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Abstract.  In order to ensure a more widespread implementation of video-on-
demand (VoD) services, it is essential that the design of cost-effective large-
scale VoD (LVoD) architectures be able to support hundreds of thousands of 
concurrent users. The main keys for the designing of such architectures are high 
streaming capacity, low costs, scalabilit y, fault tolerance, load balance, low 
complexity and resource sharing among user requests. To achieve these 
objectives, we propose a distributed architecture, called double P-Tree, which is 
based on a tree topology of independent local networks with proxies. The proxy 
functionality has been modified in such a way that it works at the same time as 
cache for the most-watched videos, and as a distributed mirror for the 
remaining videos. In this way, we manage to distribute main server 
functionality (as a repository of all system videos, server of proxy-misses and 
system manager) among all l ocal proxies. The evaluation of this new 
architecture, through an analytical model, shows that double P-Tree architecture 
is a good approach for the building of scalable and fault-tolerant LVoD 
systems. Experimental results show that this architecture achieves a good 
tradeoff between effective bandwidth and storage requirements.  

1 Introduction 

Video-on-demand (VoD) refers to video services in which a user is able to request 
any video content at any time from a server. This technology is important for many 
multimedia applications such as distance learning, digital li braries, videoconferences, 
Internet, TV broadcasting, and video-on-demand systems. 

The service of a video request involves a high volume of information with real-time 
requisites, very strict quality of service (QoS) levels and great disk bandwidths. These 
requirements imply that a multimedia server can support only a limited number of 
users depending on its capacity. Moreover, VoD system capacity is also restricted by 
available network bandwidth, which requires a massive investment in infrastructure. 

Therefore, in order to provide VoD services to accommodate hundreds of 
thousands of concurrent users, the design of large-scale VoD architectures is required. 
In addition to high streaming capacity, the main keys for these LVoD systems are: 
− Low-cost. An LVoD system may require a high investment; therefore, it is 

imperative to reduce server, network and storage costs. 
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− Scalabilit y. It is essential that the system can adjust initial system-size to user 
requirements, but maintaining the possibilit y of easy expansion to accommodate 
more users or new services. 

− Low complexity. LVoD architecture components should not be too complex as this 
can make system implementation, design and management more diff icult. 

− Fault-tolerance. VoD systems have to continue giving service to users even if one 
or more architecture components crash. 

− Load distribution is important due to the nonuniform distribution of user requests, 
which leads to load imbalances among servers and poor utili zation of the overall 
system resources. 

− Resource sharing. Nowadays, resource sharing (broadcast, multicast, etc.) is the 
key for the design and implementation of cost-effective VoD systems. 

In order to attain an LVoD system and to accomplish the previous requirements, 
we proposed a full -distributed architecture based on a tree topology of independent 
networks with proxies. This architecture, called Double P-Tree, modifies the typical 
proxy functionality in such a way that it works at the same time as cache for the most-
watched videos, and as a distributed mirror for the remaining system videos. To 
enhance topology connectivity and to improve architecture eff iciency and fault 
tolerance, we group several local networks (brother nets) from the same level. 

This paper is organized in the following way. In section 2, we will first undertake 
an overview of the solutions proposed in the literature for the construction of LVoD 
systems. Following this, in section 3, we will describe the Double P-Tree architecture. 
In section 4, we will describe an analytical model for the architecture and in section 5 
we show its evaluation. Finally, in the last section, we will i ndicate the main 
conclusions to be drawn from our discussion, and will suggest future lines of research. 

2 Related Work 

In recent years, research into VoD systems has mainly been focused on policies that 
attempt to improve available bandwidth eff iciency. These techniques basically aim at 
increasing the number of users that can be served with a limited bandwidth. Such 
approaches are grouped into two broad policy groups: broadcasting (pyramid [14] and 
skyscraper [7]) and multicasting techniques (batching [4], patching [8], merging [5] 
and chaining [12]). Nevertheless, all of these techniques aim to improve the 
performance of available bandwidth within the system, but do not increase it.  

