Caracterització de compostos antioxidants (vitamina C, carotens i tocoferols) de fruit d’arboç i avaluació de la seva digestibilitat en model “in vitro”

Anna Lera Leri

Tutora: M. José Motilva Casado

Co-tutora: Juana Mosele

Lleida, Juny 2014
Caracterització de compostos antioxidants (vitamina C, carotenos i tocoferols) de fruit d’arboç i avaluació de la seva digestibilitat en model “in vitro”

Treball de final de Grau presentat per:

Anna Lera Leri

Tutoritzat per M. José Motilva Casado

Co-tutoritzat per Juana Mosele
Índex

1. RESUM ... 4
 1.1 Resum .. 4
 1.2 Abstract .. 5
 1.3 Resumen .. 6
2. INTRODUCCIÓ .. 7
 2.1 Arbutus Unedo .. 8
 2.2 Antioxidants .. 10
 2.3 Estudis de digestibilitat “in vitro” .. 15
3. JUSTIFICACIÓ ... 17
4. OBJECTIUS .. 18
5. MATERIALS I METODES ... 19
 5.1 Materials ... 19
 5.2 Digestió gastrointestinal .. 19
 5.3 Tractament de la mostra per a la determinació de compostos antioxidants 22
 5.4 Anàlisi cromatogràfic ... 23
 5.5 Anàlisi de dades ... 24
6. RESULTATS .. 25
7. DISCUSSIÓ .. 29
8. CONCLUSIONS ... 32
9. BIBLIOGRAFIA ... 34
1. RESUM

1.1 Resum

L’arbocer és un arbust habitual de la zona mediterrània. Produeix un fruit, l’arboç, que ha estat utilitzat antigament en la medicina tradicional. L’objectiu d’aquesta investigació és determinar el contingut d’antioxidants, en concret, de vitamina C, carotens i tocoferols del fruit d’arboç i avaluar la seva digestibilitat en model “in vitro”.

L’àcid ascòrbic és l’antioxidant amb una concentració més alta en l’arboç respecte els altres compostos analitzats. La concentració dels compostos durant la digestió va anar disminuint, excepte en la digestió gàstrica on va haver un increment de l’àcid ascòrbic respecte el seu contingut en la digestió oral. L’àcid ascòrbic és va absoribir un 11.09%, mentre que α-tocoferol ho van fer un 1.30%. Els nivells de β –carotè no van ser detectats i no s’ha pogut estimar la seva absorció. Amb aquests resultats es dona un pas endavant cap a la caracterització de l’arboç i del seu rol en la nutrició.

1.2 Abstract

Arbutus Unedo is a common shrub in the Mediterranean area. It produces a fruit, the strawberry, which was formerly used in traditional medicine. The present investigation aims to determine the content of antioxidants, specifically, vitamin C, carotenes and tocopherols in the strawberry fruit and evaluate their digestibility in “*in vitro*” model. *Acid ascorbic* is the antioxidant with a major concentration in the strawberry fruit regarding the other compounds analyzed. The compounds concentration during the digestion diminished except in gastric digestion where *acid ascorbic* was increased in relation to his content in oral digestion. Acid ascorbic was absorbed 11.09% while α-tocopherol did it 1.30%. Levels of β-carotene were not detected so it could not be estimated their absorption. With these results we are heading one step forward in the characterization of the strawberry tree and its role in nutrition.

KEY WORDS: Arbutus Unedo, “*in vitro*” digestion, vitamin C, carotenes, tocopherols.
1.3 Resumen

El madroño es un arbusto habitual de la zona mediterránea. Produce un fruto, el madroño, que ha estado utilizado en la medicina tradicional. El objetivo de esta investigación es determinar el contenido de antioxidantes, concretamente, de vitamina C, carotenos y tocoferoles del fruto de madroño y evaluar su digestibilidad en modelo “in vitro”. El ácido ascórbico es el antioxidante con una concentración más elevada en el madroño respecto los otros compuestos analizados. La concentración de los compuestos durante la digestión fue disminuyendo, excepto en la digestión gástrica donde hubo un incremento de ácido ascórbico respecto su contenido en la digestión oral. El ácido ascórbico se absorbió un 11.09%, mientras que α-tocoferol lo hizo en un 1.30%. Los niveles de β–caroteno no fueron detectados y no se ha podido estimar su absorción. Con estos resultados se da un paso adelante hacia la caracterización del madroño y de su rol en la nutrición.

2. INTRODUCCIÓ

En els darrers anys, s’ha produït un canvi en la manera en què s’entén la salut humana. Aquest canvi ve produït pels últims enfocaments nutricionals, que mostren la importància que té la dieta en la regulació genètica i molecular. Aquest fet, està fent canviar el rol de la nutrició en els humans i adoptar noves estratègies dietètiques per què la dieta no solament contingui la quantitat adequada de nutrients necessaris pel metabolisme, sinó que contribueixi a la millora i manteniment de la salut humana. (Biesalski et al., 2009).

En totes les cultures hi ha diferents patrons dietètics, alguns promouen l’estat de salut mentre que d’altres incrementen el risc de malalties cròniques. Tot i la diferència cultural arreu del món, hi ha unes recomanacions internacionals de patrons alimentaris saludables, on s’inclouen les fruites i els vegetals, entre d’altres, ja que hi ha evidència epidemiològica que demostra un rol protector en les dietes en alt contingut en fruites i vegetals. L’insuficient ingesta d’aquests, a més a més de produir diversos déficits vitaminics i minerals, poden predisposar a sofrir diverses malalties. (Kris-Etherton et al., 2002).

En les societats actuals, molts dels problemes de salut, malalties cardiovasculars, aterosclerosis, diabetis mellitus, etc. estan relacionats amb especies reactives d’oxigen (ROS). Una possible via per prevenir i eventualment disminuir la incidència d’aquests problemes de salut és la inclusió d’aliments que contiguin substàncies naturals amb activitat antioxidant en la salut humana. D’aquesta manera es proveeix substances que són capaces de prevenir la seva activitat. (Malheiro et al., 2012).

