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Abstract 32 

Agricultural lands, because of their large area and exhaustive management practices, 33 

have a substantial impact on the earth’s carbon and nitrogen cycles, and agricultural activities 34 

consequence in discharges of greenhouse gases (GHGs). Globally, greenhouse gases (GHGs) 35 

emissions especially carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the 36 

agricultural sector are increasing due to anthropogenic activities. Although, the application of 37 

animal manure to the agricultural soil as an organic fertilizer not only improves soil health and 38 

agricultural production but also has a significant impact on GHGs emissions. But the extent of 39 

GHGs emissions in response to manure application under diverse environmental conditions is 40 

still uncertain. Here, a meta-analysis study was conducted using field data (48 peer-reviewed 41 

publications) published from 1989 to 2019. Meta-analysis results showed that poultry manure 42 

considerably increased CO2, CH4, and N2O emissions than pig and cattle manure. Furthermore, 43 

application of poultry manure also increased (𝑙𝑛𝑅𝑅  =0.141, 95% CI =0.526-0.356) GWP (global 44 

warming potential) of total soil GHGs emissions. While, the significant effects on CO2, CH4, and 45 

N2O emissions also occurred at manure rate > 320 kg N ha-1 and > 60% water filled pore space. 46 

The maximum concentrations of CO2, CH4, and N2O emissions were observed in neutral soils 47 

(𝑙𝑛𝑅𝑅  =3.375, 95% CI =3.323-3.428), alkaline soils (𝑙𝑛𝑅𝑅  =1.468, 95% CI =1.403-1.532), and 48 

acidic soils (𝑙𝑛𝑅𝑅  =2.355, 95% CI =2.390-2.400), respectively. Soil texture, climate zone and 49 

crop type were also found significant factors to increase GHGs emissions. Thus, this meta-50 

analysis revealed a knowledge gap concerning the consequences of animal manure application 51 

and rate, climate zone, and physicochemical properties of soil on GHGs emissions from 52 

agricultural soils. 53 
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1. Introduction 55 

Emissions of GHGs like carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from 56 

the terrestrial environment have been renowned as the main contributor to global warming (Ren 57 

et al., 2017). Agriculture was seen as the first evidence of increased human-made greenhouse gas 58 

emissions into the atmosphere (Paustian et al., 2016). It contributes almost 10 to 14% of total 59 

global GHG emissions, which includes 50–60% of N2O and CH4 that are directly linked with 60 

agricultural soil and its inputs like manure application and synthetic fertilizers (Shakoor et al., 61 

2020b). 62 

Application of animal manure to agricultural lands as organic fertilizer improved crop 63 

productivity, soil fertility and boosts organic carbon (OC) reserves in the soil, but also affects 64 

GHGs emissions (Zhou et al., 2017b). Globally, 7.0 billion tons of animal manure is used 65 

annually for agricultural lands (Thangarajan et al., 2013). The total quantity of produced manure, 66 

for each type of animal, can be calculated as an average between the quantity of manure 67 

produced per animal, and the number of animals (IPCC, 2006). Animal manure contributes up to 68 

37% of global GHGs emissions (Vac et al., 2013). Soil texture (Oertel, et al., 2016), soil pH (Wu 69 

et al., 2018), water filled pore space (WFPS) (Säurich, et al., 2019), crop type (Severin, et al., 70 

2015) and crop duration (Tongwane et al., 2016) have also been documented important factors of 71 

CO2, CH4 and N2O emissions from the terrestrial environment.  72 

Atmospheric CO2 plays an important role in the global carbon cycle in the atmospheric 73 

system. Human activities such as the burning of fossil fuel and deforestation significantly 74 

increased the CO2 concentration in the atmosphere from around 280 to 387 ppm (parts per 75 
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million) and, recently, have even exceeded 400 ppm (parts per million). This CO2 concentration 76 

is projected to increase considerably by 2100 (Goldman et al., 2017). In the earth system, this 77 

global carbon cycle contributes to a large amount of carbon, which is connected through the 78 

exchange of carbon fluxes (Ciais et al., 2013). The terrestrial environment is intimately linked to 79 

atmospheric CO2 levels by the sequestration of carbon in the soil and biomass, which is emitted 80 

by the decomposition of organic manure (Drigo et al., 2008). In a research study, it was found 81 

that the application of animal manure potentially enhances the carbon content in the soil and then 82 

converts into a net CO2 sink (Gattinger et al., 2012).  83 

Atmospheric CH4 has received a lot of attention recently, simply because it is a very 84 

important and long-lasting GHG also contributing to global warming (Wang et al., 2016), which 85 

exhibits relative global warming potential of 265 (Weller et al., 2015), 34 times higher than that 86 

of CO2 present in the atmospheric environment, considered on an equivalent mass basis. The 87 

total concentration of CH4 in the atmosphere is approximately 1,780 ppb, which is higher than 88 

pre-industrial levels. Agricultural lands act as anthropogenic sources and contribute about 50% 89 

of the total flux of CH4 emissions into the atmosphere (Wang et al., 2016). The application of 90 

animal manure and synthetic fertilizer can be considered the best predictor of CH4 emission from 91 

agricultural lands (Shakoor et al., 2020a). 92 

Following CO2 and CH4, N2O is the third most important GHG, contributing up to 6% in 93 

global warming. While, N2O has 298 times more GWP compared to CO2 and also favors ozone 94 

(O3) destruction (Charles et al., 2017). The emission of N2O from agricultural sources is 95 

considered to be one of the main contributors to the global warming budget. Agricultural lands 96 

approximately contribute up to 68% in the atmospheric N2O emissions (Shakoor et al., 2018). 97 

Application of animal manure cannot only enhance soil pH (Whalen et al., 2000) but also 98 
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improved soil aggregation, porosity as well as hydraulic conductivity (Haynes & Naidu, 1998), 99 

which can control different biotic and abiotic processes leading N2O production in soils (Shakoor 100 

et al., 2016). Several studies show the effects of different animal manures and synthetic 101 

fertilizers on N2O emission from agricultural lands, indicating, that different manures and dung 102 

management practices, for example, manure storage, animal houses (Anitha & Bindu, 2016), and 103 

application of manure in the field (Ku et al., 2017), causes the emission of N2O into the 104 

atmosphere. 105 

Meta-analysis is a useful technique to quantitatively synthesize, analyze, and then 106 

summarize the final results of different studies (Ren et al., 2017). The analytical method suggests 107 

a proper statistical analysis to combine and compare the collected results of different studies and 108 

to draw general models at different spatial scales, and the outcomes of already published studies 109 

are treated as if they are subject to uncertainties of sampling (Freeman et al., 1986). Detailed 110 

information about how different animal manures affect GHGs is critical to assessing the potential 111 

of manure application to croplands for mitigation the GHGs emissions.  112 

The climate sensitivity of all three GHGs (CO2, CH4, and N2O) emissions is poorly 113 

known, which makes it difficult to project how changing manure and/or synthetic fertilizer use 114 

and climate will influence radiative forcing and the ozone (O3) layer. A decent number of 115 

research scientists have conducted the meta-analysis about N2O emissions from soils considering 116 

different parameters like animal manure application and rate (Zhou et al., 2017b), urine-derived 117 