Currently, there are several alternatives that can be used to implement LVoD 
systems:  
• Centralized systems are the simplest approach to an LVoD system, but require high 

costs, very complex servers and are not scalable [1]. 
• Independent servers [2][13]. In these systems, users are grouped into network 

segments known as local networks; in such a way that system bandwidth is able to 
be that accumulated by each one of the individual nets. The key to the success of 
these systems is based on placing VoD servers close to clients’ nets so that these 
users do not need to access the main server, and thereby create a system of 
hierarchical servers. These systems have an unlimited scalabilit y (adding new 
servers) but with high storage costs, load imbalance and poor resource sharing. 



• Proxy-based systems [2][6]. Previous architecture involves considerable storage 
cost; as a result, certain proposals have opted for reducing the size of local servers 
in such a way that they do not store all system videos, but rather, only those with a 
higher access frequency. These servers are managed as main-server caches and are 
called proxies, just as their Internet counterparts. The main problem with these 
systems is that requests that cannot be served locally end up in the main server, 
which becomes both a bottleneck and a growth-limiting factor.  

In spite of these architectures being able to obtain a high streaming capacity, they 
do not successfully achieve all LVoD requirements, which limit their implementation. 

Current research on scalability and distributed systems are focused on server 
design and implementation [10][11], more than in the entire system. Therefore, they 
do not consider net bandwidth costs and scalability as main goal. Recently studies 
about distributed VoD architectures are oriented in the system management [9] or 
how to map the media assets onto hierarchical architectures to improve QoS in [15]. 

3 Designing a fully distributed VoD system 

In this section we present the different elements that integrate our architecture. First, 
we show the basic tree topology and the new proxy functionality; we then extend the 
tree topology, obtaining our final proposed architecture and its implementation. 

3.1 Basic Topology (P-Tree) with mirroring 

Our first approach consists of an expansion of the proxy architecture, currently 
restricted to a single level, using a tree topology that provides the system with 
unlimited scaling capacity, as well as greater flexibility when deciding on its size and 
form of growth. This topology, called Proxy-Tree (or P-Tree) presented in [3], 
consists of a series of levels, in accordance with the number of local networks and the 
order of the tree (binary, tertiary, etc.). Every hierarchy level is made up of a series of 
local networks with its local-proxy and clients that forms the following tree level. 
Subsequent networks are successively hung from each one of the previous levels of 
local networks until reaching the final level.  

To decentralize the architecture we remove the main server, distributing is 
functionality (as a repository of all system videos, server of proxy-misses and system 
manager) among all local proxies. To do this, we modify proxy functionality, dividing 
the proxy storage into two parts: one of these will continue being managed as a cache, 
storing the most requested videos; and the remainder will be used for making a 
distributed mirror of system videos.  

However, this distributed architecture, with mirroring, does not achieve as much 
performance as similar systems such as one-level proxies, because it has a smaller proxy-hit 
probability and a bigger average request-service distance. This smaller proxy-hit 
probability is due to our having to distribute proxy storage into two different schemes 
(caching and mirroring), reducing the total popularity of proxy videos and affecting 
proxy efficiency.   

On the other hand, total net traffic also has an important influence on VoD system 
performance. In proxy systems, net traffic depends on request-service distance. For 



example: In one-level proxy when a local-proxy cannot serve a request, this only has 
to cross one network (level) to reach the main server, and its miss penalty is restricted 
to twice the bandwidth required for a video stream. With the mirroring scheme, the 
proxy-miss service-distance is affected by distributed-mirror capacity, which depends 
on the number of proxies situated at the same distance from the local network. If 
distance-1 distributed mirror does not have enough capacity to store all system videos, 
then some requests have to cross two or more levels to be attended, having a penalty 
of 3 or more times the bandwidth required for a stream. 

Moreover, both factors are dependent: increasing proxy-storage dedicated to 
caching implies a better proxy-hit probability but increases the average-distance 
needed to serve the proxy-misses from distributed mirroring. On the other hand, if we 
use more storage for mirroring, we reduce average mirror-service distance, but 
increase proxy-misses. 

