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Introduction 96 

Assessing forest productivity has a long tradition in forestry and forest ecosystem science. 97 

During the last four decades, the interest in forest productivity has shifted from focusing on 98 

tree and stand volume production to tree and stand biomass production (Parresol 1999). A 99 

precise estimate of tree and forest biomass is of interest to many disciplines of forest, 100 

ecosystem and climate change research, ranging from population ecology to remote sensing 101 

and terrestrial ecosystem modelling, as well as to forest managers (Jenkins et al. 2003). 102 

Particularly, it continues to be of increasing importance in recognition of the role forest 103 

ecosystems have in the carbon cycle and the global climate system and also in compliance 104 

with the second commitment period of the Kyoto Protocol (IPCC 2013), since forests can be 105 

important carbon sinks and sources (Dixon et al. 1994; Valentini et al. 2000). Direct biomass 106 

measurements in the field are very complex, laborious and time consuming (Sah et al. 2004). 107 

Therefore, the use of relationships between tree biomass and tree parameters that can easily be 108 

measured, mainly tree diameter at breast height (DBH) and/or tree height (H) are the most 109 

common approach for estimating individual tree biomass (e.g. Annighöfer et al. 2012; Chave 110 

et al. 2001; Djomo et al. 2010). There are several collections and generic meta-analyses 111 
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available for the latter approach resulting in species specific biomass equations (e.g. Falster et 112 

al. 2015; Jenkins et al. 2003; Rojas-García et al. 2015; Ter-Mikaelian and Korzukhin 1997; 113 

Wirth et al. 2004; Zianis et al. 2005). However, most published biomass equations focus on 114 

larger trees (dbh ≥ 10 cm). Publications with biomass equations for juvenile trees of single 115 

species are rare (e.g. Bartelink 1997; Chroust 1985; Pilli et al. 2006; Wirth et al. 2004). 116 

Recently, biomass equations for shrub species of the understory were published (e.g. Berner 117 

et al. 2015; Sah et al. 2004). Generally, however, biomass equations for seedlings and 118 

saplings are hard to find (Pajtík et al. 2008). This may be due to their low individual tree size 119 

which is far below merchantable wood dimensions and even the sum of their biomass is 120 

believed to account only for a small fraction of total stand biomass, and associated carbon 121 

stocks in forests (Brown 2002; Chave et al. 2001). Accurate biomass estimates for the 122 

regeneration are nevertheless required for the increasing amount of afforestation and 123 

reforestation sites, young successional forests, shelterwood systems, and open woodland 124 

forests (e.g. Schroeder et al. 1997) and the modelling of their future development. In 125 

particular, accurate estimates of regeneration biomass are of central importance to understand 126 

and predict the dynamics in the carbon cycling of forests (Galik et al. 2009; Gonzalez-127 

Benecke et al. 2014a).  128 

In Germany, a non-destructive estimation of the understory biomass (“PhytoCalc”) was 129 

repeatedly applied, which however does not directly allow estimating the biomass of single 130 

trees in the regeneration (Bolte et al. 2009; Heinrichs et al. 2010). Norgren et al. (1995) 131 

proposed a similar non-destructive approach for estimating seedling and sapling biomass, 132 

using the projection area of a plant as explanatory variable for biomass in a computer-based 133 

image analysis.    134 

The aim of this paper is to generate species-specific and generic equations for aboveground 135 

woody biomass in dependence of root-collar-diameter (RCD) and height (H) of seedlings and 136 

saplings growing under common growth conditions in Central Europe. The respective 137 

database includes original data from 6 European countries and 25 explorative or experimental 138 

studies and represents 19 European tree species.  139 

Material and Methods 140 

Data collection and processing 141 

The collected data set consists of 25 single original data sets on biomass, diameter and partly 142 

height of the regeneration of European tree species that were directly made available by their 143 

authors (Appendix A). The final data set consisted of 4225 single recordings of 19 Central 144 

European tree species (Table 1) of which 5 species were conifers (n = 956 single 145 

observations) and 14 species broadleaves (n = 3269).  146 

Data compilation was restricted to the European continent (Fig. 1). Most data originated from 147 

Germany, followed by data from France and Spain.    148 
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Fig. 1 Map of data source locations. Plots are distinguished according to the tree species 
types (‘Mixed’ = sites with broadleaf and coniferous species; ‘Broadleaf’ = sites with 
broadleaf species; ‘Conifer’ = sites with coniferous species).  
  149 
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Table 1 Summary of plot characteristics and database for each species; T = tree type 150 

(B = broadleaf, C = conifer); n = number of plots; CNY = Country; ASL = plot height above 151 

sea level (m); AGB = aboveground biomass excluding leaves and needles (g). ASL and AGB 152 

are presented as mean values with minimum and maximum values in brackets. Abbreviations 153 

of Database refer to Appendix A.  154 

Species T n CNY ASL (m) AGB (g) Database 
       

Abies alba C 58 DE 
ES 

794.47 
(235-1906) 

543.99 
(0.03-9949.22) 

AME2013 EWΒ2009 
HAM2014 KAE2006 

Acer pseudoplatanus B 21 DE 
FR 

377.63 
(171-1110) 

1546.64 
(1.25-13100) 

CAQ2010 GEB2013 KAE2006 
KAH2009 KUE2014 

Betula pendula B 2 DE 
ES 

1606.16 
(325-1906) 

206.05 
(0.14-5223.65) 

AME2013 MUE2011 

Carpinus betulus B 2 DE 220.87 
(220-238) 

52.69 
(0.16-265.45) 

KAW2013 KUE2014 

Fagus sylvatica B 69 CZ 
DE 
FR 

454.67 
(173-1184) 

694.28 (0.1-
16200) 

AMM2003 BAL2007 BAL2009 
CAQ2010 EWΒ2009 GEB2013 
GEL2001 HAΒ2009 HIR2010 
HOF2008 KAE2006 KAH2009 
LIN2014 PRO2008 SCH2012 

