$ of the Bautin ideal \mathcal{B} is defined as the cardinality of a minimal basis formed by Poincaré–Liapunov quantities of the ideal \mathcal{B}_k where \bar{k} is the reduced Bautin index of \mathcal{B}. Also in [5] it is proved the cyclicity bound $\text{Cyc}(\mathcal{X}_\lambda, (0,0)) \leq \kappa - 1$. Observe that this is the best cyclicity bound since $\kappa \leq \bar{k}$ and also $\kappa \leq m$.

The reduced Bautin depth κ is also difficult to obtain in general. From the computational point of view, in [5] is proved the following result to determine κ in some specific cases.

Theorem 5 ([5]). Assume that the ideal $\mathcal{B}_r \subseteq \mathcal{B}$, has a minimal basis formed by Poincaré–Liapunov quantities of cardinality κ. Suppose that the integral closure $\bar{\mathcal{B}}_r$ is radical and that the equality of complex varieties $\mathbb{V}_C(\mathcal{B}) = \mathbb{V}_C(\mathcal{B}_r)$ holds. Then κ is the reduced Bautin depth of \mathcal{B}.

The aim of this paper is to see how Theorem 3 and Theorem 5 complement each other because it is sometimes possible to use one but not the other. Thus we will provide an explicit example in the forthcoming Theorem 10 in which \mathcal{B}_r is not radical but its integral closure $\bar{\mathcal{B}}_r$ is radical. Therefore Theorem 3 cannot be used but Theorem 5 can be applied. This example will show the usefulness of the theory presented in [5]. We want to mention here that, although there are two implementations for computing the integral closure of an ideal (normalI in the library reesclos.lib of SINGULAR and integralClosure in the IntegralClosure package of MACAULAY2), they are not optimized to perform computations with a large number of generators and variables. This has led us to change our strategy as explained in §3 in order to achieve the desired example. But before, §2 is devoted to obtain the cyclicity of the polynomial normal form of a non-degenerate weak focus.
Let us consider a polynomial family $\Phi(x, y) = (x + \cdots, y + \cdots)$ that brings the considered field \mathcal{Y} to the Birkhoff normal form $\Phi, \mathcal{Y} = (-y + S_1(r^2)x - S_2(r^2)y)\partial_x + (x + S_2(r^2)x + S_1(r^2)y)\partial_y$ where S_1 and S_2 are smooth functions of $r^2 = x^2 + y^2$.

The next result about the cyclicity of polynomial fields \mathcal{Y} of degree $\max\{2m + 1, \deg S_2\}$ can be obtained applying Theorem 3.

Theorem 6. Let us consider a polynomial family

$$
\begin{align*}
\dot{x} &= -y + S_1(r^2; \lambda)x - S_2(r^2; \lambda)y, \\
\dot{y} &= x + S_2(r^2; \lambda)x + S_1(r^2; \lambda)y,
\end{align*}
$$

where $S_j \in \mathbb{R}[r^2]$ are polynomials on $r^2 = x^2 + y^2$ without independent term. Take S_2 arbitrary and $S_1(r^2; \lambda) = \sum_{i=1}^{m} \lambda_i r^{2i}$. Then the Bautin ideal \mathcal{B} has a minimal basis formed by Poincaré–Liapunov quantities given by $\{\lambda_1, \lambda_2, \ldots, \lambda_m\}$. In particular, the Bautin depth of \mathcal{B} is m and the cyclicity is $\text{Cycl}(\mathcal{X}_\lambda, (0, 0)) = m - 1$.

Proof. Let $v_j \equiv \tilde{v}_j \mod \mathcal{B}_{j-1}$, that is, \tilde{v}_j will denote the remainder of v_j upon division by a Gröbner basis of the ideal \mathcal{B}_{j-1}. It is easy to check that, $\tilde{v}_{2j} \equiv 0$ for any $j \in \mathbb{N}$, $\tilde{v}_{2i+1} = \lambda_i$ for any $i = 1, \ldots, m$.