(López‐Aizpún et al., 2020), crop residues (Chen et al., 2013), no-tillage (Zhao et al., 2016), 118 

salinization (Zhou et al., 2017a) and climate (Van Kessel et al., 2013). But, a few numbers of 119 

meta-analysis studies are available considering the CO2, CH4, as well as N2O emissions 120 
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simultaneously under the application of animal manures and rates, climate, and soil attributes. 121 

So, we conducted a meta-analysis to fulfill this gap. 122 

In this meta-analysis study, we systematically compared the GHGs emissions of the soil 123 

under different animal manures, the quantity of manure, climate zone, soil pH, water filled pore 124 

space (WFPS), soil texture, crop type, and crop duration. The main objectives of this study were 125 

to address the following questions: 1) Do the application and amount of different animal manures 126 

affect soil GHGs emissions as compared to control and/or no fertilizer? 2) Which GHG more 127 

affected by the application of animal manure and manure rate? 3) Do crop duration and crop 128 

species important factors for regulating the GHGs emissions? and finally, 4) How do soil 129 

attributes and different climate zones affect soil GHGs emissions? 130 

2. Materials and methods 131 

2.1. Data collection 132 

A systematic literature search approach was followed to collect research articles for meta-133 

analysis. To cover the main objectives of this meta-analysis, a total of 950 peer-reviewed 134 

research publications were collected that reported GHGs emissions in agricultural soils following 135 

application of animal manures into the search engines of Google Scholar, Scopus, and Web of 136 

Science to identify relevant research articles for inclusion in the meta-analysis, to a cut-off date 137 

of 31st December 2019. The keywords ‘manure’ ‘animal manure’ ‘pig’ ‘swine’ ‘cattle’ ‘dairy’ 138 

‘poultry’ ‘carbon dioxide or CO2’ ‘methane or CH4’ and ‘nitrous oxide or N2O’ were used to 139 

search the publications.  140 

Peer-reviewed publications selected by using the following criteria: a) experiments who had 141 

at least one pair of data (control and treatment) and calculated cumulative CO2, CH4, and/or N2O 142 

emission fluxes; b) clearly described experimental method with crop type and duration, and c) 143 
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physiochemical properties of soil. In total, 48 peer-reviewed publications on manure application 144 

were selected published from 1989 to 2019 (Table 1, Data S1). Most research publications 145 

reported emission flux in tables that could easily be transferred into the dataset directly. 146 

Emission data presented in figures, GetData (version 2.26) Graph Digitizer software 147 

(http://www.getdata-graph-digitizer.com/download) was used to extract the data. From each 148 

research publication, we extracted the cumulative values (kg ha-1) of all three GHGs emissions in 149 

the dataset. For manure application and/or synthetic fertilizer, kg N ha-1 unit was used and 150 

converted all other units (such as Megagram (Mg N ha-1)) into kg N ha-1 where it needed. We 151 

also collected the means, standard deviations (SD), and sample sizes from treatment and control 152 

for each research study. If research publications only presented standard errors (SE), then the SD 153 

values were calculated from SE.  154 

Other informations that were used in the dataset included the following: type of manure, 155 

amount of manure, soil pH, WFPS, soil texture, crop type, crop duration time, and climate zone. 156 

The manure type grouped as pig, cattle, and poultry; amount of manure, grouped as ≤ 120 kg N 157 

ha-1 (low), ≤ 320 kg N ha-1 (medium) and > 320 kg N ha-1 (high) doses as did by Cayuela et al., 158 

(2017) ; soil pH, grouped to ≤ 6.5 (acidic), 6.6-7.3 (neutral), > 7.3 (alkaline) (Havlin et al., 159 

2013); WFPS grouped as < 30%, 30-60%, > 60%; soil texture was grouped into different 160 

categories following the USDA, (1999) (clay, clay loam, loam, sandy, sandy clay loam, sandy 161 

loam, silt clay, silt loam, silty clay loam); crop type and crop duration time grouped as barley, 162 

fallow, grassland, maize, rice, soybean, sweet corn, wheat and ≤ 320 days, 321-725 days, > 725 163 

days, respectively; and climate zone divided into 4 groups as cool temperate, semi-arid, tropical, 164 

sub-tropical and warm temperate (Zhou et al., 2017b).  165 

2.2. Meta-analysis 166 

http://www.getdata-graph-digitizer.com/download
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For the meta-analysis, we used a response ratio (RR, natural log of the ratio) as the effect size 167 

to calculate the effects of manure application on GHGs emission from agricultural soils (Hedges 168 

et al., 1999) by using the following equation: 169 

𝑅𝑅 =  ln(𝑥𝑡/𝑥𝑐)  =  ln(𝑥𝑡)  −  ln(𝑥𝑐)                      (1) 170 

Where the subscript of 𝑥𝑡  and 𝑥𝑐  represents the mean value of treatment and control, 171 

respectively. If the RR value is zero, RR > 1 and RR < 1, its mean that manure treatment had no, 172 

positive and negative effect on GHGs emissions, respectively.  173 

The natural logarithm of RR (lnRR), the effect size, was calculated for each treatment in 174 

every trial/experiment (Hedges et al., 1999). The variance (ν) of each lnRR for each study was 175 

calculated by using the equation (2); 176 

 ν =
St2

ntxt2 +
Sc2

ncxc2                                                         (2) 177 

where St and Sc are the standard deviation of a treatment and reference control, and nt and nc are 178 

the number of samples in a treatment and reference control, respectively. For each research 179 

study, the weighting factor (ω) was measured as the inverse of the pooled variance (1/ν).  180 

The mean effect sizes were calculated as; 181 

𝑙𝑛𝑅𝑅 =
∑(𝑙𝑛𝑅𝑅𝑖× 𝜔𝑖)

∑ 𝜔𝑖
                                                    (3) 182 

Where ωi and lnRRi were the weight and effect size from the ith comparison, respectively. 183 

The GWP was also calculated when fluxes for all three GHGs emissions (CO2, CH4, and 184 

N2O) were reported in every single study. The IPCC factor was used to calculate the GWP (kg 185 