The only way to enhance distributed-mirror capacity, without modifying caching 
performance or proxy capacity, is by augmenting the number of adjacent proxies from 
every local network. 

3.2 Improving connectivity (Double P-Tree architecture) 

One way to increase connectivity is to use a bigger tree order, such as a tertiary-tree. 
However, we have realized that bigger tree-order topologies are not a good solution 
because they have a broader last-level that is proportionally far larger than in the 
binary tree topology. These last-level networks have poor connectivity, as they have 
no child networks, and this increases service-distance. Moreover, their effect on 
system efficiency is worse because the last level is the largest of the tree topologies. 

A better solution is to increase topology connectivity by grouping several local 
networks (brothers nets) of the same level. In this way, we can increase the number of 
adjacent local networks without changing the topology size or last level width.  

Using the concept of brother networks, we have designed a new topology shown in 
Fig 1a. This topology is called Double P-Tree due to brother networks forming a 
second tree within the original proxy tree topology.   
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(a) Topology. (b) Implementation. 

Fig. 1. Double P-Tree architecture. 



The main advantage of this topology is that it considerably reduces the service-
distance of user requests. The most evident enhancement is the reduction of distance-
2 traffic. Upgrading topology connectivity, the number of distance-1 proxies is 
augmented, and increases distributed-mirror capacity and efficiency. In this way, it is 
more feasible that the distributed mirror is able to store all the system videos by using 
only distance-1 proxies, and therefore, all requests would be satisfied without the 
need to access upper levels. Double P-Tree architecture not only increases the 
efficiency of the mirroring, it also improves caching. Since the distributed mirror is 
larger, this scheme does not need as much proxy-storage as previously required. This 
unneeded proxy-capacity can then be assigned for caching. 

This topology also has a better fault-tolerance. In a simple binary-tree topology, a 
network crash can create a sub-tree that is totally isolated from the rest of the system, 
which can cause request reneging if this sub-tree has insufficient proxies to store a 
full copy of the system videos. This is more unlikely to occur with the new topology. 

3.3 Double P-Tree Architecture Implementation 

Double P-Tree topology implementation is performed in local-network switches. In 
Fig 1b, we show the reserved ports to build the topology and how they are 
interconnected. Every local-net has a port (father-port) to connect the local net with 
the upper topology-level, several ports (child-ports), depending on tree order, to 
connect all the local children nets (above level), some ports (brother-ports) to connect 
the net with its brothers in the same level and finally one or several ports for the local-
proxy. The remaining switch-ports are used to connect clients, usually using several 
switches that form a tree hierarchy.  

 Distributed architectures usually have a performance penalty compared with 
centralized approaches. This efficiency reduction is the sacrifice required in order to 
obtain a scalable and fault-tolerant system. An important characteristic in distributed 
systems with respects to centralized ones is that load is distributed between different 
sources. Meanwhile in a centralized approach, only one source supports all load. 

In order to take advantage of this feature, so as to reduce the penalty imposed on 
distribute architectures, we propose the use of segmented switches in local nets. Using 
a non-segmented switch, we need enough local-net bandwidth to support the total of local 
traffic. Instead, with a segmented switch, every port has an independent-bandwidth, and 
therefore, local nets only needs enough bandwidth to support the maximum of all port traffic. 

However, with this scheme, topology-port traffic and local-proxy traffic are too unbalanced, 
because proxy load is centralized in only one port. To solve this unbalance that increases the 
bandwidth requirements for local nets, we connect proxies to the local-net using several ports. 

4 Double P-Tree analytical model 

In order to study the effectiveness of the proposed architecture, we have to 
demonstrate primarily: that it can scale without causing network or proxy saturation 
and that its effectiveness is at least equivalent to similar architectures. 