Per aquests motius, hi ha hagut, paral·lelament, un augment en l’interès que suscita qualsevol mena de producte natural. Cosa que emmena a la comunitat científica a fer una extensa recerca sobre els compostos bioactius, especialment, els antioxidants i la seva significació en la medicina, en la industria alimentaria i en la nutrició humana. (Oliveira et al., 2011).
2.1 Arbutus Unedo

Arbutus unedo, anomenat arbroc en la llengua catalana o “madroño” en la castellana, és del gènere *Arbutus* i pertany a la família de *Ericaceae*. És un arbust natiu de la zona mediterrània. En Europa, creix, majoritàriament, en la conca mediterrània, formada per Portugal, Espanya, França, Itàlia, Albània, Grècia, Bòsnia i Hercegovina, Croàcia, Macedònia, Montenegro, Sèrbia i Eslovènia (Oliveira et al., 2011).

![Imatge 1. Distribució aproximada d'Arbutus Unedo](image)

Els fruits són esfèrics, d’uns dos centímetres de diàmetre, amb la superfície rugosa ja que sobresurten unes protuberàncies. Quan el fruit està madur la seva tonalitat de color és vermella (Tavares et al., 2010).

No és fins la tardor – hivern que trobem el fruit madur i llest per el seu consum (Males et al., 2006).
El fruit rarament és ingerit quan està fresc, però té una gran importància en
l'agricultura local d'algunes comunitats que l'utilitzen per la producció de begudes
alcohòliques, licors, melmelades i gelatines (Alarcao-E-Silva et al., 2001). La composició
nutricional de l'arboç ha estat poc investigada, però, tal com s'observa en la taula 1, els
principals nutrients que constitueixen l’arboç són els hidrats de carboni i els sucres, en
especial, la fructosa (Ruiz-Rodríguez et al., 2011).

<table>
<thead>
<tr>
<th>Component</th>
<th>Valors en 100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteïnes (g)</td>
<td>0,899</td>
</tr>
<tr>
<td>Lípids (g)</td>
<td>0,609</td>
</tr>
<tr>
<td>Hidrats de carboni disponibles (g)</td>
<td>23,55</td>
</tr>
<tr>
<td>Fructosa (g)</td>
<td>10,36</td>
</tr>
<tr>
<td>Glucosa (g)</td>
<td>5,51</td>
</tr>
<tr>
<td>Total fibra (g)</td>
<td>16,21</td>
</tr>
<tr>
<td>Total vitamina C (mg)</td>
<td>182,4</td>
</tr>
<tr>
<td>β-carotè (mg)</td>
<td>0,52</td>
</tr>
<tr>
<td>α-tocoferol</td>
<td>3,49</td>
</tr>
</tbody>
</table>

Adaptat de Ruiz-Rodríguez et al. (2011) i Morales et al. (2013)

Al llarg del temps, moltes propietats han estat associades a l’Arbutus Unedo.

En el camp de la medicina tradicional se li han atribuït moltes propietats beneficioses a
diverses parts de l’Arbutus Unedo. En la taula 2 es mostra un recull de tots els seus
usos (Oliveira et al., 2011). El fruit ha estat utilitzat com un agent antisèptic, diürètic, i laxant i també per tractar la hipertensió arterial (Pallauf et al., 2008).

Les fulles han estat utilitzades com un agent astringent, diürètic, antisèptic urinari i recentment com a tractament en la hipertensió arterial i la diabetis (Tavares et al., 2010). També s’han utilitzat com agent antioxidant, antitrombòtic i antiinflamatori (Males et al., 2006)

Taula 2. Usos de l’Arbutus Unedo en medicina tradicional (Oliveira et al., 2011)

<table>
<thead>
<tr>
<th>Part utilitzada</th>
<th>Ús medicinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulles</td>
<td>Desordres gastrointestinal, en urologia, problemes dermatològics, cardiològics, malalties del ronyó, hipertensió, diabetis, antiinflamatori i astringent.</td>
</tr>
<tr>
<td>Fruits</td>
<td>Desordres gastrointestinal, en urologia, problemes dermatològics, malalties del ronyó, cardiològics</td>
</tr>
</tbody>
</table>

Les propietats beneficioses són atribuïdes als components que conformen el fruit i les fulles de l’arboç, entre d’altres trobem la vitamina C i el β-carotè (Barros et al., 2010).

2.2 Antioxidants

L’oxigen és un “nutrient” essencial per la majoria d’organismes. Paradoxalment, però, l’oxigen ocasiona danys en estructures biològiques clau. Aquest fet, porta a definir l’oxigen com una arma de doble fil. La part beneficiosa de l’oxigen, és que permet que el catabolisme d’energia sigui eficient actuant com l’últim acceptor d’electrons dins el mitocondri. Durant la respiració aeròbica, un àtom d’oxigen accepta dos electrons, formant, juntament amb l’hidrogen, una molècula d’aigua. La part més perjudicial de l’oxigen, és l’inevitable i continua producció d’intermediaris d’oxigen parcialment reduïts dins el cos humà. Aquests radicals lliures (espècies reactives d’oxigen:ROS) són molt més reactives que l’oxigen en estat fonamental i causa canvis oxidatius als
carbohidrats, DNA, lípids i proteïnes. Com a conseqüència d’aquests canvis, es veuen afectades les estructures i funcions de macromolècules, orgànuls, cèl·lules i sistemes biològics. Si no es posa remei a aquesta situació, això induirà a l’estrès oxidatiu (Benzie i Strain, 2005).

El cos humà, generalment, està ben equipat amb un gran desplegament d’estratègies antioxidants amb la finalitat protectora vers els efectes nocius de les espècies reactives d’oxigen (ROS). No obstant, els antioxidants endògens són insuficients, ja que no som capaços de sintetitzar dos dels compostos antioxidants més importants, la vitamina C i E. La ingesta d’aquests i més antioxidants és necessària per prevenir o minimitzar el dany oxidatiu (Benzie i Strain, 2005).