CO2-eq ha−1 yr-1) (IPCC, 2013) in over a 100-year time horizon: 186 

               GWP = (CO2 × 1) + (N2O × 298) + (CH4 × 34)                       (4) 187 

2.3.Statistical analysis 188 
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A random-effects meta-analysis model was used to examine the dataset as early as explained 189 

by (Michael et al., 2009). METAWIN 2.1 (Rosenberg et al., 2000) and OpenMEE (Wallace et 190 

al., 2017) software were used to calculate the mean effect sizes of the dataset and 95% 191 

bootstrapped confidence intervals (CIs) were generated using 4999 iterations. The results were 192 

considered significant if the 95% CI of cumulative CO2, CH4, and N2O emissions did not overlap 193 

with zero and the randomization tests resulted P < 0.05. Statistical results such as total 194 

heterogeneity (Qt) in effect sizes among studies were also calculated using OpenMEE software. 195 

The relationship is significant if P < 0.05. 196 

3. Results and discussion 197 

3.1. Effects of manure type and manure rate on GHGs emissions 198 

Of the total, 324 and 242 paired-wise observations were selected for manure type and manure 199 

rate, respectively. Three types of manure (pig (n=115), cattle (n=101) and poultry (n=28)) and 200 

three levels of manure rate (≤ 120 kg N ha-1 (n=71), ≤ 320 kg N ha-1 (n=134) and > 320 kg N ha-1 201 

(n=37)) were chosen to check the effect on GHGs emissions. The application of different manure 202 

types and manure rates had significantly positive effects on CO2, CH4, and N2O emissions. Based 203 

on meta-analysis results, the overall effect sizes (𝑙𝑛𝑅𝑅 ) of manure type and manure rate on CO2, 204 

CH4, and N2O emissions were significantly greater than zero (Figure. 1a, 1b and 1c), [but slightly 205 

negative effects on CO2 emission related to manure rate was also observed (Figure. 1a (i))], 206 

showing that application of different manure type and manure rate considerably increased CO2, 207 

CH4 as well as N2O emissions from the agricultural soil as compared to controls. Manure rate 208 

and manure type had a strong effect on CO2 emission (𝑙𝑛𝑅𝑅  =0.635, 95% CI =0.01-1.26) and 209 

(𝑙𝑛𝑅𝑅 =0.125, 95% CI =-0.925-1.175), CH4 emission (𝑙𝑛𝑅𝑅  =2.31, 95% CI =1.161-3.481) and 210 

(𝑙𝑛𝑅𝑅  =1.495, 95% CI =1.135-1.855), and N2O emission (𝑙𝑛𝑅𝑅  =1.123, 95% CI =1.004-1.241) 211 
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and (𝑙𝑛𝑅𝑅  =0.862, 95% CI =0.035-1.69), respectively (Table S2). The total heterogeneity (Qt) 212 

was also calculated for both parameters (Table S3). The statistical results showed that the 213 

manure rate and manure type had a positive effect on CO2 emissions.  214 

In manure rate, > 320 kg N ha-1 (𝑙𝑛𝑅𝑅  =0.891, 95% CI =0.84-0.942) had maximum effects 215 

on CO2 emission than other rates while the negative effect was also observed at ≤ 320 kg N ha-1 216 

(𝑙𝑛𝑅𝑅  =-0.512, 95% CI =-0.546--0.479) (Figure. 1a (i), Table (S2)). Alternatively, poultry 217 

manure had the notably highest effects on CO2 emission as compared to pig and cattle manures 218 

(Figure. 1a (ii)). On the other hand, a significant effect of manure rate and manure type were also 219 

observed on CH4 emissions (Qt=6445.801, P < 0.011) and (Qt=389.849, P < 0.001) (Table S4), 220 

and on N2O emissions (Qt=27.879, P < 0.001) and (Qt=757.926, P < 0.027) (Table S5), 221 

respectively. According to our meta-analysis, the application of poultry manure and manure at 222 

the rate of > 320 kg N ha-1 also had the maximum effect on CH4 and N2O emissions (Figure. 1b 223 

and 1c).  224 

Animal manure contains nitrogen (N), phosphorus (P), and other micronutrients that plants 225 

need to grow. Farmers can often save money by properly using manure as a fertilizer (Cavalli et 226 

al., 2017). On the other hand, the application of animal manure has been a big concern 227 

worldwide because manure contributes up to 37% of global GHGs emissions (Vac et al., 2013).  228 

The GHGs emissions from agricultural soils mostly depend on soil characteristics, 229 

environmental conditions and type and amount of manure. According to our meta-analysis, 230 

results revealed that the application of different animal manure significantly enhanced GHGs 231 

emissions (Figure. 1a, 1b and1c). Our meta-analysis showed that poultry manure significantly 232 

enhanced the GHGs emissions from the soil than pig and cattle manures. Emission of CO2 from 233 

agricultural soils is mainly emitted through microbial activities. Autotrophic microbial 234 
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communities significantly increase the decomposition of soil organic matter (SOM) results in 235 

increase soil organic carbon (SOC) as well as CO2 emission (Watts et al., 2011) because CO2 is 236 

mostly emitted from agricultural soil as a result of the soil microbial respiration and plant root 237 

respiration (Ray et al., 2020).  238 

The CH4 emission from croplands mostly due to anaerobic decomposition of organic matter 239 

(Praeg et al., 2016). The application of poultry manure significantly enhanced CH4 emissions 240 

from croplands. This might be because of manure application increase soil microbial biomass 241 

and also activities. Therefore, manure application provides more oxidizable C content to the 242 

methanotrophs under oxygen limiting conditions, which would increase CH4 emissions  (Pathak, 243 

2015).  244 

Poultry manure also significantly increases N2O emission from croplands mainly due to their 245 

easily decomposable SOC relative to other manures (Zhou et al., 2017b). One main reason for 246 

high N2O emission from agricultural soils may be due to high rates of net N mineralization of the 247 

poultry manure (Akiyama et al., 2004), which possibly increased nitrification as well as 248 

denitrification rates and, subsequently, N2O production (Hayakawa et al., 2009).  249 

The manure and mineral nitrogen application rates were directly proportional to the GHGs 250 

emissions because C, N, phosphorus (P) and potash (K) contents were increased accordingly in 251 

the soil. Zhou, et al., (2017b) also conducted a global meta-analysis and proved that poultry 252 

manure produces more GHGs emission as compared to other manures (pig and cattle). Maris et 253 

al., (2016) had examined the response of GHGs emission using different animal manures and 254 

showed that poultry manure increased GHGs emission than pig and cattle mainly due to the 255 

higher application rate. Smith et al., (2010) also showed a similar trend in their research study. 256 

Because, poultry manure has high C and N contents than pig and cattle manure (Ahn, et al., 257 
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2010). Shen, et al., (2015) also proved that poultry manure has more N content than cattle and 258 

pig manure. The rate of manure is also a very important factor for getting the maximum 259 

production but the amount of manure is directly proportional to GHGs emissions. De Rosa et al. 260 