Fraxinus excelsior B 19 DE 426.49 
(110-717) 

2507.91 
(3-19600) 

GEB2013 KAE2006 KAH2009 

Picea abies C 53 CZ 
DE 

424.77 
(218-1227) 

861.79 
(2-12777.07) 

EWΒ2009 KAE2006 

Pinus sylvestris C 4 DE 
ES 

1112.21 
(110-1906) 

857.88 
0.43-10188.83 

AME2013 KAE2006 MUE2011 

Pinus uncinata C 1 ES 1906 
(1906-1906) 

1.37 
(0.32-4.41) 

AME2013 

Prunus avium B 1 DE 400 
(400-400) 

2031.07 
(226.31-5617.41) 

KAH2009 

Prunus serotina B 2 DE  
IT 

207.06 
(142-220) 

821.32 
(36.11-20348.33) 

ANN2012 KAW2013 

Pseudotsuga menziesii C 2 DE 537 
(444-630) 

468.17 
(27.19-1746.65) 

KUE2011 

Quercus petraea B 5 DE 
FR 

243.7 
(110-412) 

76.91 
(0.32-2535.29) 

BAL2011 COL1996 KAH2009 

Quercus robur B 12 DE 
SE 

213.31 
(90-493) 

227.85 
(1.4-8849.66) 

AMM2003 KAE2006 
KAW2013 KUE2014 LOE2006 

Quercus rubra B 1 DE 270.37 
(238-238) 

29 
(8-70.45) 

KUE2014 

Robinia pseudoacacia B 1 DE 220 
(220-220) 

176.01 
(6.03-498.76) 

KAW2013 

Salix spec B 1 DE 325 
(325-325) 

1604.52 
(22.1-6486.4) 

MUE2011 

Sorbus aucuparia B 34 CZ 
DE 

969.5 
(689-1190) 

35.79 
(1.31-159.18) 

EWΒ2009 

Tilia cordata B 1 DE 400 
(400-400) 

578.69 
131.49-1402.51) 

HAΒ2009 KAH2009 

 155 

All recordings consisted of at least one diameter measurement paired with a biomass 156 

measurement. Here, only aboveground biomass (AGB) measurements were considered. Data 157 

for belowground biomass are also already included in the database but up to now they are not 158 

sufficient for the development of generalized, species-specific equations. A total of 1777 159 

recordings measured AGB separately with (total AGB) and without leaves and needles 160 

(woody AGB). A total of 2152 recordings only measured woody AGB and 296 only 161 

measured total AGB. To standardize measurements to wood AGB, the total AGB 162 

measurements (n = 216 broadleaves, n = 80 conifers) were converted to woody AGB  by 163 

using the records consisting of both biomass measurements and applying local polynomial 164 
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regression fitting (loess {stats} in R Development Core Team 2013) separately for each tree 165 

type (conifer, broadleaf).  166 

As diameter measurement, most data sets provided root-collar-diameter (RCD) or the 167 

diameter at stem base. However, some data sets used other diameter measurements (diameter 168 

at 5 cm, 10 cm, 50 cm, 130 cm above ground). To convert all diameter measurements to root-169 

collar-diameter, correction factors were derived for conifer and broadleaf species from data 170 

sets consisting of several diameter measurements for both tree types (data mainly from 171 

KAE2006, compare Appendix A).  172 

For broadleaf species, diameter measurements were transformed to RCD using:  173 

 174 

RCD = Tx Dx  
 

[1] 

with RCD = root-collar-diameter; Tx = transformation factor for diameter measurements x 
cm above ground (T5 = 1.08; T10 = 1.16; T50 = 1.33; T130 = 1.45); Dx = diameter measured x 
cm above ground. 
 175 

For conifer species, diameter measurements were transformed to RCD using:  176 

 177 

RCD = Tx Dx  
 

[2] 

with RCD = root-collar-diameter; Tx = transformation factor for diameter measurements x 
cm above ground (T5 = 1.06; T10 = 1.13; T50 = 1.29; T130 = 1.45); Dx = diameter measured x 
cm above ground. 
 178 

Mean values for transformation were derived from the relative diameter changes in the 179 

different height classes (compare Fig. 2). 180 

 181 

 
Fig. 2 Relative diameter change (rD) in dependence of stem height (H) where diameter was 
measured for broadleaf (a) and coniferous (b) species. The height (H) value of 0 refers to 
the root-collar-diameter (RCD) measurements.  
 182 

Biomass allometries and statistical analysis 183 

The biomass equations presented in this paper hold for aboveground parts of the regeneration 184 

excluding leaves and needles. For each species and species type (broadleaf, conifer) we 185 

developed allometric equations relating RCD, H and the factor RCD² H (in cm³) to biomass. 186 

The mathematical model most commonly used for biomass prediction takes the form of 187 

Snell’s (1892) power equation y = β1 xβ2 (Kaitaniemi 2004; Zianis et al. 2005; Zianis and 188 

Mencuccini 2004).  189 
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Biomass data mostly exhibits heteroscedasticity (Parresol 2001), which is an error variance 190 

that is not constant over all observations. For this reason, the non-linear power equation is 191 

often linearized to homogenize variance by logarithmic transformation of both dependent and 192 

independent variables (ln y = ln β1 + β2 ln x) to allow fitting a linear regression to the data 193 

(e.g. Bjarnadottir et al. 2007; Pilli et al. 2006; Sah et al. 2004). It is broadly accepted that this 194 

transformation results in a systematic bias. Currently, this bias is being corrected for in 195 

several ways by estimating a correction factor from the standard error (e.g. Baskerville 1972; 196 

Beauchamp and Olson 1973; Madgwick and Satoo 1975, Madgwick and Satoo 1975; Parresol 197 