Also we know that (1) has a center at the origin if and only if $S_1 \equiv 0$. Therefore $\mathcal{V}_R(\mathcal{B}) = \mathcal{V}_R(\mathcal{B}_{2m+1})$ where a minimal basis of \mathcal{B}_{2m+1} is

$$\{\tilde{v}_3, \tilde{v}_5, \ldots, \tilde{v}_{2m+1}\} = \{\lambda_1, \lambda_2, \ldots, \lambda_m\}.$$

But it remains to prove that actually $\tilde{v}_{2i+1} \equiv 0$ when $i > m$, or equivalently that $\mathcal{B} = \mathcal{B}_{2m+1}$.

First we observe that \mathcal{B}_{2m+1} is a monomial ideal since it is generated by monomials. It is well known (see [4]) that monomial ideals are radical if and only they are generated by square-free monomials. Since this is our case, we obtain that \mathcal{B}_{2m+1} is a radical ideal in the ring $\mathbb{R}[\lambda]$.

On the other hand, $v_j \in \mathbb{R}[\lambda]$ where $\lambda = (\lambda_1, \ldots, \lambda_m, \nu)$ being $\nu \in \mathbb{R}^n$ the parameters associated to the coefficients of S_2. We know that any center at the origin of (1) with arbitrary $\lambda^* = (0, \ldots, 0, \nu^*) \in \mathcal{V}_R(\mathcal{B})$ is of the form $\dot{x} = -y(1 + S_2(r^2; \lambda^*)), \dot{y} = x(1 + S_2(r^2; \lambda^*))$, hence it is time–reversible, i.e., invariant under the discrete symmetry $(x, y, t) \mapsto (x, -y, -t)$. For the strata of time–reversible centers, in [6] it is proved that $\mathcal{V}_R(\mathcal{B}) = \mathcal{V}_R(\mathcal{B}_{2m+1})$ implies the equality $\mathcal{V}_C(\mathcal{B}) = \mathcal{V}_C(\mathcal{B}_{2m+1})$ of complex varieties.

From Theorem 3 we can conclude that $\mathcal{B} = \mathcal{B}_{2m+1}$ and that the Bautin depth of \mathcal{B} is just m, hence $\text{Cycl}((\mathcal{X}_\lambda, (0, 0))) \leq m - 1$.

2. The cyclicity of the polynomial normal form

Let us consider an analytic vector field $\mathcal{Y} = (-y + \cdots)\partial_x + (x + \cdots)\partial_y$ having a non-degenerate weak focus at the origin. In [2], it is shown the existence of a smooth and non–flat transformation $\Phi(x, y) = (x + \cdots, y + \cdots)$ that brings the considered field \mathcal{Y} to the Birkhoff normal form $\Phi, \mathcal{Y} = (-y + S_1(r^2)x - S_2(r^2)y)\partial_x + (x + S_2(r^2)x + S_1(r^2)y)\partial_y$.

The cyclicity is given by monomials. It is well known (see [4]) that monomial ideals are...
Since additionally the generators λ_i with $i = 1, \ldots, m$ are independent they can be chosen freely so that we can take them as $|\lambda_1| \ll |\lambda_2| \ll \cdots \ll |\lambda_1| \ll 1$ alternating signs as $\lambda_j \lambda_{j+1} < 0$ for $j = 1, \ldots, m - 1$. Then using standard arguments of bifurcation theory we deduce that $\text{Cycl}(x, (0, 0)) = m - 1$. \hfill \square

3. CONSTRUCTION OF THE EXAMPLES

We consider the polynomial Birkhoff normal form
\begin{align*}
\dot{x} &= -y + S_1(r^2; \lambda)x - S_2(r^2; \lambda)y, \\
\dot{y} &= x + S_2(r^2; \lambda)x + S_1(r^2; \lambda)y, \\
\end{align*}
where $S_j \in \mathbb{R}[r^2]$ are polynomials on $r^2 = x^2 + y^2$ without independent term. Now we take $S_1(r^2; \lambda) = \sum_{i=1}^{n} \mu_i(\lambda)r^{2i}$ with polynomial coefficients $\mu_i \in \mathbb{R}[\lambda]$ and $\lambda \in \mathbb{R}^p$ for $i = 1, \ldots, n$. From the proof of Theorem 6 it follows that $V_R(B) = V_R(B_{2n+1})$ where $B_{2n+1} = \langle v_3(\lambda), v_5(\lambda), \ldots, v_{2n+1}(\lambda) \rangle = \langle \mu_1(\lambda), \mu_2(\lambda), \ldots, \mu_n(\lambda) \rangle$ and also that $V_C(B) = V_C(B_{2n+1})$.