(2018) conducted research study using different animal manures with different rates. They all 261 

found that a higher amount of manure significantly affects GHGs emissions which were similar 262 

to our findings.  263 

3.2. Water filled pore space (WFPS) and soil pH 264 

Soil pH and WFPS have been recognized as important factors of GHGs emissions 265 

(Butterbach-Bahl et al., 2013). Figure 2 shows the effect sizes of WFPS and soil pH on GHGs 266 

emissions from agricultural soils after manure application. From the total, 260 and 408 267 

observations were chosen for WFPS and soil pH, respectively. WFPS was classified as < 30% 268 

(n=53), 30-60% (n=144) and > 60% (n=63), on the other hand, soil pH was also categorized into 269 

three classes like ≤ 6.5 (n=189), 6.6-7.3(n=118) and > 7.3 (n=101).  270 

The present meta-analysis showed that overall effect sizes of WFPS on CO2
 (𝑙𝑛𝑅𝑅 =0.212, 271 

95% CI =0.102-0.323), CH4 (𝑙𝑛𝑅𝑅  =0.841, 95% CI =-0.644-2.326), and N2O (𝑙𝑛𝑅𝑅  =0.394, 272 

95% CI =-0.394-0.913) emissions were significantly greater than zero (Table S2), indicating that 273 

WFPS significantly enhanced CO2, CH4, and N2O emissions. For CO2, 𝑙𝑛𝑅𝑅  was positive when 274 

WFPS was greater than 30%, showing the positive effects on CO2 emissions and 30-60% WFPS 275 

had more effect than > 60% WFPS (Figure 2a (i)). Otherwise, maximum emissions of CH4 and 276 

N2O were observed at > 60% WFPS (Figure. 2b (i) and 2c (i)). The maximum emission of CO2 277 

was observed when WFPS 35-55% (Alluvione et al., 2009) which was in the range of our 278 

findings. Our results were also similar to those estimates studied by Sakabe et al. (2015). While 279 

N2O and CH4 emissions were normally low at WFPS levels ≤ 60%.  280 
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The emission of CO2 increased at < 50% WFPS indicating the microbial processes like 281 

mineralization were less affected by low moisture content. At > 70% WFPS values, soil CO2 282 

emissions were significantly inhibited by lack of available oxygen (Franco-Luesma et al., 2020), 283 

making soil conditions that promote denitrification (Rowlings et al., 2010).  284 

Several factors are influencing CH4 emissions in higher WFPSs. Soil conditions that support 285 

methanotrophic rather than a methanogenic activity which was favored by low temperature and 286 

the high percentage of WFPS (> 60%) (García-Marco et al., 2014). Another study found that in 287 

the anaerobic environmental conditions, a higher amount of SOM would also contribute to the 288 

low CH4 absorption (Sakabe et al., 2015).  289 

Maximum N2O emissions with increasing the WFPS were frequently reported from different 290 

research studies (Ruser et al., 2001). A higher amount of water content significantly improved 291 

the denitrification process in soil and maximum activity was observed at a WFPS 70% (Ruser et 292 

al., 2006). Another study reported the soil with 90% WFPS had the maximum N2O emissions. 293 

These results show that emissions of N2O at higher WFPSs were significantly influenced by 294 

SOC contents. The greater specific substrate may have preferred the anoxic microsites formation, 295 

which is well-known to enhance N2O emissions (Flessa and Beese, 2000).  296 

The overall effect sizes of soil pH on CO2 (𝑙𝑛𝑅𝑅  =1.977, 95% CI =-1.434-5.388), CH4 297 

(𝑙𝑛𝑅𝑅  =1.032, 95% CI =0.669-1.396) and N2O (𝑙𝑛𝑅𝑅  =0.686, 95% CI =-1.91-3.281) emissions 298 

were also significantly > 0 (Table S2), suggested that positive effects on GHGs emissions. The 299 

maximum concentrations of CO2, CH4, and N2O emissions were observed in neutral soils (pH = 300 

6.6-7.3), alkaline soils (pH > 7.3) and acidic soils (pH ≤ 6.5), respectively (Figure. 2a (ii), 2b (ii) 301 

and 2c (ii)). Wu et al., (2019) studied and showed that the maximum emissions of CO2 were seen 302 

in acidic soils because the manure application increases soil pH.  303 
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The CO2 emission increases in acidic soil after manure application because organic 304 

manure generally enhances soil pH and consequently promotes the CO2 solubility and the 305 

formation of bicarbonate acid (Rochette and Gregorich, 1998). In acidic soils, the N2O reductase 306 

(N2OR) activities inhibited which results in the reduction of N2O to N2 (Bakken et al., 2012). 307 

Consequently, in acid soils, the application of manure could significantly promote N2O 308 

than N2 by the denitrification process and consequently enhance N2O emissions. Another 309 

research found that nitrification as well as denitrification processes are mainly affected by soil 310 

pH and result in N2O emissions. Normally, autotrophic nitrifiers prefer neutral and/or slightly 311 

alkaline conditions for oxidizing NH4
+ to NO3

-, and consequently, the nitrification process is 312 

frequently low in acidic soils (Chen et al., 2013).  313 

It would be needed for the anaerobic situation to activate methanogenesis bacteria (Ball, 314 

2013). The best pH value for this situation is ranged from 6.6 to 7.6 and the ideal value would be 315 

at 7.2. The growth of these bacteria will be limited and eliminated less than 5 and more than 8.5 316 

(Staley et al., 2011). Biological degradation of SOM is done with anaerobic bacteria and optimal 317 

activity was found with pH 7 (Horn et al., 2003). Wang et al., (1993) also studied and reported 318 

that the maximum CH4 emissions were observed in the pH range of 6.9 to 7.1 (neutral soil pH) 319 

because methanogenic is acid sensitive. Normally, the best pH for methanogenesis is considered 320 

to be approximate 7.0. Thus, our results were similar to the previous findings of the researchers. 321 

According to our meta-analysis results, total heterogeneity showed that WFPS and soil pH had a 322 

significantly positive effect on GHGs emissions (Table S3, S4, and S5). 323 

3.3. Soil texture  324 

Effect sizes of soil texture on CO2, CH4 and N2O emissions after manure application are 325 

shown in figure 3. According to our meta-analysis dataset, all soils were classified into different 326 
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textural classes e.g. clay, clay loam, loam, sandy loam, sandy, sandy clay loam, silt loam, slit 327 

clay and silty clay loam. 328 

The overall effect sizes of soil texture on CO2 (𝑙𝑛𝑅𝑅  =0.285, 95% CI =0.143-0.427), CH4 329 