Un antioxidant és una substància present en l’aliment que disminueix significativament els efectes adversos de les espècies reactives, com ara l’oxigen reactiu i les espècies de nitrogen, en condicions fisiològiques normals en els humans. (Krinsky et al., 2000).

Vitamina C

La vitamina C és un antioxidant hidrosoluble amb un alt poder reductor. Actua com a cofactor per nombroses enzimes implicades en la biosíntesi de col·lagen, carnitina i alguns neurotransmissors i és capaç de reduir espècies reactives d’oxigen i del nitrogen en medis aquosos (Krinsky et al., 2000).

Aquesta vitamina, apareix de manera natural en dues formes químiques, l’àcid ascòrbic que és la forma reduïda, i l’àcid dehidroascòrbic, la forma oxidada.

L’àcid ascòrbic és un bon agent reductor, ja que al perdre un electró es forma un radical relativament estable, el radical semihidroascòrbic, el qual sofreix una segona oxidació donant lloc a l’àcid dehidroascòrbic. Aquest últim pas és reversible, per la qual cosa ambdues formes es poden trobar en la naturalesa. Si l’àcid ascòrbic perd aigua per deshidratació es transforma en àcid dicetogulònic mitjançant una reacció irreversible que dona lloc a un producte biològicament inactiu. (Ramírez-Tortosa i Quiles-Morales, 2005).
La seva principal funció és com a cofactor de nombroses reaccions en l’organisme humà, especialment, les que requereixen coure o ferro reduït (Tsao, 1997).

La seva absorció es produeix ràpidament en l’intestí mitjançant transport actiu dependent d’ions de sodi. L’àcid dehidroascorbat és absorbit passivament en la mucosa intestinal i és reduït a ascorbat abans de ser transportat (Bender, 2005).

La deficiència de vitamina C (<0,2mg/dl) produeix escorbut, malaltia que està relacionada amb el teixit connectiu. En aquesta hi ha una disminució en la capacitat de l’organisme per sintetitzar col·lagen, provocant una elevada fragilitat dels capil·lars sanguinis, vessaments en la pell, òrgans i múscul esquelètic. També produeix un retard en la cicatrització (Ramírez-Tortosa i Quiles-Morales, 2005).

Segons les dades presentades en la taula 1, l’arboç constituïria una font important de vitamina C, inclús major que en altres fruites com la grosella (159,7mg/100g), papaia (64mg/100g), maduixes (60mg/100g), kiwi (59mg/100g), i taronja (50mg/100g) (BEDCA, 2007).

La recomanació d’ingesta recomanada per la FAO/OMS (Organització de les Nacions Unides per l’Alimentació i l’Agricultura / Organització Mundial de la Salut) de vitamina C està entre els intervals de 40-45mg/dia en l’edat adulta (Cuervo et al., 2009).

Tocferols

El *tocoferol* és un compost que forma part de la vitamina E, la qual està formada per

![Figura 1. Estructura química de l’àcid ascòrbic.](image)
quatre tocoferols i quatre tocotrienols.

L’α-tocoferol és la forma més abundant en la naturalesa i amb major capacitat biològica (Morrissey i Kiely, 2005).

És una vitamina liposoluble amb una activitat antioxidant molt important alhora de protegir les membranes cel·lúlars de l’oxidació (Bennett et al., 2012).

L’α-tocoferol és, quantitativament, l’antioxidant més important. Una de les seves principals funcions és actuar com un antioxidant trencador de cadenes cosa que evita la propagació de la peroxidació lipídica en les membranes cel·lúlars (Barros, 2010).

A causa del seu comportament hidrofòbic, la vitamina E s’absorbeix en l’intestí amb la presència dels lípids dels aliments, sals biliars i esterases pancreàtiques. Emulsiona juntament amb els lípids, formant micel·les que són absorbides a la membrana de la mucosa intestinal per difusió passiva (Morrissey i Kiely, 2005).

La deficiència de vitamina E rarament s’ha vist en humans. Quan es dóna el cas, normalment, és el resultat d’una deficiència en lipoproteïnes o per una síndrome de malabsorció de lípids (Morrissey i Kiely, 2005).

L’arboç, conté una mitja de 3,49mg/100g de producte fresc (Taula 1), quantitats majors que les observades en altres fruites més convencionals com la poma, pera, plàtan, raïm i taronja (Piironen et al., 1986).

La ingesta recomanada per la FAO/OMS (Organització de les Nacions Unides per l’Alimentació i l’Agricultura / Organització Mundial de la Salut) de vitamina E està entre els intervals de 7,5-10mg/dia en l’edat adulta (Cuervo et al., 2009).
Carotens

Els carotens són un grup de pigments, trobats en moltes fruites i vegetals, amb capacitat antioxidant. S’han identificat més de sis-cents carotens al llarg dels anys però s’ha vist que solament uns quants tenen importància biològica. Entre ells, el β-carotè (Bennett et al., 2012).

Els carotens quan es metabolitzen produeixen retinol, principal compost de la vitamina A. Per aquesta raó, els carotens, són anomenats provitamina A, ja que el retinol és la principal forma en què existeix la vitamina A (Ross, 2005).

Es poden classificar en dos grups segons la seva estructura química, els primers són el grup dels carotens, els quals no contenen cap oxigen. Els segons són el grup de les xantofil·les que contenen grups carboxilats i/o hidroxilats, es dir, que contenen oxigen en els seus grups constituents. (Ramírez-Tortosa i Quiles-Morales, 2005).

Els carotens són compostos hidrofòbics i, per tant, són solubles en la major part dels solvents orgànics e insolubles en medis aquosos. A més a més, en medi aquós són molt sensibles als canvis en el pH, a la temperatura, a la llum i a l'oxidació (Hedrén et al., 2002).

L’activitat antioxidant dels carotens es basa en què reaccionen en les membranes lipídiques amb les espècies reactives d’oxigen (ROS) eliminant radicals lliures i disminuint la peroxidació lipídica (Ramírez-Tortosa i Quiles-Morales, 2005).