1999; Sprugel 1983; Yandle and Wiant 1981), although no standard correction has been 198 

proposed yet (Cienciala et al. 2008).  199 

We used nonlinear least square regressions (nls {stats} in R Development Core Team 2013) 200 

to fit power equations to the data and obtain estimates for the coefficients β1 and β2: 201 

 202 

AGB = β1 RCD β2 

 
[3] 

AGB = β1 H β2 

 
[4] 

AGB = β1 (RCD² H) β2 

 
[5] 

with AGB = aboveground biomass; RCD = root-collar-diameter; H = height; and β1 and 
β2 = fitted coefficients 
 203 

The heteroscedasticity of the data made a weighted analysis necessary (Bates and Watts 204 

1988), to achieve minimum variance parameter estimates (Parresol 2001). Following Berner 205 

et al. (2015), data was weighted by y-0.5 to correct for non-random residuals and the tendency 206 

of over-predicting the aboveground biomass (AGB) of small trees (compare Carroll and 207 

Ruppert 1988; Huang et al. 1992). However, to make our data as comparable as possible to 208 

other studies, we also fit models to logarithmically transformed data. We estimated 209 

coefficients β1 and β2 in dependence of RCD, H and RCD² H (in cm³), since this still is a 210 

standard method when dealing with biomass data (Zianis and Mencuccini 2004) (Appendix B, 211 

Appendix C, Appendix D):   212 

 213 

ln(AGB) = ln(β1) + β2 ln(RCD) 
 

[6] 

ln(AGB) = ln(β1) + β2 ln(H) 
 

[7] 

ln(AGB) = ln(β1) + β2 ln(RCD² H) 
 

[8] 

with ln = natural logarithm; AGB = aboveground biomass; RCD = root-collar-diameter; 
H = height; and β1 and β2 = fitted coefficients 
 214 

These logarithmically transformed models were back-transformed by multiplying the anti-log 215 

of the intercept with the first-order correction factor suggested by Sprugel (1983):  216 

 217 

CF = exp (SEE2 / 2) 
 

[9] 

with CF = correction factor; SEE = standard error of the estimate based on natural 
logarithms 
 218 
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Aside of estimating the coefficients β1 and β2 for each biomass model, we additionally 219 

calculated standard errors of the regression coefficients (allowing model uncertainty to be 220 

propagated into subsequent analyses (Berner et al. 2015)), p-values of the coefficients, 221 

correlation between observations and fitted values, and root-mean-squared-error of the 222 

nonlinear models for model evaluation. Residuals scatter was evaluated by calculating a 223 

coefficient of determination for the residuals in dependence of 20 RCD-classes. Residuals 224 

should be evenly distributed around zero throughout the classes, so coefficient of 225 

determination values were also to be around zero. Biomass equations were calculated 226 

separately for each species and generic biomass equations were calculated for all broadleaf 227 

and conifer species each. Confidence intervals were calculated for the coefficients of the 228 

nonlinear regression models, giving lower (2.5%) and upper (97.5%) confidence limits for 229 

each coefficient (confint2 {nlstools} in R Development Core Team 2013). 230 

Biomass equations for larger trees are usually based on the easily accessible DBH, while 231 

biomass equations for seedlings and young saplings are based on RCD and/ or H as 232 

explanatory variable. As the RCD is laborious to measure for a large sample size of small 233 

trees, often only the H or height classes of the regeneration are recorded. To allow estimating 234 

diameter from height measurements and vice versa, we have derived diameter-height curves 235 

from our data for broadleaf and conifer species. Diameter-height curves are usually derived 236 

by applying saturation functions like the Michaelis-Menton equation H = β1 D / (β2 + D) 237 

(Menten and Michaelis 1913), Chapman-Richards equation H = β1 (1 – exp (– β2 D))β3 238 

(Richards 1959), Weibull equation H = β1 (1 – exp (– β2 Dβ3)) (Weibull 1951) and others 239 

(comp. Mehtätalo et al. 2015), because height growth thrives towards a threshold value. Since 240 

this is not yet the case for trees in the regeneration stage, we used second-degree polynomials, 241 

passing through the origin to describe the relationship of diameter and height: 242 

 243 

H = β1 RCD + β2 RCD² 
 

[10] 

with H = height; RCD = root-collar-diameter; β1 and β2 = fitted coefficients 
 244 

All statistical analyses, fittings, and graphs were processed using the free software 245 

environment R (R Development Core Team 2013). 246 

Results 247 

RCD, H and the factor of both (RCD² H) were significant predictors for the aboveground 248 

biomass of each species and in the generic biomass equations (p < 0.001). Biomass equations 249 

based on RCD as the predictor mainly resulted in correlations > 0.9, with a mean value 250 

of 0.94 (± 0.06). The correlation based on H as predictor was slightly lower, with values 251 

ranging from 0.43 (Quercus rubra) to 0.96 (Betula pendula) with a mean value 252 

of 0.83 (± 0.13) (Table 2, Table 3). Biomass equations based on the RCD² H also mainly 253 

resulted in correlations > 0.9, with a mean value of 0.95 (± 0.05) (Table 4). Predictions based 254 

on RCD produced a lower root-mean-squared-error of the fitted values (mean = 339.9 g) 255 

compared to H as predictor (mean = 559.2 g), whereas lowest values were produced for the 256 

factor RCD² H (mean = 275.8 g). 257 

The coefficient of determination (R²res) for the residuals showed a scatter around zero for 258 

equations based on RCD and the factor RCD² H, but for the equations based on H the scatter 259 

was around 0.4, which indicates that the residuals were not evenly distributed around zero and 260 

showed a trend to increase with diameter.  261 
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The RCD range for most species was close to 100 mm, with some exeptions. Data on Pinus 262 

uncinata had the smallest diameter range of 3.4 mm, with a maximum diameter 6.3 mm, 263 

followed by Quercus rubra with a range of 12.2 mm and a maximum diameter of around 264 