( 𝑙𝑛𝑅𝑅  =0.706, 95% CI =0.342-1.069) and N2O ( 𝑙𝑛𝑅𝑅  =0.946, 95% CI =-0.004-1.897) 330 

emissions were significantly positive (Table S2), revealing that soil texture had a very strong 331 

effect on GHGs emissions from the terrestrial environment. All textural classes showed 332 

significantly positive response to CO2 emission and maximum emission of CO2 was observed in 333 

silt loam soil (Figure 3a). On the other hand, all textural classes also gave a considerably positive 334 

response to CH4 and N2O (except loamy soil) emissions. The highest concentration of CH4 and 335 

N2O emissions were found in silty clay loam and sandy loam soils, respectively (Figure 3b and 336 

3c). The total heterogeneity (Qt) was also suggested that soil texture had a positive effect on 337 

GHGs emissions (Table S3, S4, and S5). 338 

The terrestrial environment serves as a source and sinks for GHGs emissions and soil 339 

attributes, in particular, the soil textural classes play a critical role in GHGs emissions (Oertel et 340 

al., 2016). Maximum emissions of CO2 were observed in fine-textured soils compared to coarse-341 

textured soils (Dilustro et al., 2005) which were similar to our results. The mineralization process 342 

depends on the bio-availability of organic matter contents. Soils with high clay contents 343 

significantly decreased CO2 emissions because the high capacity of the clay fraction decreased 344 

mineralization process (Jäger et al., 2011). 345 

Meta-analysis results show that maximum CH4 emissions were emitted from fine-textured 346 

soils after manure application. Fine-textured soils have maximum water holding capacity 347 

(USDA, 2008), which alternatively produce anaerobic conditions in the soil. Under anaerobic 348 

terrestrial environmental conditions, biological decomposition of the organic material by 349 
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methanogens emits a significant amount of CH4 from agricultural soils (Lu, 2011). However, 350 

soils with fine pores support the emission of CH4 under anaerobic conditions (Dutaur and 351 

Verchot, 2007). Chen et al., (2013) conducted a meta-analysis and showed that sandy loam soils 352 

were produced maximum N2O emissions. Another research study also reported that sandy loam 353 

soil emitted higher N2O (Manzali-D, 1994).  354 

Soil texture significantly controls the emissions of N2O through moderating the soil oxygen 355 

availability because soil texture has an important impact on the size as well as the distribution of 356 

soil pores (Corre et al., 1999). In coarse-textured soils, the nitrification process is the main factor 357 

of N2O emissions (Zhou et al., 2014). Moreover, manure application to agricultural soils 358 

provides a sufficient amount of C substrate that can stimulate the denitrification process and 359 

consequently enhance N2O emissions after manure application. 360 

3.4. Crop duration and type 361 

The crop species and study duration also played an important role in the differences in GHGs 362 

emissions (Huang et al., 2018). Different crop species like barley, grassland, maize, rice, 363 

soybean, sweet corn, wheat, and the fallow period between crops were chosen for meta-analysis, 364 

while, the study duration was categorized as ≤ 320 days, 321-725 days, > 725 days (Figure. 4). In 365 

this meta-analysis, the overall effect sizes of crop duration and crop type on CO2, CH4 and N2O 366 

emissions were 𝑙𝑛𝑅𝑅  =0.517, 95% CI =0.226-0.807 and 𝑙𝑛𝑅𝑅  =1.138, 95% CI =-0.445-3.00, 367 

𝑙𝑛𝑅𝑅  =0.876, 95% CI =-0.141-1.893 and 𝑙𝑛𝑅𝑅  =0.919, 95% CI =0.336-1.502 and 𝑙𝑛𝑅𝑅  368 

=0.645, 95% CI =-0.271-1.561 and 𝑙𝑛𝑅𝑅  =1.097, 95% CI =-0.547-2.741, respectively (Table 369 

S2).  370 

Based on the results of meta-analysis, the overall effect size for both crop duration and type 371 

was significantly greater than zero, presenting that both parameters had positive effects on CO2, 372 
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CH4 and N2O emissions. Crop duration is also a very important factor in controlling GHGs 373 

emissions. Crops that having > 321 days had more CO2 and N2O emissions (Figure. 4a (i) and 4c 374 

(i)). While, a higher concentration of CH4 was observed when crop duration was ≤ 320 days 375 

(Figure. 4b (i)). Our meta-analysis findings were similar to previous research study (Leytem et 376 

al., 2019). According to our meta-analysis, barley produced maximum emission of CO2 (Figure. 377 

4a (ii)) which was similar to Gan et al., (2012) research study. Smith et al., (2019) also studied 378 

and reported that barley, which normally requires less manure and/or synthetic fertilizer than 379 

other cereals crops, have greater CO2 emissions per unit production.  380 

The CO2 emission was produced through microbial respiration after manure application in 381 

the agricultural soils (Li et al., 2016). The effects of the heterotrophic microbial community on 382 

SOM decomposition significantly increase CO2 emissions (Bore et al., 2017). Manure 383 

application to the cereal crops is capable of stimulating the organic C pool and, in turn, increases 384 

CO2 emissions (Triberti et al., 2008). The decomposition of SOM significantly increased the C 385 

mineralization process and consequently increased CO2 emissions from croplands (Hossain et 386 

al., 2017). Terhoeven-Urselmans et al., (2009) studied and assessed that the C mineralization 387 

process significantly increased CO2 emissions from barley crop after manure application.  388 

The maximum concentration of CH4 was observed in the fallow and rice crop (Figure. 4b 389 

(ii)). Rice paddies are considered among the main sources of man-caused CH4 emission, 390 

contributing up to 6% to 20% of the total anthropogenic CH4 release to the atmosphere (Wang et 391 

al., 2017). Wu et al., (2019) also studied and found that rice paddies are significant source of 392 

CH4 emissions. The CH4 in rice fields is emitted through microbes that respire CO2, similar 393 

humans respire oxygen. The CH4 emissions from rice paddies depend on the availability of SOC 394 

content and anaerobic conditions (Tariq et al., 2017). Continuous flooding in rice paddies 395 
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significantly affects the microbial activities in the terrestrial environment (Gebremichael et al., 396 

2017) and increases anaerobic conditions. This process significantly affects the decomposition 397 

rate of SOM and ultimately alters the CH4 emissions. Different researchers also studied and 398 

explained that CH4 emission produced as a result of decomposition of SOM by microbial 399 

activates in the absence of oxygen (Conrad, 2009). Under anaerobic conditions, flooded rice 400 

paddies are considered one of the most important anthropogenic sources of CH4 emissions 401 

(Hurkuck et al., 2012). 402 

In this meta-analysis, grasslands have been found as a significant source of N2O emissions 403 