The system scalability is estimated evaluating the growth of traffic generated by 
the system itself and the evolution of bandwidth requirements in architecture 



components when the system grows. For our study, we are going to use the number of 
independent-streams supported by the system (effective bandwidth) as a main 
performance-metric. Other measurements such as total system bandwidth, local 
network bandwidths, server/proxies streaming capacity and storage requirements will 
provide us with an idea of the system’s limitation with respect to the number of users 
that it can admit, its costs, and its grade of scalabilit y. 

All these parameters are evaluated using an analytical model of architecture 
behavior. Also, to contrast Double P-Tree system with similar approaches, we will 
study one-level proxies architecture performance. Table 1 shows the notation used 
during this analysis.  In Table 2 we show the analytical model for one-level proxy-
based architectures (which can also be used to model centralized and independent 
severs systems). Table 3 shows the expressions used for Double P-tree analytical 
model. 

In the following models, we assume a unicast policy, i.e., each user is assigned to 
its own dedicated stream. This assumption is valid since our study is directed at 
evaluating the system streaming-capacity (effective bandwidth) and its scalabilit y. 
These results will be independent of whether bandwidth management policies can 
later be used to increase the eff iciency and number of clients managed by the system. 

Table 1.  Notation used in the analytical model. 

 

Symbol Definition  Symbol Definition 
BT Total system bandwidth  Tp Proxy switch-ports 
Be Effective system bandwidth  C Proxy cache size (number of videos) 
Bp Main net bandwidth  M Proxy mirror size (number of videos) 
Bc Local net bandwidth  Pmc Proxy’s cache miss probability 
Bu Local net user bandwidth  Phc Proxy’s cache hit probability 
L Number of topology levels  Pmm Proxy’s cache+mirror miss probability 
N Number of local networks  Pmc Proxy’s cache+mirror hit probabil ity 
O Tree-order  Lf i Load received by net i from father net 
B Number of brother-nets  Lcib Load received by net i from brother net b 
V System videos  Lsis Load received by net i from son net s 

 
 

Table 2. One-level proxy-based architecture analytical model 
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Table 3.  Double P-Tree Architecture analytical model. 

Measure Expression Nº. 
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The traffic managed by topology ports (Lf, Lc, Ls), in expression (6) of table 3, is 

the sum of outgoing (local proxy-misses served from other proxies), incoming (proxy 
misses from remainder of system served by the local proxy) and passing traffic (proxy 
misses from the remainder of the system served by other proxies). Total outgoing 
traffic consists of the proxy-misses, and the total incoming traffic to the network can 
be calculated in the same way as in (7). However, its distribution among different 
ports and the passing traffic have to be evaluated by using an analytical simulator. 

5 Double P-Tree evaluation 

In order to evaluate Double P-Tree architecture and to compare its performance with 
other systems we assume a total system bandwidth of 127.000 Mbps (every 127 local 
net has 1.000 Mbps of bandwidth), that proxies/servers are connected using 4 switch-
ports in all architectures (without taking topology ports into account), a proxy-
capacity for 20% of system videos and in Double P-Tree a binary topology with 7 
levels. 

5.1 Scalability 

Fig. 2, illustrates the bandwidth requirements for most critical scalability elements in 
distributed architectures when the system size grows. In one-level proxies (Fig. 2a), 
the most critical element is main network bandwidth and in the Double P-Tree, it is 
the bandwidth required by local networks and proxies (Fig. 2b).  

With the results in Fig. 2a, we confirm our previous statements about the limited 
scalability of one-level architectures. In these architectures, system growth is obtained 
at the expense of increasing bandwidth requirements for the main network 
independently of proxy capacity (charts 2 and 3). Consequently, its scalability is 
limited by its centralized components (main network and server). 

In the Double P-Tree, Fig. 2b, we notice that even when exponentially increasing 
the system capacity (chart 2), the maximum bandwidth required for local networks 
and its proxies (charts 3 and 4) is stable and small (400 and 1200 Mbps respectively). 
These results allow us to conclude that Double P-Tree architecture has an unlimited 
scalability, even when using small architecture components. 
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(a) One-level proxy-based system. (b) Double P-Tree system. 