18 mm. Carpinus betulus and Sorbus aucuparia had small diameter ranges as well as low 265 

maximum diameters (Table 2). The height of the species ranged from as small as 4 cm 266 

(Sorbus aucuparia) up to 1210 cm (Fraxinus excelsior). For most species, individuals were 267 

recorded with heights of at least 2 m, with Pinus uncinata, Quercus rubra and Carpinus 268 

betulus being the exceptions. Most other species were well represented with height ranges of 269 

around 400 cm and more (Table 3). 270 

 271 
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Table 2 Parameters of the biomass equations, estimating aboveground biomass (AGB) in g dry weight from the predictor variable root-collar-diameter 272 

(RCD). All biomass equations took the form of power equations (Equation [3]). n = number of observations for each species (in total = 4225 single 273 

observations); RCD range = diameter range of measured trees (mm), value in brackets stands for mean RCD; β1 and β2 = estimated model coefficients; 274 

se = standard error of the regression coefficients; p = significance values of coefficients; cor = correlation between observation and fit; RMSE = root-275 

mean-squared-error of fit; R²res = coefficient of determination of residuals. 276 

Species n       RCD range (mm) β1 β2 se (β1) se (β2) p (β1) p (β2) cor RMSE (g) R²res 

             

Abies alba 399 1-99  (13.8) 0.169 2.402 0.031 0.043 < 0.001 < 0.001 0.97 373.7 0.04 

Acer pseudoplatanus 130 4-100  (28.6) 0.023 2.862 0.015 0.15 0.13 < 0.001 0.934 1085.7 0.048 

Betula pendula 58 3-107  (11.3) 0.266 2.126 0.049 0.042 < 0.001 < 0.001 0.995 83.2 0.002 

Carpinus betulus 311 3-28  (14.0) 0.069 2.404 0.017 0.083 < 0.001 < 0.001 0.877 24.2 0.002 

Fagus sylvatica 1182 1-114  (18.7) 0.114 2.517 0.012 0.025 < 0.001 < 0.001 0.962 578.6 0.15 

Fraxinus excelsior 90 5-95  (37.0) 0.014 3.02 0.015 0.246 0.358 < 0.001 0.911 1779.1 0.111 

Picea abies 368 3-118  (23.9) 0.202 2.329 0.041 0.046 < 0.001 < 0.001 0.952 616.9 0.014 

Pinus sylvestris 95 3-95  (24.1) 0.015 2.881 0.008 0.117 0.055 < 0.001 0.972 427.8 0.003 

Pinus uncinata 46 3-6  (4.2) 0.063 2.076 0.027 0.276 < 0.05 < 0.001 0.771 0.5 0.03 

Prunus avium 7 27-100  (60.3) 0.12 2.321 0.137 0.258 0.421 < 0.001 0.981 328.3 0 

Prunus serotina 211 12-100  (27.8) 0.02 2.962 0.003 0.038 < 0.001 < 0.001 0.981 427.7 0.004 

Pseudotsuga menziesii 48 10-52  (25.6) 0.218 2.269 0.076 0.094 < 0.05 < 0.001 0.976 103.8 0.008 

Quercus petraea 465 2-70  (15.6) 0.011 2.79 0.003 0.083 < 0.05 < 0.001 0.876 119.7 0.218 

Quercus robur 502 3-100  (13.9) 0.027 2.769 0.003 0.029 < 0.001 < 0.001 0.986 175.2 0.13 

Quercus rubra 15 6-18  (12.3) 0.056 2.421 0.045 0.298 0.238 < 0.001 0.95 5.7 0.005 

Robinia pseudoacacia 238 7-39  (21.2) 0.414 1.942 0.122 0.091 < 0.05 < 0.001 0.821 65.2 0.191 

Salix spec 10 10-91  (42.4) 0.063 2.562 0.028 0.102 0.054 < 0.001 0.998 137.6 0.002 

Sorbus aucuparia 40 3-29  (12.1) 0.145 2.06 0.073 0.165 0.054 < 0.001 0.918 15.7 0.017 

Tilia cordata 10 28-65  (45.4) 0.006 2.95 0.009 0.392 0.544 < 0.001 0.963 110.3 0.026 

 277 
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Table 3 Parameters of the biomass equations, estimating aboveground biomass (AGB) in g dry weight from the predictor variable height (H). All biomass 278 

equations took the form of power equations (Equation [4]). n = number of observations for each species (in total = 4097 single observations); H 279 

range = height range of measured trees (cm), value in brackets stands for mean H; β1 and β2 = estimated model coefficients; se = standard error of the 280 

regression coefficients; p = significance values of coefficients; cor = correlation between observation and fit; RMSE = root-mean-squared-error of fit; 281 

R²res = coefficient of determination of residuals. 282 

Species n      H range (cm) β1 β2 se (β1) se (β2) p (β1) p (β2) cor RMSE (g) R²res 

             

Abies alba 399 6-590  (75.3) 0.03118 1.961 0.011 0.059 < 0.05 < 0.001 0.917 616.1 0.526 

Acer pseudoplatanus 90 40-1030  (354.1) 0.00421 2.12319 0.004 0.147 0.314 < 0.001 0.914 1397.9 0.338 

Betula pendula 58 22-470  (94.0) 0 5.34264 0 0.359 0.65 < 0.001 0.958 231.1 0.147 

Carpinus betulus 311 16-170  (80.8) 0.02242 1.69395 0.014 0.133 0.108 < 0.001 0.711 37.6 0.838 

Fagus sylvatica 1142 8-1160  (168.0) 0.00149 2.30247 0 0.039 < 0.001 < 0.001 0.887 1005.3 0.377 

Fraxinus excelsior 90 30-1213  (337.7) 0.00428 2.13866 0.004 0.135 0.278 < 0.001 0.925 1623.6 0.253 