A causa del seu comportament hidrofòbic, els carotens s’absorbeixen en l’intestí amb la presència dels lípids dels aliments i sals biliars. Són solubilitzats en les micel·les les
quals són absorbides a la membrana de la mucosa intestinal per difusió passiva (Ross, 2005). D’altra banda, els carotens també poden ser absorbits intactes o bé són desdoblats enzimàticament en molècules de retinol (Ramírez-Tortosa i Quiles-Morales, 2005).

La deficiència de vitamina A és la principal causa de ceguera pediàtrica i ceguera nocturna. A més a més, augmenta el risc d’una infecció greu i és una causa subjacent de la mortalitat infantil en molt països en desenvolupament (West Jr, 2005).

La concentració mitjana de β-carotè en l’arboç és, segons indica la taula 1, 0,52mg/100g de fruita fresca, similar a aquella trobada en altres fruites com el mango(0,52mg) d’altres (BEDCA, 2007).

La ingesta recomanada per la FAO/OMS (Organització de les Nacions Unides per l’Alimentació i l’Agricultura / Organització Mundial de la Salut) de vitamina A està entre els intervals de 500-600μg/dia en l’edat adulta (Cuervo et al., 2009).

2.3 Estudis de digestibilitat “in vitro”

En diversos estudis experimentals, l’àcid ascòrbic, α-tocoferol i β-carotè han demostrat tenir importants efectes antioxidants. No obstant, per aconseguir qualsevol efecte en un teixit o òrgan específic, aquests compostos bioactius han d’estar biodisponibles, mot utilitzat per referir-se a la possibilitat de tenir un determinat compost de ser extret de la matriu alimentaria i ser absorbit per cèl·lules intestinals.

Un dels mètodes més utilitzats per l’estudi del comportament (digestibilitat i metabolisme) d’aquests compostos al llarg del sistema gastrointestinal són els estudis “in vitro” (Guerra et al., 2012). Les consideracions ètiques i factors econòmics limiten el desenvolupament dels estudis “in vivo” i, com a conseqüència d’això, molts són els que es decanten per l’ús de models “in vitro” que ofereixen diverses avantatges respecte als models “in vivo” com són una major flexibilitat, precisió, requereixen menys inversió.
Els estudis “in vitro” simulen les condicions normals en les que es desenvolupa un procés de digestió per predir, d’aquesta forma, l’estabilitat de les substàncies d’un aliment al llarg del tracte gastrointestinal. Hi ha qui s’interessen en l’estudi del comportament d’un determinat compost i, per això, utilitzen patrons comercials (estàndards d’alta pureza) o bé compostos purs aïllats dels aliments o extractes. Altres, en canvi, prefereixen estudiar el comportament dels compostos d’interès, considerant la matriu alimentaria original (digestió “in vitro” de l’aliment sencer).

Els estudis de digestibilitat “in vitro” poden fer-se de forma estàtica o dinàmica. Els models dinàmics inclouen un nombre limitat de paràmetres i s’utilitzen per una aplicació en particular. Si el que es pretén, en canvi, és imitar els complexes mecanismes fisiològics i fisicoquímics característics del tracte gastrointestinal, es aconsellat sotmetre a la mostra a cada un dels passos de digestió (oral, gàstrica i intestinal) tenint en compte factors com el temps de trànsit, el pH i la presència d’enzimes, que han de ser el més reproduïbles a les condicions “in vivo”, d’aquesta manera s’obtindran resultats més fiables i afins a la realitat.

Tot i la gran varietat d’estudis referents a la biodisponibilitat de l’àcid ascòrbic, α-tocoferol i β-carotè en diferents aliments, no hem tingut èxit en la recerca de dades bibliogràfiques referents al comportament d’aquests compostos en l’arboç. És important considerar cada un dels aliments com una font d’antioxidants de forma individual, ja que es sabut que la composició general de la matriu alimentaria pot influir significativament en la disponibilitat dels nutrients (Mandalari et al., 2014). Per això, ens em proposat predir a partir de l’aplicació d’un model de digestió gastrointestinal “in vitro” de tipus dinàmic, la biodisponibilitat d’àcid ascòrbic, α-tocoferol i β-carotè en l’arboç.
3. **JUSTIFICACIÓ**

El consum de fruites i vegetals juga un paper important en la promoció de la salut. L’organització Mundial de la Salut (OMS) i l’Organització de les Nacions Unides per l’Alimentació i l’Agricultura (FAO) recomanen la ingesta mínima de 400g de fruites o verdures al dia. És l’anomena’t programa “5 al dia”, ja que equivalen a 5 racions (80g/ració) d’aquests aliments. Aquesta recomanació ve donada per prevenir malalties cròniques com la diabetis, càncer, obesitat i malaltia cardiovascular (Nishida et al., 2004).

No obstant, a Espanya, el consum de fruites i verdures està per sota del mínim recomanat. En l’actualitat, la població Espanyola, ingereix, solament, 1,7 racions de fruita al dia, xifra que ultrapassa lleugerament la meitat de la quantitat recomanada (3 racions al dia) (Zulueta et al., 2007).

En la dieta és vital que hi hagi un consum d’aliments el més variat possible i refusar la monotonia alimentaria. D’aquesta manera, s’ha volgut estudiar l’arboç, una fruita silvestre que creix en gran part de la península ibèrica, però que és desconeguda per la gran majoria de la població. Per aquesta raó, el present estudi es centra en identificar i avaluar la digestibilitat de tres dels seus components antioxidants, vitamina C, tocoferols i carotens i així poder incorporar una varietat més de fruita en les llars de la població.

A més a més, el mètode escollit per avaluar la digestibilitat és la metodologia “in vitro” que ha estat desenvolupada com una manera simple i ràpida per fer front als estudis “in vivo” ja que aquests últims són més llargs i costosos amb una gran variabilitat entre subjectes (Rodríguez-Roque et al., 2013).
4. OBJECTIUS

En la present investigació la finalitat és caracteritzar components antioxidants, com són la vitamina C, els β-carotens i els α-tocoferols en el fruit d’arboç i avaluar la seva digestibilitat en un model “in vitro”.