(Figure. 4c (ii)). According to Rafique et al. (2011) research study that approximately 28% of 404 

global N2O was emitted from grasslands. Van Beek et al. (2010) also found similar findings. 405 

Maize crop didn’t show any significant positive effects on all three GHGs emissions while it 406 

showed significantly negative effects on N2O emissions (Figure. 4c (ii)). Microbial nitrification, 407 

nitrifier-denitrification (Xu et al., 2017), respiration, and denitrification are the most important 408 

processes affecting the N2O emission from the terrestrial environment (Case et al., 2015). 409 

Intensively managed grasslands are considered the main source of N2O emissions contributing 410 

for almost 10% of the global N2O emissions (He et al., 2020) and this is mainly attributed to 411 

higher manure application as well as animal excreta deposition on grassland surface (Dangal et 412 

al., 2019). Application of manure in grassland influences soil biochemical conditions and 413 

increases microbial activities which significantly affects the nitrification as well as denitrification 414 

process and ultimately changes N2O emissions (Schirmann et al., 2020). The GHGs emissions 415 

are strongly affected by the amount as well as properties of manure added to the crops.  416 

According to our meta-analysis results, total heterogeneity also showed that crop duration 417 

(Qt=84.736 with P < 0.001 for CO2, Qt=8006.292 with P < 0.001 for CH4 and Qt=3522.244 with 418 
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P < 0.001 for N2O emissions) and crop type (Qt=31780.765 with P < 0.001 for CO2, 419 

Qt=1443.669 with P < 0.001 for CH4 and Qt=18495.592 with P < 0.001 for N2O emissions) had 420 

significantly positive effect on GHGs emissions (Table S3, S4 and S5). 421 

3.5. Climate zone 422 

Figure 5 shows the effect sizes of climate zones on CO2, CH4, and N2O emissions. Climate 423 

zones were divided into warm temperate (n=134), cool temperate (n=132), tropical (n=29), sub-424 

tropical (n=131) and semi-arid region (n=4). The overall effect sizes of climate zones were 425 

( 𝑙𝑛𝑅𝑅  =0.345, 95% CI =0.218-0.471), ( 𝑙𝑛𝑅𝑅  =1.65, 95% CI =-0.302-3.602) and ( 𝑙𝑛𝑅𝑅  426 

=0.506, 95% CI =-0.273-1.285) for CO2, CH4 and N2O emissions, respectively (Table S2). 427 

Climate zones had shown significantly positive effects on CO2, CH4, and N2O emissions 428 

because the overall effect sizes of climate zones were significantly great than 0. According to our 429 

meta-analysis results, tropical and sub-tropical regions emitted more CO2 and N2O but on the 430 

other hand, the higher concentration of CH4 was found in cool temperate zone (Figure. 5). Van 431 

der Werf et al. (2009) found that the maximum concentration of CO2 is emitted from the tropical 432 

zone.  433 

Agricultural soils contain large concentrations of organic C, reaching approximately 1,500 434 

petagrams (Pg) (at 1 m depth) (Paustian et al., 2016) and tropical environment provides favorable 435 

conditions to microbial communities for the decomposition of organic C, ultimately increase the 436 

CO2 emissions. Globally, the average temperature is expected to rise (1.5 to 3.9 ºC) near the end 437 

of 21st century (IPCC, 2014), so, tropical soils could cause roughly a 9% increase in CO2 438 

emissions this century (Nottingham et al., 2019). 439 

Different research studies were found that higher N2O emission emitted from the warm 440 

temperate zone (Luo et al., 2013) due to microbial activities (Pärn et al., 2018) but this meta-441 
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analysis study revealed that sub-tropical and cool temperate zones produced higher N2O 442 

concentration than other regions (Figure. 5c). Welti et al. (2017) also found the higher N2O 443 

emissions from agricultural soils under sub-tropical zones. The sensitivity of climatic conditions 444 

of N2O emission is not well-known, so, it is difficult to project how manure application and 445 

climatic conditions will impact the N2O emission (Griffis et al., 2017). Therefore, there is future 446 

research is needed to conduct for better understating how climate zone effects GHGs emissions 447 

after manure application. The tropical and sub-tropical climate zones may favor microbial 448 

nitrification as well as denitrification processes (Barnard et al., 2005) that are directly linked with 449 

CO2 and N2O emissions (Xu et al., 2012). Fangueiro et al. (2008) studied and reported that cool 450 

temperate also significantly increase N2O emissions from soils. According to Müller et al., 451 

(2003), the emission of N2O was observed between −1.0 °C to 10.0 °C, the maximum N2O 452 

emission was occurred near 0 °C, probably from increasing the activity of N2O reductase. Cool 453 

temperate soils cause waterlog conditions in the terrestrial environment, generating anaerobic 454 

conditions that help in the emissions of CH4 and CO2 (Jorgenson et al., 2006). Another study 455 

also proposed that maximum CH4 emissions are emitted by paddy fields in snowy temperate 456 

regions (Naser et al., 2007). The total heterogeneity between-groups were also showed 457 

significant positive effects on GHGs emissions (Table S3, S4, and S5).  458 

3.6. Effect of manure application on GWP 459 

With those research studies that simultaneously measured all three GHGs emissions fluxes, 460 

manure application positively affected GWP (𝑙𝑛𝑅𝑅  =0.781, 95% CI =-0.55-2.512) (Figure. 6, 461 

Table S2). Meanwhile, the application of poultry and cattle manure to agricultural soils 462 

significantly increased GWP, whereas a minor negative effect was observed in pig manure 463 

(Figure. 6). However, with the realization that few research studies were reported fluxes of all 464 
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three GHGs after manure application, these results were likely affected by publication biases, 465 

and therefore should be interpreted cautiously. Ren et al., (2019) also obtained coinciding results. 466 

GWP is a basic index to calculate the future impacts of GHGs based on their lifetime and 467 

radiative forcing (IPCC, 2013).  468 

Agriculture and its related land use contribute to carbon (C) and nitrogen (N) dynamics, 469 

affecting the flux of CO2, CH4, and N2O, which represent the GHGs principally linked to 470 

agricultural activities. Agricultural soils released a significant amount of GHGs emissions to the 471 

atmosphere (He et al., 2017), which estimated for approximately one-fifth of the annual increase 472 

in radiative forcing of climate change (Cole et al., 1997). GHGs emissions would increase 473 

significantly after animal manure was applied, particularly in croplands (Thers et al., 2020). In 474 

2011, the emissions of GHGs from crops were approximately 5.3 Pg of CO2eq  (FAO, 2014). 475 

Agricultural management practices significantly change the GWP (Shang et al., 2011). Although 476 

the application of manure significantly increased the annual N2O and CH4 emissions, they 477 

increased the SOC sequestration in this cropping system through microbial activities, ultimately 478 

increased GWP.  479 

4. Limitations and concluding remarks 480 

In this meta-analysis, most of the experiments had been studied in China, Europe and North 481 