Picea abies 368 20-730  (118.7) 0.08422 1.78966 0.024 0.046 < 0.001 < 0.001 0.894 904.5 0.397 

Pinus sylvestris 95 17-720  (130.7) 0.02025 1.9889 0.015 0.119 0.173 < 0.001 0.895 813.9 0.447 

Pinus uncinata 46 16-29  (21.1) 0.00073 2.43282 0.001 0.337 0.351 < 0.001 0.733 0.5 0.429 

Prunus avium 7 175-370  (271.7) 0 3.88746 0 0.699 0.815 < 0.05 0.953 508.5 0.09 

Prunus serotina 211 90-850  (192.4) 0.00039 2.57002 0 0.079 0.052 < 0.001 0.94 772.2 0.308 

Pseudotsuga menziesii 48 81-372  (201.7) 0.00457 2.11328 0.009 0.35 0.613 < 0.001 0.725 334.7 0.623 

Quercus petraea 465 12-405  (64.2) 0.00737 2.01897 0.003 0.072 < 0.05 < 0.001 0.829 146 0.64 

Quercus robur 454 13-900  (78.8) 0.00936 2.05293 0.003 0.044 < 0.001 < 0.001 0.909 468.3 0.14 

Quercus rubra 15 75-120  (97.3) 0.00099 2.20817 0.006 1.371 0.877 0.131 0.432 16.9 0.833 

Robinia pseudoacacia 238 59-235  (151.2) 0.00122 2.33479 0.001 0.148 0.191 < 0.001 0.743 76.8 0.246 

Salix spec 10 119-531  (338.8) 0.00001 3.1988 0 1.23 0.898 < 0.05 0.751 1393.9 0.604 

Sorbus aucuparia 40 4-197  (99) 0.00109 2.16072 0.002 0.336 0.559 < 0.001 0.795 24.3 0.4 

Tilia cordata 10 119-256  (178.8) 0.00074 2.58718 0.003 0.66 0.784 < 0.05 0.785 110.344 0.274 

 283 
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 284 

Table 4 Parameters of the biomass equations, estimating aboveground biomass (AGB) in g dry weight from the predictor variable RCD² H (cm³). All 285 

biomass equations took the form of power equations (Equation [5]). n = number of observations for each species (in total = 4097 single observations); 286 

RCD² H range = range of measured trees (cm³), value in brackets stands for mean RCD² H; β1 and β2 = estimated model coefficients; se = standard error 287 

of the regression coefficients; p = significance values of coefficients; cor = correlation between observation and fit; RMSE = root-mean-squared-error of 288 

fit; R²res = coefficient of determination of residuals. 289 

Species n      RCD² H range (cm³) β1 β2 se (β1) se (β2) p (β1) p (β2) cor RMSE (g) R²res 

             

Abies alba 399 0-47045 (2104.6) 1.87856 0.79034 0.263 0.014 < 0.05 < 0.001 0.971 364.7 0.006 

Acer pseudoplatanus 90 6-93159 (15794.5) 0.20031 0.96443 0.106 0.049 0.062 < 0.001 0.956 1007.8 0.039 

Betula pendula 58 2-53599 (1848.3) 0.3725 0.87948 0.04 0.01 < 0.001 < 0.001 0.998 45.2 0.003 

Carpinus betulus 311 2-984 (217.9) 0.3562 0.92515 0.061 0.029 < 0.001 < 0.001 0.91 20.8 0.29 

Fagus sylvatica 1142 0-132559 (4124.9) 0.62498 0.87386 0.05 0.007 < 0.001 < 0.001 0.974 490.1 0.108 

Fraxinus excelsior 90 14-101911 (14945.5) 0.06826 1.07971 0.038 0.051 0.075 < 0.001 0.971 1008.2 0.036 

Picea abies 368 3-72405 (3830.7) 2.24952 0.76318 0.321 0.014 < 0.001 < 0.001 0.961 559 0 

Pinus sylvestris 95 2-63619 (4903.8) 0.75967 0.85003 0.231 0.03 < 0.05 < 0.001 0.975 406.8 0.02 

Pinus uncinata 46 1-10 (4) 0.38946 0.87595 0.059 0.09 < 0.001 < 0.001 0.839 0.4 0.014 

Prunus avium 7 1276-37000 (13084) 0.34369 0.91814 0.275 0.08 0.267 < 0.001 0.988 255.6 0.004 

Prunus serotina 211 161-85170 (3655.1) 0.41845 0.93306 0.049 0.011 < 0.001 < 0.001 0.984 397.3 0.015 

Pseudotsuga menziesii 48 86-8977 (2088.9) 0.42058 0.92076 0.149 0.042 < 0.05 < 0.001 0.972 111.7 0.053 

Quercus petraea 465 1-16366 (558.8) 0.52985 0.81162 0.1 0.022 < 0.001 < 0.001 0.893 115.4 0.453 

Quercus robur 454 2-65307 (1602.5) 0.67311 0.85202 0.066 0.009 < 0.001 < 0.001 0.987 176.9 0.055 

Quercus rubra 15 32-346 (163.9) 0.10626 1.09349 0.056 0.097 0.08 < 0.001 0.969 4.5 0.001 

Robinia pseudoacacia 238 31-2802 (800.4) 0.98644 0.77535 0.229 0.033 < 0.001 < 0.001 0.85 60 0.224 

Salix spec 10 130-40185 (10735.7) 0.04368 1.12303 0.013 0.029 < 0.05 < 0.001 0.999 68.1 0.002 

Sorbus aucuparia 40 3-1640 (271) 0.54829 0.75903 0.22 0.061 < 0.05 < 0.001 0.921 15.5 0.048 