Now we select the polynomials $\mu_i(\lambda)$ such that $\sqrt{g} = B_{2n+1}$. This step is the most technical and we must be careful in this selection.

Definition 7. Given two ideals $J \subset I$, J is said to be a reduction of I if there exists a non-negative integer n such that $I^{n+1} = J I^n$. It is known that if I is finitely generated, then J is a reduction of I if and only if $\overline{J} = \overline{I}$, see [9].

Remark 8. Recall that in a polynomial ring in at least three variables there exist prime ideals (non-maximal and not of height one) which can have very many generators. So we take $p \geq 3$ and we construct P, a prime ideal in $\mathbb{R}[\lambda]$, with $\lambda \in \mathbb{R}^p$, generated minimally by at least $p + 2$ generators. By a theorem of Katz [11], see also Theorem 8.7.3 of the book [9], P has a reduction ideal J generated by at most $p + 1$ generators. By the generator count, $J \neq P$, but the integral closure is $\overline{J} = P = P$, where the first equality follows from the characterization of reductions and the last because prime ideals are integrally closed. Therefore we conclude that \overline{J} is a radical ideal since prime ideals are radical.

Here we describe a way to get such prime ideals P. We will construct P as the kernel of a polynomial map from the polynomial ring $\mathbb{R}[\lambda]$ to the polynomial ring $\mathbb{R}[\nu]$ where $\nu \in \mathbb{R}^s$ and $1 \leq s \leq p - 2$. Thus we take $P = \ker f$, a prime ideal in $\mathbb{R}[\lambda]$.\n
Turning to our original problem, we let B_{2n+1} to be an ideal reduction of $ker f$. Therefore we know that B_{2n+1} will be radical as desired. It
only remains to find the generators (at most $p + 1$ according with Katz’s Theorem) of \mathcal{B}_{2n+1}, see Remark 11 for the construction of an explicit example. Additionally we have to check that $\mathcal{B}_{2n+1} \neq \sqrt{\mathcal{B}_{2n+1}}$, hence we cannot apply Theorem 3 to get the Bautin depth m of \mathcal{B}. Let $\kappa \leq n$ be the cardinality of a minimal basis of \mathcal{B}_{2n+1} formed by Poincaré–Liapunov quantities. Using Theorem 5 we get that κ is just the reduced Bautin depth of the Bautin ideal \mathcal{B}.

Remark 9. Using MACAULAY2 we construct the following example with $p = 4$. Take $\lambda = (a, b, c, d) \in \mathbb{R}^4$ and let $f : \mathbb{R}[\lambda] \to \mathbb{R}[a, b]$ be defined by $a \mapsto 2 + a^3 - a^2b$, $b \mapsto b^4 - a^2b^2$, $c \mapsto a^3b^2$ and $d \mapsto a^4$. Then $\ker f$ is (may be not minimally) generated by 6 elements. More specifically, $\mathcal{P} := \ker f = \langle p_1, \ldots, p_6 \rangle$ with

$$p_1(\lambda) = -c^4 + 3b^2d^2 + b^3d^3 + c^2d^3,$$

$$p_2(\lambda) = 16bc - 32abc + 24a^2bc - 8a^3bc + a^4bc + 16cd - 32acd + 24a^2cd - 8a^3cd + a^4cd + 16c^2d - 16acd^2 + 4a^2c^2d + c^3d + 16b^2d^2 - 16ab^2d^2 - b^2cd^2 - 3bcd^3 - cd^4,$$

$$p_3(\lambda) = -16c^2 + 32ac^2 - 24a^2c^2 + 8a^3c^2 - a^4c^2 + 16bd^2 - 32abd^2 + 24a^2bd^2 - 8a^3bd^2 + a^4bd^2 - 16bcd^2 + 16abcd^2 - 4a^2bcd^2 + bc^2d^2 - 16cd^3 + 16acd^3 - 4a^2cd^3 - 2b^2d^3 - bd^5,$$