Per tal de dur-la a terme, s’han definit una sèrie d’objectius específics:

1. Cercar bibliografia en les bases de dades científiques sobre els últims estudis publicats relacionats amb la present investigació.
2. Aplicar un model de digestió “in vitro” a una mostra de fruit d’arboç.
3. Tractar mostres d’arboç i de les fraccions de digerits per el seu posterior anàlisi cromatogràfic.
4. Analitzar vitamina C, β-carotens i α-tocoferols mitjançant cromatografia líquida HPLC-DAD.
5. Analitzar resultats.
5. MATERIALS I METODES

5.1 Materials

Agents químics
El KH$_2$PO$_4$, HCl 37%, NaCl i CaCl$_2$, NaHCO$_3$, KOH, les sals biliars, l’enzima α-amilasa, pepsina i pancreatina es van adquirir en Sigma Aldrich (St Louis, MO, USA); el Na$_2$HPO$_4$·H$_2$O, hexà, tetrahidrofuran, acetat d’ètil, metanol, metil tetra-butil èter, dietil èter, N-N-dimetilformamida (DMF) es van adquirir en Sharlau (Barcelona, Espanya); l’àcid trifluoroacètic (TFA) és de Panreac (Barcelona, Espanya), i el K$_2$SO$_4$ es va adquirir en Fisher Scientific. Els patrons comercials utilitzats per la identificació dels compostos d’interès van ser àcid ascòrbic (AA) (Sharlau), α-tocoferol (Sigma Aldrich) i β-carotè (Fluka, Buchs, 125 Switzerland). Per la preparació de solucions es va utilitzar aigua ultra pura obtinguda a partir d’un sistema de purificació (Millipore, Bedford, MA, USA).

Preparació de la mostra
Per dur a terme la següent investigació s’han utilitzat mostres de fruits de l’arbocer (*Arbutus Unedo*). Els fruits han estat recol·lectats durant els mesos d’hivern dels anys 2013-2014 als encontorns de la ciutat de Lleida (Espanya). Els fruits van ser transportats al Departament de Tecnologia dels aliments de la Universitat de Lleida el mateix dia de la recol·lecció. Immediatament, van ser rentats, tallats, congelats i emmagatzemats a una temperatura de -80°C. Prèviament als dies de tractaments de la mostra, els fruits van ser liofilitzats i es van tornar a emmagatzemar en envasos opacs, per protegir els compostos de l’oxidació, a la mateixa temperatura en què estaven anteriorment.

5.2 Digestió gastrointestinal

vitro” la digestió humana. Consta de tres parts, que corresponen als tres principals llocs on els humans realitzem la digestió. En primer lloc, és realitza una digestió oral, seguit per la digestió gàstrica i finalitzant per una digestió intestinal.

Digestió oral
Es parteix de 1.5g d’arboç mòlt liofilitzat al qual s’addiciona 6mL d’una solució amilasa composada de (en mg/100mL): 426 mg de KH$_2$PO$_4$, 629.11 mg de Na$_2$HPO$_4$·2H$_2$O, 40 mg de NaCl y 44.4 mg de CaCl$_2$. A continuació, la mostra, disposada en matrassos, s’agità a 200rpm durant 5 minuts a 37$^\circ$C en un agitador orbital. Una vegada van passar els 5 minuts, unes rèpliques van ser congelades i emmagatzemades a una temperatura de -80$^\circ$C. Un cop congelades, van ser liofilitzades i es van tornar a emmagatzemar a la mateixa temperatura en què havien estat anteriorment. La resta de rèpliques continuen al següent pas de la digestió, la digestió gàstrica.

Digestió gàstrica
Es va agafar les rèpliques del digerit de la boca i van ser diluïdes en 24mL de tampó fostat pH 7.4 (composició en mg/100mL: 178.7 mg de KH$_2$PO$_4$ y 953.16 mg de Na$_2$HPO$_4$·2H$_2$O). Seguidament, es va ajustar el pH a 2 del digerit amb àcid clorhídric al 37%. A continuació, se va afegir 1.5 mL de solució de HCl 0.01N contenint 22.5mg de pepsina. Es van tapar i incubar durante 1 hora a 37$^\circ$C i l’agitador orbital va ser programat per què s’agités a 200 rpm. Una vegada va passar l’hora, unes rèpliques van ser congelades i emmagatzemades a una temperatura de -80$^\circ$C. Un cop congelades, van ser liofilitzades i es van tornar a emmagatzemar a la mateixa temperatura en què havien estat anteriorment. La resta de rèpliques continuen al següent pas de la digestió, la digestió intestinal.

Digestió intestinal
La digestió intestinal va ser recreada amb sistema de diàlisi, utilitzant uns instruments i un muntatge especial. El dia anterior a la realització de la digestió es va condicionar el tub de diàlisi seguint les instruccions de la casa comercial (Sigma Aldrich). Transcorreguda la digestió gàstrica, el pH de la mostra s’ajusta a 6.5 amb solució de bicarbonat de sodi o.5N i s’afegeixen 200mg de sals biliars i 30mg de pancreatina,
ambduess dissoltes en 3.75mL de tampó amilasa. A continuació, la mostra es fa circular (3mL/min) a través d’un tub de diàlisi (40cm de longitud) submergit en tampó fosfat durant 2h a 37°C (Figura 4). Un cop transcorregut el temps establert es separen dues fraccions, la fracció IN i la fracció OUT.

★ Fracció IN: és la part de la mostra que circula per dins el tub de diàlisi i que per tant, no s’ha absorbit i passarà a la següent etapa que és la fermentació en el coló.

★ Fracció OUT: és la part de la mostra que està envoltant el tub de diàlisi i que s’ha dissolt amb el tampó fosfat. Aquesta és la fracció que s’ha digerit. Per recollir-la s’utilitza una xeringa que s’introdueix per la sortida tipus oliva.