Tilia cordata 10 933-10020 (4312.4) 0.10615 1.02416 0.136 0.147 0.459 < 0.001 0.945 132.9 0.004 
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The estimated coefficient β1 ranged from 0.006 (Tilia cordata) to 0.4 (Robinia pseudoacacia) 290 

for models based on RCD and was considerably smaller for the models based on H as 291 

predictor (0 – 0.08). Coefficient β2 was evenly distributed around 2.5 for RCD models with a 292 

maximal value of 3.02 (Fraxinus excelsior) and a minimal value of 1.94 (Robinia 293 

pseudoacacia) (Table 2). Also for the H models, coefficient β2 was evenly distributed around 294 

2.2 for most species, but three species showed β2 values out of the ordinary. Data for Betula 295 

pendula, Prunus avium and Salix spec resulted in estimates for β2 that were around 5, 4, and 3 296 

(Table 3), resulting in atypical curves with a pronounced slope for these species in 297 

comparison to the other curves. Independent of the predictor variable (RCD, H or RCD² H), 298 

coefficients β1 and β2 showed a negative correlation, for small values of β1 (RCD: β1 < 0.1, 299 

correlation = -0.7862; H: β1 < 0.01, correlation = -0.3641; RCD² H: β1 < 1, correlation = -300 

0.8733), as also observed by Pilli et al. (2006) and Zianis and Mencuccini (2004).  301 

Due to the considerable variety of single species observations, the significance of the 302 

estimated coefficients (β1, β2) differed among the species (Table 2, Table 3, Table 4). With 303 

RCD and RCD² H as predictor, all estimators for coefficient β2 were significant and also most 304 

estimations of coefficient β1 (n = 11, n = 14, respectively). Coefficient β1 was particularly not 305 

significantly different from zero for species with small numbers of observations (e.g. Prunus 306 

avium, Quercus rubra, Tilia cordata), with Acer pseudoplatanus and Fraxinus excelsior 307 

forming an exception. With H as predictor, also all estimators for coefficient β2 were 308 

significant, aside of the estimations for Quercus rubra, where both coefficients were not 309 

significant. However, most estimations of coefficient β1 were not significantly different from 310 

zero (n = 14), whereby the coefficients β1 were very close to zero in the first place for the H 311 

models.    312 

For generic biomass equations, the original data were aggregated into conifer species and 313 

broadleaf species and analyzed with respect to the same predictor variables as the species-314 

specific data (Fig. 3 a – d). Resulting generic biomass equations were: 315 

 316 

AGB = 0.02822 RCD 2.809 

 
(broadleaf species) [11] 

AGB = 0.1691 RCD 2.369 
 

(conifer species) 
 

[12] 

AGB = 0.002597 H 2.217 
 

(broadleaf species) [13] 

AGB = 0.02398 H 1.982 
 

(conifer species) 
 

[14] 

AGB = 0.3613 RCD² H 
0.9217 
 

(broadleaf species) [15] 

AGB = 1.687 RCD² H 0.7899 
 

(conifer species) 
 

[16] 

with AGB = aboveground biomass (g); RCD = root-collar-diameter (mm); H = height (cm); 
mathematical model based on Equations [3], [4] and [5]. 
 317 

Estimated coefficients were significant for all models (p < 0.001). For the RCD models, the 318 

standard error of the associated regression coefficients was se (β1) = 0.003 and 319 

se (β2) = 0.023 for broadleaves and se (β1) = 0.022 and se (β2) = 0.03 for conifers.  320 
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For the H models, the standard error of the associated regression coefficients was 321 

se (β1) = 0.00035 and se (β2) = 0.021 for broadleaves and se (β1) = 0.0056 and 322 

se (β2) = 0.038 for conifers.  323 

Finally, the the standard error of the associated regression coefficients for the RCD² H models 324 

was se (β1) = 0.0208 and se (β2) = 0.0054 for broadleaves and se (β1) = 0.159 and 325 

se (β2) = 0.0093 for conifers.  326 

The coefficient of determination for the residuals was low for RCD models of broadleaf and 327 

conifer species (R²res = 0.13, R²res = 0.05, respectively) and for the RCD² H models 328 

(R²res = 0.14, R²res = 0.01, respectively), but higher for H models (R²res = 0.38, R²res = 0.53, 329 

respectively). Confidence intervals for the coefficients of the models were wider for the H 330 

models, compared to the RCD models and RCD² H models Fig. 3 a – f, shaded grey area. 331 

Confidence intervals widened for all models in the direction of increasing RCD, H or RCD² 332 

H. In addition, values for the upper confidence limits were higher for all six models and both 333 

coefficients, compared to the lower confidence limits. Confidence limits were:  334 

RCD model – broadleaf:  335 

β1 (2.5%, 97.5%) = 0.023, 0.034;  β2 (2.5%, 97.5%) = 2.764, 2.855;  336 

RCD model – conifer:  337 

β1 (2.5%, 97.5%) = 0.1255, 0.2128;  β2 (2.5%, 97.5%) = 2.309, 2.429;  338 

H model – broadleaf:  339 

β1 (2.5%, 97.5%) = 0.002, 0.003;  β2 (2.5%, 97.5%) = 2.177, 2.258;  340 

H model – conifer:  341 

β1 (2.5%, 97.5%) = 0.013, 0.035;  β2 (2.5%, 97.5%) = 1.906, 2.057; 342 

RCD² H model – broadleaf:  343 

β1 (2.5%, 97.5%) = 0.321, 0.402;  β2 (2.5%, 97.5%) = 0.911, 0.932;  344 

RCD² H model – conifer:  345 

β1 (2.5%, 97.5%) = 1.375, 1.999;  β2 (2.5%, 97.5%) = 0.772, 0.808.  346 

 347 

 348 

Broadleaves Conifers 
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Fig. 3 Generic biomass curves (compare Equations [11] – [16]) based on root-collar-
diameter (RCD) (a) and (b), height (H) (c) and (d), and RCD² H (e) and (f) with confidence 
intervals (shaded gray area) for broadleaf (a, c, e) and conifer (b, d, f) species. Number of 
observations were n = 3269 (a), n = 956 (b), n = 3141 (c), n = 956 (d), n = 3141 (e), and 
n = 956 (f). Correlations between observation and fit were cor = 0.93 (a), cor = 0.95 (b), 
cor = 0.9 (c), cor = 0.89 (d), cor = 0.97 (e), and cor = 0.96 (f). Root-mean-squared-errors of 
fit were RMSE = 674.2 g (a), RMSE = 516.3 g (b), RMSE = 808.8 g (c), RMSE = 801.5 g 
(d), RMSE = 466 g (e), and RMSE = 475.5 g (f).  
 349 