$$p_4(\lambda) = 16c^2 - 32ac^2 + 24a^2c^2 - 8a^3c^2 + a^4c^2 + 16c^3 - 16ac^3 + 4a^2c^3 - c^4 + 16b^2d - 32ab^2d + 24a^2b^2d - 8a^3b^2d + a^4b^2d - 16bcd^2 + 16abcd^2 + 3bc^2d^2 + c^2d^3 - b^2d^4,$$

$$p_5(\lambda) = 64b^2 - 192ab^2 + 240a^2b^2 - 160a^3b^2 + 60a^4b^2 - 12a^5b^2 + a^6b^2 + 64bd - 192abd + 240a^2bd - 160a^3bd + 60a^4bd - 12a^5bd + a^6bd - 60bc^2d + 15a^2bc^2d + 4bc^3d - 4b^3d - 4ab^3d - a^2b^3d^2 + 4bc^2d^3 + 52b^2d^3 - 52ab^2d^3 + 13a^2b^2d^3 - 12b^2cd^3 - 4bd^4 + 4abd^4 - a^2bd^4 - 16bcd^4 - 4cd^5,$$

$$p_6(\lambda) = 256 - 1024a + 1792a^2 - 1792a^3 + 1120a^4 - 448a^5 + 112a^6 - 16a^7 + a^8 + 256c - 768ac + 960a^2c - 640a^3c + 240a^4c - 48a^5c + 4a^6c + 208c^2 - 416ac^2 + 312a^2c^2 - 104a^3c^2 + 13a^4c^2 + 192bcd^2 - 192abcd^2 + 48a^2cd^2 - 13bc^2d^2 - 32d^3 + 64ad^3 - 48a^2d^3 + 16a^3d^3 - 2a^4d^3 + 176cd^3 - 176acd^3 + 44a^2cd^3 - c^2d^3 + 28b^2d^4 + 16bd^5 + d^6.$$

Katz’s theorem guarantees the existence of a reduction \mathcal{J} of \mathcal{P} generated by at most 5 elements. We will generate \mathcal{J} by taking into
account that any five sufficiently general elements of \(P \) will do it. So, we ask \textsc{Macaulay2} for random rational numbers \(\ell_{ij} \in \mathbb{Q} \) to stick as coefficients in the five linear combinations

\[
\mu_i(\lambda) = \sum_{j=1}^{6} \ell_{ij} p_j(\lambda), \quad i = 1, \ldots, 5.
\]

With the matrix choice

\[
L = (\ell_{ij}) = \begin{pmatrix}
5/2 & 3/4 & 6/7 & 3/5 & 1/5 & 1/2 \\
5/4 & 1 & 7/9 & 1/2 & 5/4 & 2 \\
8 & 2 & 1 & 8/5 & 1 & 10/9 \\
3/4 & 2/3 & 9/4 & 3/5 & 2 & 3/4 \\
5/3 & 10/7 & 1/2 & 5/4 & 3 & 10/9 \\
\end{pmatrix},
\]

the ideal \(J = \langle \mu_1, \ldots, \mu_5 \rangle \) generated by those five general elements turns out to be a reduction of \(P \) since \textsc{Macaulay2} computations show that \(PJ = P^2 \) with \(J \subsetneq P \). Finally, using for example \textsc{Singular}, we check that \(\sqrt{J} \neq J \). A \textsc{Macaulay2} code is the following:

\[
\text{R=QQ[a,b,c,d];} \\
f=\text{map(R,R,2+a^3-a^2*b,b^4-a^2*b^2,a^3*b^3,a^4);} \\
P=\text{ker f;} \\
M=\text{transpose mingens P;} \\
m=\text{rank target M;} \\
LL=\text{random(R^5,R^m);} \\
J=\text{ideal flatten entries (LL*M);} \\
J==P \\
P*J==P^2 \\
\]

Now we can explicitly show the following example.