Van ser emmagatzemades les dues fraccions (IN i OUT) en uns recipients tancats en un congelador a temperatura de -80°C. Una vegada congelades van ser liofilitzades, es van tornar a emmagatzemar a la mateixa temperatura que anteriorment.

Figura 4. Disposició gràfica del sistema de digestió dialitzada
5.3 Tractament de la mostra per a la determinació de compostos antioxidants

Àcid ascòrbic

En aquest pas, es pesen 0.1g d’arboç mòlt liofilitzat o 0.5g de fracció de digerit per cada rèplica i es dissolven en 3mL de 0.1% de trifluoroacètic (TFA). Durant 1 minut s’homogeneïtza en el vòrtex i, seguidament, se centrifuga a 20°C, 9000rpm durant 5 minuts. A continuació, es recull el sobrenedant i es guarda en un matràs aforat de 10mL. Aquest es guarda en una zona fosca. Amb el residu es repeteix tot aquest procés dues vegades més. Un cop estan tots els sobrenedants en el matràs, s’enrasà amb la solució de 0.1% de TFA i es filtra mitjançant una xeringa amb filtre 0.22µm en un vial àmbar. La mostra s’injecta al cromatògraf. Totes les mostres van ser realitzades per quintuplicat.

α-tocoferol

Se pesen 0.5g tant de les mostres d’arboç mòlt liofilitzat com de les mostres de les fraccion obtingudes de les diferents etapes de la digestió i es col·loquen en tubs de centrífuga. S’afegeixen 5mL d’hexà i se politrona durant 60 segons. A continuació, es centrifuga a 9000rpm, durant 10 minuts, a 5°C. Es repeteix l’extracció amb 5mL d’hexà fins que aquest no tingui color. Els sobrenedants obtinguts de les centrifugacions es van reservant en matràs de cor, protegits de la llum i després se rotavaporen fins sequedat per ser redissolts en 1mL d’hexà. El residu reconstituït es filtra amb filtres de niló de xeringa 0.2µm en un vial àmbar. La mostra s’injecta al cromatògraf. Totes les mostres van ser realitzades per quintuplicat.

β-carotè

Es pesa 1g tant de les mostres d’arboç mòlt liofilitzat com de les mostres de les fraccion obtingudes de les diferents etapes de la digestió i s’afegeixen 10mL d’etanol:hexà (60:40, v/v). Se politrona durant 60 segons i se centrifuga a 9000rpm, durant 10 minuts, a 5°C. Es guarda el sobrenedant en un matràs de cor. Es repeteix l’extracció amb 10 mL d’etanol:hexà (60:40, v/v) fins que aquest no tingui color. Els sobrenedants s’ajunten en el matràs de cor i se rotavaporen fins sequedat. A continuació, el residu se redissolvent amb 2mL d’etanol, se filtra amb filtres de xeringa de
0.2μm en un vial àmbar. La mostra s’injecta al cromatògraf. Totes les mostres van ser realitzades per quintuplicat.

5.4 Anàlisi cromatogràfic

Per la identificació i quantificació d’àcid ascòrbic, α-tocoferol i β-carotè es va utilitzar un equip cromatogràfic HPLC acoblat a un sistema de detecció UV-VIS (Waters 2996 Photodiode Array Detector, Waters Corp., Milford, MA, USA).

Àcid ascòrbic

La separació cromatogràfica es va realitzar amb una columna capil·lar BEH (4.6 x 100 mm d.i. 2.5 μm) (Waters Corp. Milford, MA, USA). Les condicions cromatogràfiques van ser les següents: volum d’injecció 20μL; temperatura de la columna 25°C: fase mòbil 0.1% TFA; flux de la fase mòbil 0.4mL/min i l’elució es va fer en mode isocràtic. Les absorbàncies de l’àcid ascòrbic es van detectar a una longitud d’ona de 243nm.

α-tocoferol

La separació cromatogràfica es va realitzar amb una columna capil·lar Sulpelcosil LC-NH₂ (25 cm × 4.6 mm d.i., 5μm) (Supelco). Les condicions cromatogràfiques van ser les següents: volum d’injecció 20μL; temperatura de la columna 25°C: fase mòbil binària (A) hexà i (B) acetat d’etil; flux de la fase mòbil 0.1mL/min i l’elució es va fer en mode isocràtic amb un 30% de B. Les absorbàncies es van detectar a una longitud d’ona de 295nm.

β-carotè

La separació cromatogràfica es va realitzar amb una columna capil·lar YMP Carotenoid (150 cm × 4.6 mm d.i., 3μm) (Waters, Milford, MA, USA). Les condicions cromatogràfiques van ser les següents: volum d’injecció 20μL; temperatura de la columna 25°C: fase mòbil binària (A) aigua milli-Q, (B) metanol i (C) metil tetrabutil èter; flux de la fase mòbil 0.1mL/min i l’elució es va fer en gradient (min/%B/%C): 0/96/2, 27/18/80 i 35/96/2. Les absorbàncies es van detectar a una longitud d’ona entre 350-550nm.
5.5 Anàlisi de dades

La quantificació d’àcid ascòrbic, α-tocoferol i β-carotè de totes les mostres i les seves rèpliques es va realitzar utilitzant una recta de calibrat, construïda a partir de 6 punts representatius de diferents concentracions dels patrons comercials (R²>0.9). Els valors se representen com la mitja dels valors de les rèpliques (n=5) i les seves respectives desviacions estàndard, calculades a partir de full de càlcul Excel (Office 2010).
Figura 5. Esquema dels resultats obtinguts

El·ements:

<table>
<thead>
<tr>
<th>ÀCID ASCÒRBIC</th>
<th>mg</th>
<th>SD</th>
<th>%VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,45</td>
<td>0,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-TOCOFEROL</td>
<td>mg</td>
<td>SD</td>
<td>%VAR</td>
</tr>
<tr>
<td>0,21</td>
<td>0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-CAROTÈ</td>
<td>mg</td>
<td>SD</td>
<td>%VAR</td>
</tr>
<tr>
<td>0,06</td>
<td>0,006</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ÀCID ASCÒRBIC