The generic RCD-H curves showed the strong relationship between both variables for 350 

broadleaves and conifers (Fig. 4 a, b) and resulted in significant models (p < 0.001). Generic 351 

height equations were: 352 

 353 

H = 6.73 RCD + 0.0201 RCD²        (broadleaf species) 
 

[17] 

H = 5.49 RCD + 0.0001 RCD²        (conifer species) 
 

[18] 

with H = height (cm); RCD = root-collar-diameter (mm); mathematical model based on 
Equation [10]. 
 354 

Estimated coefficients (β1, β2) were significant for broadleaf species. For conifer species 355 

coefficient β1 was significantly different from zero, but β2 was not (p = 0.957). Both models 356 

had high coefficients of determination around 0.9, but the residual standard error was higher 357 

for the broadleaf species, compared to the conifer species. 358 
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 359 

  
 

Fig. 4 Generic root-collar-diameter (RCD) – height (H) curves (compare Equations [15], 
[16]) with confidence intervals (shaded gray area) for broadleaf (a) and conifer (b) species. 
Number of observations were n = 3269 (a), n = 956 (b). The coefficient of determination 
was R² = 0.896 (a) and R² = 0.931 (b). Residual standard error in cm was RSE = 69.8 (a) 
and RSE = 43.6 (b). 

Discussion 360 

All species-specific biomass equations (Tables 2, 3, 4; Appendix B, C, D) were statistically 361 

significant (p < 0.05) and RCD proved to be a better single predictor variable than H, 362 

resulting in lower root-mean-squared-errors (RMSE) on average for the regeneration of forest 363 

trees. Even lower root-mean-squared-errors (RMSE) could be achieved on average (-21%) 364 

when using the predictor RCD² H instead of only RCD. Hence, the equations presented are a 365 

comprehensive collection to predict the biomass of forest regeneration and an alternative to 366 

existing non-destructive estimation approaches for young trees (Bolte et al. 2009; Norgren et 367 

al. 1995). Eventhough species-specific models are expected to provide more accurate 368 

estimates of biomass and/or carbon than mixed-species models (Buech and Rugg 1989; Sah et 369 

al. 2004), generic equations as developed here for broadleaf and conifer species (Equations 370 

[11] – [16]) can be a helpful tool to estimate biomass of species not considered in this study 371 

(e.g. Brown 1976; Nelson et al. 1999). In any case, the equations are more precise than 372 

existing comparably coarse approaches. West et al. (1999) for example presented a fractal 373 

model based on trunk diameter that suggested coefficient β2 taking a value of 8/3 (≈ 2.67), 374 

based on allometric theory. Zianis and Mencuccini (2004) calculated an empirical scaling 375 

exponent of β2 = 2.3679 based on a list of biomass equations. Differences of β2 are a result of 376 

differences in species wood density and growth architecture (Ketterings et al. 2001). Here, 377 

generic models for broadleaf and conifer species resulted in β2 = 2.809 and β2 = 2.369, 378 

respectively (Equations [11], [12]), which is quite close to the values. Also species-specific 379 

root-collar-diameter dependent biomass equations (Table 2) resulted in an β2 value in the 380 

range of roughly 2 – 3. This is in line with the equations reviewed by Zianis and Mencuccini 381 

(2004) but slightly contradicts Pilli et al. (2006), who found that very low values of β2 (< 2) 382 

are often reported for small plants (< a few meters). The estimates for β2 were more 383 

heterogeneous for the biomass models based on H as explanatory variable (Table 3), which 384 

was especially due to the species Betula pendula, Prunus avium and Salix spec. Some 385 

previous studies have used combinations of diameter and height as independent variables for 386 
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biomass estimation (e.g. Bjarnadottir et al. 2007; Gonzalez-Benecke et al. 2014a; Repola 387 

2008). Aside of using the predictor RCD² H as combination of both, we decided not to use 388 

height and diameter alone in the same equations, disregarding the fact that the data basis 389 

would have allowed using such combinations. The main reason for this was that diameter and 390 

height are highly collinear (Fig. 4). Not considering collinearity or multicollinearity of the 391 

independent variables when used separately in regression analysis might result in biased 392 

predictions (Ott 1993).  393 

However, we also generally believe that measuring diameter and height of the regeneration is 394 

quite laborious for large sample sizes, but is required for all biomass equations based on both 395 

variables as predictors (e.g. Equations [5], [6], Table 4). Eventhough the predictor RCD² H 396 

reduced the root-mean-squared-errors (RMSE), we suppose that the estimates solely based on 397 

RCD result in comparably accurate biomass estimates (compare: correlation between 398 

observation and fit in Tables 2 and 4), so that the additional work for also measuring H is not 399 

necessarily justified for forest inventories.       400 

The variability around the biomass equations increased with size of the explanatory variable 401 

(Fig. 3), which is common for biomass equations (Zianis and Mencuccini 2004). Chave et al. 402 

(2001) reported that the values of the estimated coefficients are strongly affected by the small 403 

trees in the data set. This was also the case here because of the higher amount of 404 

measurements of seedlings compared to saplings. The effect of small trees was particularly 405 

pronounced for the logarithmically transformed data after back-transformation (Appendix B, 406 