America. There remains a lack of experimental studies in other continents, like South America, 482 

South-East Asia, Africa and Australia. Therefore, long-term experimental research studies are 483 

needed with proper manure application rate in these regions to estimate the GHGs emissions. 484 

Several research studies had measured GHGs emissions using different animal manures but did 485 

not report the summary of statistics that are required for meta-analysis. So, we urge that research 486 

scientists must report the proper manure type, complete soil attributes like soil pH, bulk density, 487 



22 
 

soil texture, WFPS, air temperature, proper climate zone, and rainfall, flux type and unit, number 488 

of observations and control treatment in their future research studies. This will greatly assist in 489 

future meta-analyses which can hopefully provide far greater insights into the range and 490 

variability of GHGs emissions than any individual study. 491 

This meta-analysis provided a comprehensive and quantitative synthesis of animal 492 

manure, climate zone, and soil attributes effects on GHGs emissions. Evidence presented in this 493 

meta-analysis shows that the application of animal manure and N-mineral fertilizer significantly 494 

increased CO2, CH4 and N2O emission as compared to control treatment from soils. Moreover, 495 

this meta-analysis study revealed that poultry manure had significantly positive effects on CO2, 496 

CH4, and N2O emissions from the soil than pig and cattle manures. Moreover, the amount/rate of 497 

animal manure and N-mineral fertilization also had strong effects on CO2, CH4, and N2O 498 

emissions. The effect of animal manure and N-mineral fertilize on CO2, CH4 and N2O emissions 499 

were considerably depended on soil attributes like soil pH, WFPS, soil texture, crop types, and 500 

climate zones, indicating that these factors need to be fully considered to optimize the 501 

fertilization strategies to reduce the emissions of GHGs. Stimulatory positive effects occurred at 502 

the rate of > 60% WFPS, while negative effects were found at the rate of < 30% WFPS. Soil pH 503 

and soil texture are very important factors for predicting the GHGs emissions. Hence, this meta-504 

analysis suggests that some experimental strategies, for example, selecting the manure type and 505 

proper rate need to be planned correctly to mitigate GHGs emissions from soil. Finally, the 506 

application of different types of animal manure in agricultural soils (as shown by our meta-507 

analysis results) can be useful for calibrating and validating computer-based models and also 508 

filling the knowledge gaps about GHGs emissions that are derived from agricultural soils. 509 
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Figure legends 1063 

 1064 

Fig. 1. Impact of (i) animal manure and mineral fertilizer application rate (kg N ha-1) and (ii) 1065 

manure type on (a) CO2, (b) CH4 and (c) N2O emissions from agricultural soils. Symbols 1066 

represent mean effect sizes with 95% confidence intervals. Sample sizes are presented in 1067 

parentheses and the P values are shown in the panel. 1068 

 1069 

 1070 

Fig. 2. Effect of (i) WFPS (%) and (ii) soil pH on (a) CO2, (b) CH4 and (c) N2O emissions from 1071 

agricultural soils. Symbols represent mean effect sizes with 95% confidence intervals. Sample 1072 

sizes are presented in parentheses and the P values are shown in the panel. 1073 

 1074 
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 1075 

Fig. 3. (a) CO2, (b) CH4 and (c) N2O emissions from agricultural soils affected by soil textural 1076 

class. Symbols represent mean effect sizes with 95% confidence intervals. Sample sizes are 1077 

presented in parentheses and the P values are shown in the panel. 1078 

 1079 

 1080 

Fig. 4. Influence of (i) crop duration (days) and (ii) crop type on (a) CO2, (b) CH4 and (c) N2O 1081 

emissions from agricultural soils. Symbols represent mean effect sizes with 95% confidence 1082 

intervals. Sample sizes are presented in parentheses and the P values are shown in the panel. 1083 

 1084 

 1085 

 1086 
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 1087 

Fig. 5. Effect of climate zone on (a) CO2, (b) CH4 and (c) N2O emissions from agricultural soils. 1088 

Symbols represent mean effect sizes with 95% confidence intervals. Sample sizes are presented 1089 

in parentheses and the P values are shown in the panel. 1090 

 1091 

 1092 

Fig. 6. Effect of manure application on the global warming potential (GWP) of greenhouse gas 1093 

(GHG) emissions. Symbols represent mean effect sizes with 95% confidence intervals. Sample 1094 

sizes are presented in parentheses and the P values are shown in the panel. 1095 

 1096 
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Table 1  1097 

Description of crop type, location, number of observation, soil attributes, manure type and rate included in this meta-analysis.  1098 

Study 

number 

Study 

Reference 

Journal Country Number of 

observations 

Crop type Soil 

pH 

WFPS 

(%) 

Soil 

textural 

class 

Climate 

zone 

Manure 

type 

N rate 

(kg N 

ha-1) 
1 Meijide et al., 

(2007) 

AEE Spain 7 Maize 8.1 

 

46-70 Sandy 

loam 

Warm 

temperate 

Pig 0-250 

2 Van Zwieten 

et al., (2013) 

STE Australia 

 

4 Maize 4.8 

 

_ 

 

Clay 

loam 

 

Sub-

tropical 

Poultry 100-

120 

3 Maris et al., 

(2016) 

STE Spain 13 Rice 8.1-

8.5 

 

_ 

 

Silty clay 

loam and 

Silty 

loam 

Warm 

temperate 

and 

Semi-arid 

Poultry 

and Pig 

0-170 

4 Zhang et al., 

(2018) 

STE China 8 Wheat 

 

7.3-

8.7 

20-79 Loam 

 

Cool 

temperate 

Pig 0-410 

5 De Rosa et al., 

(2018) 

STE Australia 

 

18 Green beans 

and Sweet 

corn 

7.8 37-79 Clay 

loam 

 

Sub-

tropical 

Poultry 0-367 

6 Dambreville et 

al., (2008) 

AEE France 

 

6 Maize 

 

5.9-

6.9 

46 Silt loam Warm 

temperate 

Pig 0-180 

7 (Velthof  et al., 

2011) 

AEE Netherlands 

 

43 Grassland 

and Maize 

4.8-

7.1 

_ 

 

Clay and 

sandy 

Warm 

temperate 

Cattle 

and Pig 

0-460 

8 Fangueiro et 

al., (2008) 

BT England 

 

7 Grassland 6-6.7 _ Clay 

loam 

Cool 

temperate 

Cattle 0-354 

9 Sanz-Cobena 

et al., (2019) 

AE Spain 2 Fallow 8.1 64-70 Sandy 

loam 

Warm 

temperate 

Pig 63-77 

10 Thornton et 

al., (1998) 