<table>
<thead>
<tr>
<th>ÀCID ASCÒRBIC</th>
<th>mg</th>
<th>SD</th>
<th>%VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,89</td>
<td>0,10</td>
<td>-22,86%</td>
<td></td>
</tr>
<tr>
<td>α-TOCOFEROL</td>
<td>mg</td>
<td>SD</td>
<td>%VAR</td>
</tr>
<tr>
<td>0,13</td>
<td>0,06</td>
<td>-40,53%</td>
<td></td>
</tr>
<tr>
<td>β-CAROTÈ</td>
<td>mg</td>
<td>SD</td>
<td>%VAR</td>
</tr>
<tr>
<td>0,06</td>
<td>0,005</td>
<td>0,00%</td>
<td></td>
</tr>
</tbody>
</table>

% VAR: és la diferència del compost respecte el contingut dels arboços liofilitzats.

%ABS: és el valor que s’absorbeix. Calculat com 100 - el valor del percentatge de variació.

SD: és el valor que correspon a la desviació estàndard.

Els valors estan expressats en mg de compost per 1.5g d’arboç liofilitzat.
ÀCID ASCÒRBIC

Gràfic 1. Concentració d’àcid ascòrbic en l’arboç

α-TOCOFEROL

Gràfic 2. Concentració de α-tocoferol en l’arboç

β-CAROTÈ

Gràfic 3. Concentració de β-carotè en l’arboç
Fruit de la investigació realitzada, s’ha obtingut les concentracions de tres components antioxidants corresponents a diverses etapes en què es sotmès el fruit durant la ingesta d’aquest.

Àcid ascòrbic. La concentració inicial d’àcid ascòrbic del fruit liofilitzat és 2,45mg/1,5g d’arboç liofilitzat. Durant la digestió oral, la concentració d’àcid ascòrbic va ser reduïda un 22,86% respecte la concentració inicial (gràfic 1 i figura 5). La concentració d’aquest va quedar augmentada un 19,31% respecte la concentració inicial en la digestió gàstrica. En la digestió intestinal, d’una banda, ens trobem amb una reducció del 84,90% respecte la concentració inicial, en la fracció IN. Fracció no digerida i que continuaria la seva digestió al colon. D’altra banda, la fracció OUT de la digestió intestinal, fracció digerida i, per tant, absorbida tenia una concentració de 0,27mg/1.5g d’arboç liofilitzat. Això significa que va ser absorbit un 11,09% d’àcid ascòrbic respecte la concentració inicial.

α-tocoferol. El canvis en les concentracions de α-tocoferol es mostren en la gràfica 2 i figura 5. La concentració inicial de α-tocoferol en el fruit liofilitzat és de 0,21mg/1,5g d’arboç liofilitzat. Durant tot el procés de digestió la concentració de α-tocoferol va anar disminuint progressivament, sobretot en la primera fase de la digestió, en la boca, observant una reducció d’un 40,53% respecte la concentració inicial. En la digestió gàstrica la concentració de α-tocoferol va ser 0,06mg/1,5g d’arboç liofilitzats, fet que implica una reducció del 59,11% respecte la concentració inicial. En la última etapa, la fracció de digestió intestinal IN mostra una reducció del 70,98% i en la fracció OUT s’observa que solament va ser absorbit un 1,3% del total de la concentració inicial.

β-carotè. La influència de la digestió “in vitro” en la concentració de β-carotè en les mostres d’arboç liofilitzats queden reflectides en el gràfic 3 i figura 5. La concentració inicial de β-carotè és 0,06mg/1,5g d’arboç liofilitzat. En la digestió oral es va mantenir la concentració inicial de β-carotè. En canvi, en la digestió gàstrica hi va haver un 9,09%
de reducció de β-carotè respecte la concentració inicial. En la fracció de la digestió intestinal IN es va reduir un 25,45% la concentració respecte la concentració inicial, ja que es va identificar una concentració de 0,04mg/1.5g d’arboç liofilitzat. El β-carotè no va ser detectat (n/d) en la fracció intestinal OUT.
7. DISCUSIÓ

En la present investigació es va monitoritzar l’estabilitat de la vitamina C, α-tocoferol i β-carotè en l’arboç a través d’un model de digestió “in vitro” de tipus dinàmic. Els resultats obtinguts a partir de la simulació de la digestió oral, gàstrica i intestinal, es van comparar amb els valors iniciais presents en el fruit amb la finalitat de predir el comportament d’aquestes substàncies al llarg del tracte gastrointestinal.

En la quantificació inicial d’àcid ascòrbic en l’arboç liofilitzat el valor obtingut en la investigació és força superior als valors obtinguts en estudis previs en l’arboç (Barros et al., 2010). No obstant, es inferior al valor obtingut en arboç fresc (Ruiz-Rodriguez et al., 2011). La ingesta recomanada per la FAO/OMS (Organització de les Nacions Unides per l’Alimentació i l’Agricultura / Organització Mundial de la Salut) de vitamina C està entre els intervals de 40-45mg/dia (Cuervo et al., 2009). Si s’ingereix 100g d’arboç s’aconseguirà la ingesta recomanada d’aquesta vitamina.

El contingut d’àcid ascòrbic durant la digestió oral es reduït. En canvi, en la digestió gàstrica augmenta el seu contingut. Les condicions àcides de l’estómac poden protegir a l’àcid ascòrbic de ser oxidat (Ball, 2006). Altres autors han demostrat que la digestió gàstrica té poc efecte sobre l’estabilitat de l’àcid ascòrbic, recuperant 93% d’aquest compost en les inflorescències del bròquil i 71% en el suc de magrana (Vallejo et al., 2004; Pérez-Vicente et al., 2002).

En la digestió intestinal, els resultats mostren que l’àcid ascòrbic és inestable. L’efecte del pH alcalí i altres factors adherits a la digestió “in vitro” com l’oxigen podrien predisposar a la seva oxidació. L’efecte observat de la digestió “in vitro” en la reducció del contingut d’àcid ascòrbic en la present investigació ja havia estat mostrat en estudis previs de suc de fruites (Rodríguez-Roque et al., 2013).