Theorem 10. Let us consider a polynomial Birkhoff normal form (2) with parameters \(\lambda = (a, b, c, d) \in \mathbb{R}^4 \), \(S_2 \) arbitrary and \(S_1(r^2; \lambda) = \sum_{i=1}^{5} \mu_i(\lambda)^{r^2} \) with polynomial coefficients \(\mu_i \in \mathbb{R}[\lambda] \). Take the linear combinations \(\mu_i(\lambda) = \sum_{j=1}^{6} \ell_{ij} p_j(\lambda) \) with rational coefficients \(\ell_{ij} \) and polynomials \(p_j(\lambda) \) given in (4) and (3), respectively. Then, the Bautin ideal \(B \) associated to the origin of (2) has reduced Bautin depth \(\kappa = 5 \).

Proof. From the proof of Theorem 6 we have \(B_{11} = \langle v_3, v_5, v_7, v_9, v_{11} \rangle = \langle \mu_1, \ldots, \mu_5 \rangle \) and, since all the centers of (2) are time–reversible, from the results of [6], the equality \(V_\mathbb{C}(B) = V_\mathbb{C}(B_{11}) \) holds. But \(\sqrt{B_{11}} \neq B_{11} \) so that the hypotheses of Theorem 3 fail and we cannot determine the Bautin depth \(m \) of \(B \) using it. We only know that \(m \geq 5 \). Nevertheless, the integral closure \(\bar{B}_{11} \) of \(B_{11} \) satisfies \(\sqrt{\bar{B}_{11}} = \bar{B}_{11} \) and therefore using Theorem 5 we conclude that the reduced Bautin depth \(\kappa \) of \(B \) is \(\kappa = 5 \) finishing the proof. \(\square \)
Remark 11. Sometimes it is possible to calculate the cyclicity in each irreducible component of the center variety following an interesting approach based on ideas from [3]. We sketch this point of view. Let us assume that family X_λ has a center at the origin for $\lambda = \lambda^* \in V_\mathbb{R}(B)$. Also we suppose that $\text{rank}(J^k_\lambda) = k$ where J^k_λ is the Jacobian of the polynomial map $\lambda \mapsto (v_{i_1}(\lambda), v_{i_2}(\lambda), \ldots, v_{i_k}(\lambda))$ evaluated at $\lambda = \lambda^*$, where $\{v_{i_1}(\lambda), v_{i_2}(\lambda), \ldots, v_{i_k}(\lambda)\}$ is a minimal basis of the ideal B_r for some $r \geq k$. Then, $\text{Cyc}(X_\lambda, (0,0)) \geq k - 1$. If additionally, $\lambda^* \in V_\mathbb{R}(I) \subset V_\mathbb{R}(B)$, a component of the center variety of codimension k, then $\text{Cyc}(X_\lambda, (0,0)) = k - 1$.

Particularizing to the family analyzed in Theorem 10, the cyclicity bound $\text{Cyc}(X_\lambda, (0,0)) \leq 4$ is proved. We consider the map $\lambda \mapsto (v_3(\lambda), v_5(\lambda), v_7(\lambda), v_9(\lambda), v_{11}(\lambda))$. Then J^5_λ is a 5×4 matrix, hence under the full rank condition only 3 local limit cycles can bifurcate taking into account only the linear parts at λ^* of the Poincaré-Liapunov quantities. Some particular cases are listed below:

- $\lambda^* = (2, b, 0, 0) \in V_\mathbb{R}(B)$ with associated null matrix $J^5_{\lambda^*}$;
- If $d^3 = 16 - 32a + 24a^2 - 8a^3 + a^4$, then $\lambda^* = (a, 0, 0, d) \in V_\mathbb{R}(B)$ and $\text{rank } J^5_{\lambda^*} = 2$.

Acknowledgements

I wish to extend my sincere thanks to Prof. Irena Swanson from the Department of Mathematics at Reed College for the great kindness shown to me. She explained to me all the necessary algebraic background needed in order to explicitly find generators of polynomial ideals having radical integral closure.

References

[1] N.N. Bautin, On the number of limit cycles which appear with the variations of the coefficients from an equilibrium point of focus or center type. AMS Translations-Series 1, 5, 1962, 396–413 [Russian original: Math. Sbornik, 30, 1952, 181–196].

Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69, 25001 Lleida, Spain
E-mail address: garcia@matematica.udl.cat