AE USA 4 Grassland 5.5 77.3 Silty clay 

loam 

Sub-

tropical 

Poultry 0-336 

11 Rodhe et all., 

(2012) 

BSE Sweden 7 Fallow 7.1 23.4-

31.6 

Silty clay 

loam 

Cool 

temperate 

Pig 0-140 
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Study 

number 

Study 

Reference 

Journal Country Number of 

observations 

Crop type Soil 

pH 

WFPS 

(%) 

Soil 

textural 

class 

Climate 

zone 

Manure 

type 

N rate 

(kg N 

ha-1) 
12 Severin et al., 

(2015) 

PSE Germany 21 Maize 4.3-

5.8 

42-67 _ Warm 

temperate 

Pig 0-150 

13 Ball et al., 

(2004) 

SUM Scotland 

 

6 Grassland _ _ Clay 

loam 

Cool 

temperate 

Cattle 0-430 

14 Collins et al., 

(2011) 

SBB USA 12 Maize 6.7 36.9-

42.1 

Silt loam Warm 

temperate 

Cattle 0-336 

15 Chadwick et 

al., (2000) 

JEQ England 6 Grassland 6.9 38.1-

55.1 

Sandy 

loam 

Cool 

temperate 

Cattle 

and Pig 

0-295 

16 Jarecki etal., 

(2008) 

JEQ USA 6 Fallow 6.9-

7.0 

48-54 Sandy 

loam and 

Clay 

Warm 

temperate 

Pig 0-200 

17 Chantigny et 

al., (2016) 

CJSS Canada 12 Barley 6.5-

6.8 

_ Sandy 

loam and 

Silty clay 

Cool 

temperate 

Pig 0-65 

18 Li et al., 

(2013) 

EJSB China 6 Maize 5.76-

6.01 

47-52 _ Cool 

temperate 

Pig 0-450 

19 Mapanda et 

al., (2011) 

PS Zimbabwe 24 Maize 5.4-

6.5 

3.3-

24.2 

Clay and 

Sandy 

loam 

Sub-

tropical 

Cattle 0-120 

20 Rochette & 

Côté, (2000) 

CJSS Canada 3 Maize _ _ Loam _ Pig 0-252 

21 Petersen, 

(1999) 

JEQ Denmark 10 Barely 5.9 55 Sandy Cool 

temperate 

Pig and 

Cattle 

80-120 

22 Zhou et al., 

(2014) 

ES China 8 Wheat and 

Maize 

8.3 65-80 _ Sub-

tropical 

Pig 0-150 

23 Das & Adhya, 

(2014) 

GD India 5 Rice 6.16 _ Sandy 

clay loam 

Tropical Poultry 0-120 

24 Liang et al., 

(2013) 

FCR China 42 Rice 6.9 _ Clay 

loam 

Sub-

tropical 

Pig 0-270 
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25 Wu et al., 

(2019) 

PSE China 4 Rice 6.9-

7.22 

_ _ Cool 

temperate 

Pig 180-

266 

26 Vallejo et al., 

(2006) 

SBB Spain 7 Potato 7.9 52-60 Clay 

loam 

Warm 

temperate 

Pig 0-300 

27 Wang et al., 

(2013) 

JSS China 5 Rice 7.29-

7.41 

_ Clay 

loam 

Sub-

tropical 

Pig 0-180 

28 O’ Flynn et al., 

(2013) 

JOEM Ireland 3 Fallow 6.26 53 Sandy 

loam 

Cool 

temperate 

Pig 0-90 

29 Sherlock et al., 

(2000) 

JEQ NewZealand 3 Grassland 5.36 _ Silt loam Sub-

tropical 

Pig 0-60 

30 Li et al., 

(2016) 

CJSS Canada 5 Fallow 6.58 6.58 

 

Loam Cool 

temperate 

Cattle 0-120 

31 Grave et al., 

(2015) 

STR Brazil 5 Wheat 5.3 68 Silty clay 

loam 

Sub-

tropical 

Pig 0-140 

32 X.M.Yang, 

(2017) 

ACS Canada 14 Fallow _ 30 Clay 

loam 

Cool 

temperate 

Pig 0-165 

33 Sampanpanish, 

(2012) 

MAS Thailand 4 Rice 5.3 _ Clay Sub-

tropical 

Cattle 0-156 

34 Dendooven et 

al., (1998) 

BFS Belgium 4 Fallow 6.2 18.7 Silt loam Warm 

temperate 

Pig 0-250 

35 Dinuccio et 

al., (2011) 

AFST Italy 4 Fallow 7.43 9.8 Loamy 

sand 

_ Cattle 0-21 

36 Sistani et al., 

(2019) 

Es USA 10 Maize 4.7 37-42 Silty clay Sub-

tropical 

Poultry 0-224 

37 Brennan et al., 

(2015) 

PO Ireland 4 Fallow 7.45 _ Sandy 

loam 

Sub-

tropical 

Cattle 295 

38 Bourdin et al., 

(2014) 

AEE Ireland 6 Grassland 5.5 29.4 Sandy 

loam 

Warm 

temperate 

Cattle 0-275 
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39 Leytem et al.,  

(2019) 

SBB USA 20 Wheat -

Barely- 

Sugar Beet 

8 57-75 Silt loam Tropical Cattle 0-1315 

40 Bertora et al., 

(2008) 

SBB Italy 6 Maize 7.9 63 Loam _ Pig 0-170 

41 Smith & 

Owens, (2010) 

CSSPA USA 4 Grassland _ _ Silt loam Tropical Poultry 

and Pig 

0-420 

42 Gao et al., 

(2014) 

CJSS Canada 4 Alfalfa 7.8 50 Sandy 

loam 

Cool 

temperate 

Pig 0-410 

43 Cote & 

Ndayegamiye, 

(1989) 

CJSS Canada 6 Maize 5.4 _ Silty 

loam 

Cool 

temperate 

Cattle 

and Pig 

0-160 

44 Herr et al., 

(2019) 

JPNSS Germany 8 Maize 7 28-30 Loam Warm 

temperate 

Cattle 0-170 

45 Asgedom et 

al., (2014) 

AJ Canada 6 Rapeseed 7 _ 

 

Clay Cool 

temperate 

Cattle 0-137 

46 Syväsalo et al., 

(2006) 

AEE Finland 4 Grassland- 

Cereal 

_ _ Sandy Cool 

temperate 

Cattle 0-200 

47 Verdi et al., 

(2019) 

IJAM Italy 3 Maize _ _ Silty clay Warm 

temperate 

Pig 0-150 

48 Abagandura et 

al., (2019) 

JEQ USA 24 Soybean-

Maize- 

5.2-

6.1 

28.9-

45 

Sandy 

loam- 

Clay 

loam 

Cool 

temperate 

Cattle 0-150 
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