Fig. 2. Scalability of distributed architectures. 

5.2 Proxy-storage requirements 

In Fig. 3, following our comparison between proxy architectures, we study the proxy-
storage requirements for both systems.  

It is important to emphasize that, by using the same analytical model, in Fig. 3a we 
can evaluate the 3 main approaches for LVoD architectures: centralized systems 
(when proxy capacity is 0%), independent server systems (when proxy capacity is 
100%) and one-level proxy systems in the remaining cases. 

Comparing both proxy-based architectures, we can see that double P-Tree effective 
bandwidth (Fig. 3b) has a bigger growth gradient, achieving its maximum peak with a 
proxy capacity of only 25%. Meanwhile in a one-level system, the same peak is only 
achieved with a proxy capacity of 100% (the system then becomes an independent 
server architecture). In the same way, the balance-point between system and effective 
bandwidth is achieved with a proxy capacity of 8% as against the 17% (more than 
double) in the one-level proxy approach. These results also show that without the 
need for a main server, Double P-Tree architecture can operate by using proxies with 
a capacity of only 1% of system videos. 
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(a) One-level proxy-based system. (b) Double P-Tree system. 

Fig. 3. Storage requirements in proxy-based architectures. 
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Fig. 4. Performance and requirements in Large-scale VoD architectures. 

5.3 Efficiency 

We now compare Double P-Tree with the main current approaches for scalable LVoD 
systems. The centralized approach is only used as a reference, due to its null 
scalability and high costs, which are not consistent with our design goals.  

In Fig. 4a, we observe that Double P-Tree improves one-level effective bandwidth 
more than 350%. Moreover, the biggest Double P-Tree network and server are 15 
times smaller (4000 against 63.500), requiring similar proxy-storage (Fig. 4b) of 
around 3.500 Gigabytes. 

Additionally, by now comparing results with the independent servers, it can be 
seen that this architecture obtains 4% more effective bandwidth than in our approach 
(508.000 against 490.000 Mbps), but uses 5 times more storage (17.200 against 3.500 
Mbps), as shown in Fig. 4b. We believe that this perfomance gap would be resolved 
and even overcome by our approach when the effect of multicast techniques (the key 
to VoD system performance) is taken into account. Our optimism is due to the fact 
that multicast efficiency broadly depends on the number of users accessing the same 
server. In independent server systems, this number is limited by local-network size 
and, therefore, resource sharing (network streams, service bandwdith, etc..) is limited. 
Meanwhile, in Double P-Tree, distance-1 local nets can be served by the same proxy, 
increasing the number of users that can share system resources. In a topology with 7 
brothers, sharing probability can be 10 times larger (number of neighbors) than in 
independent servers.  

6 Conclusions 

To achieve a full distributed system we proposed a hierarchical-tree topology of 
independent networks with proxies. This architecture distributes the main server 
functionality among proxies and modified proxy functionality, dividing its capacity 
between two schemes: caching and mirroring. The caching scheme stores the most 
requested movies, whilst mirroring is used for making a distributed mirror. Moreover, 



to improve topology connectivity and system performance, we have modified the 
basic-tree topology by adding the concept of brother networks to local group nets. 

The double P-Tree guarantees an unlimited and low-cost growth, high fault 
tolerance, a better load-balance (due to larger local-network connectivity), and a large 
streaming capacity independent of the technology available, and without requiring 
high storage requirements or complex and costly servers/networks. 

The results show that new architecture outperforms streaming capacity (effective 
bandwidth) by more than 350%, compared with similar architectures (one-level 
proxies). In comparison with independent server systems, the effectiveness is similar 
but has 5 times less storage and allows for better resource sharing between users. 

Our future research will focus on the study of proxy management policies that 
allow proxy size reduction. In addition, we intend to study the performance and 
changes required by policies such as prefix caching, chaining, patching and other 
classical policies for their subsequent incorporation into our architecture. 
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