La quantificació inicial de α-tocoferol en l’arboç liofilitzat de la present investigació mostra un valor menor respecte el valor obtingut en estudis previs en l’arboç (Barros et al., 2010). Ara bé, en aquell estudi van utilitzar una metodologia diferent, ja que van
Introduir un antioxidant protector per minimitzar la pèrdua de tocoferols. Aquesta pot ser una de les raons per les quals hi hagi diferències en els continguts de α-tocoferol.

Els resultats mostren una clara reducció del contingut en α-tocoferol durant tot el procés de la digestió, potser, ocasionada per la presència residual d’oxigen en les diferents etapes de la digestió “in vitro”.

La concentració inicial de β-carotè en l’arboç és la més baixa dels tres compostos que s’han investigat. El valor obtingut en aquesta investigació és major que l’obtingut en un estudi previ (Pallauf et al., 2008; Barros et al., 2010) però és clarament inferior respecte un altre estudi (Alarcao-E-Silva et al., 2001).

La reducció del contingut en β-carotè ve donada per l’alta inestabilitat d’aquest compost en medi àcid, ja que són susceptibles a les reaccions d’oxidació (Rodríguez-Roque et al., 2013).

Al comparar la composició de l’àcid ascòrbic, α-tocoferol i β-carotè s’ha notat una clara diferència entre els valors obtinguts en la present investigació i aquells determinats per altres autors. Aquest fet pot ser degut a diverses raons: les condicions climàtiques, l’època de recol·lecció i l’estat de maduresa poden influir en la composició del fruit. Així mateix, els mètodes seleccionats per l’anàlisi també poden ser la causa de la diversitat en els resultats.

Quant als resultats obtinguts de la fracció OUT, hem vist que l’àcid ascòrbic ha estat de totes les vitamines estudiades, la que més percentatge d’absorció ha mostrat (11.09%) en funció del contingut original del fruit comparada amb α-tocoferol i β-carotè.

L’àcid ascòrbic és una substància hidrosoluble, en canvi, els tocoferols i carotens són liposolubles. La digestió es duu a terme dintre d’un tub de diàlisi, rodejat d’un tampó fosfat. Les substàncies solubles de la digestió solen orientar-se cap a les parets del tub, afavorint, així, el pas de dites substàncies cap al medi extern. Les substàncies liposolubles tendeixen a quedar-se en el centre, disminuint així el contacte amb les
parets del tub i limitant el seu pas al medi exterior, que és on se troba el tampó. La baixa o nul·la presència de α-tocoferol i l’absència β-carotè en la fracció OUT també pot guardar relació amb el baix contingut inicial en l’arboç. La matriu alimentaria també pot influir en la bioaccesibilitat de les vitamines liposolubles (Granado-Lorencio et al., 2009; Mandalari et al., 2013; Hedrén et al., 2002). A més a més, l’arboç és un fruit en què el contingut en lípids és mínim 0,609g/100g d’arboç (Ruiz-Rodríguez et al., 2011).

Per altra part, a l’epiteli intestinal dels humans hi ha membranes receptores, enzims i proteïnes que faciliten l’absorció de components liposolubles (Fernández-García et al., 2012).

L’ús de la metodologia “in vitro” pot ser apropiada per estudiar processos pre-absortius, malgrat la seva validesa com un índex de capacitat d’absorció i/o biodisponibilitat, els resultats haurien de ser validats en diferents situacions “in vivo” (Granado-Lorencio et al., 2009).

Seria també interessant proposar estudis de fermentació colònica per a predir el comportament dels compostos romanents, en la fracció IN, en contacte amb la microbiota local.

Així mateix, la possibilitat d’ofereir informació relativa a la composició de fenols i la seva estabilitat durant el procés de digestió seria una aportació valuosa per complementar els resultats del present estudi. Tot això, pot servir de base per proposar l’arboç com un aliment de gran potencial nutritiu, la promoció del qual pot també estimular la producció i comercialització de les economies locals.
8. CONCLUSIONS

1. El fruit d’arboç continua sent un gran desconegut. Encara no hi ha suficients investigacions científiques que estudiïn les característiques d’aquest fruit i els seus possibles efectes beneficiosos per la salut humana.

2. La metodologia “in vitro” és una bona eina per avaluar la digestibilitat d’aquests tres compostos, ja que ens permet simular de manera ràpida i econòmica tot el procés de la digestió humana. Tot i així, els resultats obtinguts mitjançant aquesta metodologia solament ens donarien una aproximació del que podria succeir en la digestió humana, atès que hi ha moltes variables que no poden ser controlades “in vitro”.

3. La metodologia emprada en el tractament de les mostres d’arboç és ràpida i específica per cada compost a tractar. És de vital importància el bon maneig dels equips i estris per tal d’evitar l’oxidació dels antioxidants durant el transcurs del tractament.

4. L’anàlisi de vitamina C, carotens i tocoferols mitjançant cromatografia líquida resulta relativament ràpid, ja que es tarda d’uns minuts a 1 hora en detectar cada component. El seu maneig i posada en marxa, però, resulta dificultós i lent, atès que les condicions varien segons el compost.

5. L’àcid ascòrbic és l’antioxidant que es troba en més quantitat en les mostres d’arboç analitzades i el β-carotè és, per contra, el que té una menor presència en aquest fruit.

7. L’absorció d’aquests antioxidants en el mètode “in vitro” és molt baixa, sent l’àcid ascòrbic el que més s’absorbeix. En els β-carotè el seu contingut ha sigut tant baix que no ha estat detectat i no s’ha pogut quantificar la seva absorció.

8. La present investigació dóna un pas endavant cap a l’estudi d’aquest fruit i el seu rol en la nutrició humana. A més, pot servir, en un futur, com a referent en estudis més exhaustius sobre l’arboç, els antioxidants i la digestibilitat d’aquests.
9. BIBLIOGRAFÍA