Appendix C, Appendix D), resulting in steep slopes for larger height and diameters and 407 

possibly overestimating this part of the data, which can be problematic, aside of introducing a 408 

bias through transformation. Applying nonlinear least square regressions allowed avoiding 409 

these problems and we decided to give weights to our data to not systematically overestimate 410 

the small range of the data in return. We consider this a pragmatic approach for biomass 411 

estimation. 412 

In regeneration stands, site conditions such as light availability, soil properties and resource 413 

competition, can be expected to be among the most decisive factors determining growth rates, 414 

especially height growth but also diameter, and growth architecture, in terms of biomass 415 

allocation. Data compiled for this study represented a wide range of growth conditions, 416 

especially for species with high numbers of plots and data sources, e.g. Abies alba, Fagus 417 

sylvatica (Table 1), so that the provided equations can be assumed to be applicable for central 418 

Europe (compare Wirth et al. 2004). Nevertheless, caution should be generally taken when 419 

biomass estimates are extrapolated from plot to regional scale (Satoo and Madgwick 1982; 420 

Zianis et al. 2005). In addition, each original study has been conducted for different purposes, 421 

e.g. competition experiment (KAW2013), site preparation experiment (LOE2006), 422 

provenance trial (GEL2001), and under different growth conditions, e.g. in situ (AME2013, 423 

ANN2012), ex situ (BAL2011, KAW2013), differing light availability (PRO2008, 424 

SCH2012), which may have increased the natural variability of the data or may have 425 

introduced atypical plant architectures. The high variability of the data in combination with 426 

the up to now limited size of the data base, in turn, hampered a detailed analysis of regional 427 

differences in tree allometry or the effect of specific treatments, site or stand conditions. 428 

These limitations should be considered when applying the presented biomass equations at plot 429 

or stand scale.  430 
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Against this background, it would be highly desirable to minimize methodological differences 431 

among biomass studies, by standardizing their methodologies (e.g. height of diameter 432 

measurement, inclusion and / or exclusion of leaves and needles) as also claimed by Bi et al. 433 

(2015), Cifuentes Jara et al. (2015b), and Cifuentes Jara et al. (2015a). Also, a standardized  434 

quantification of the main site and stand factors influencing the allocation of tree growth (e.g. 435 

light and water availability, soil properties, density, age, structure) could result in more 436 

accurate general model predictions (e.g. Alemdag and Stiell 1982; António et al. 2007; Brown 437 

1997; Gonzalez-Benecke et al. 2014b). Standards would facilitate compilation, evaluation and 438 

application of existing and future biomass equations.   439 
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Appendix 598 

 599 

Appendix A. Data set references and responsible scientists. Presented are the names of the datasets as used in this study and the publication they 600 

refer to.  601 

All co-authors: please, check this table and correct/ complement it where necessary 602 

No. Data set Region Sampling 

year 

Species Bibliographic references 

(1) AME2013 Catalonia, 
Spain 

2011 Abies alba (48), Betula pendula 
(47), Pinus sylvestris (45), 
Pinus uncinata (46) 

Ameztegui, A., Coll, L. (2013) Unraveling the role of light and biotic interactions on seedling performance of four 
Pyrenean species along environmental gradients. Forest Ecology and Management 303: 25-34 

(2) AMM2003 Freising, 
Germany 

1999 Fagus sylvatica (107), Quercus 
robur (107) 

Ammer C (2003) Growth and biomass partitioning of Fagus sylvatica L. and Quercus robur L. seedlings in response 
to shading and small changes in the R/FR-ratio of radiation. Annals of Forest Science 60: 163-171 

(3) ANN2012 Ticino, Italy 2010 Prunus serotina (35) Annighöfer et al. (2012) Biomass functions for the two alien tree speciesPrunus serotina Ehrh. and Robinia 
pseudoacaciaL. in floodplain forests of Northern Italy 

(4) BAL2007 Fontfreyde, 
France 

2007 Fagus sylvatica (10)  Unpublished data 

(5) BAL2009 Fontfreyde, 
France 

2009 Fagus sylvatica (9)  Unpublished data 

(6) BAL2011 Clermont-
Ferrand, 
France 
(Greenhouse) 

2011 Quercus petraea (24)  Unpublished data (laut Excel Sheet) 

(7) CAQ2010 Graoully 
Forest, 
France 

2005, 
2006, 
2007 

Acer pseudoplatanus (40), 
Fagus sylvatica (176) 

Caquet B, Montpied P, Dreyer E, Epron D, Collet C 2010 Response to canopy opening does not act as a filter to 
Fagus sylvatica and Acer sp. advance regeneration in a mixed temperate forest. Ann For Sci 67 :105. AND Caquet 
B, Barigah T, Cochard H, Montpied P, Collet C, Dreyer E, Epron D 2009 Hydraulic properties of naturally 
regenerated beech saplings respond to canopy opening. Tree Physiol. 29 :1395-1405. 

(8) COL1996 Champenoux, 
France 

1983; 
1993; 
2000 

Quercus petraea (426) Collet C, Guehl JM, Frochot H, Ferhi A 1996 Effect of two forest grasses differing in their growth dynamics on the 
water relations and the growth of Quercus petraea seedlings. Can J Bot, 74: 1562-1571. AND  Collet C, Löf M, 
Pagès L 2006 Root system development of oak seedlings analyzed using a root architectural model. Effects of 
competition with grass. Plant and Soil, 279: 367-383. AND Collet C, Frochot H, Ningre F 1999 Développement de 
jeunes chênes soumis à une compétition souterraine. Revue Forestière Française, 51: 298-308. FÜR Q. ROBUR 
(die ich rausgeschmissen habe, weil Daten fehlerhaft sein müssen!) 

(9) EWΒ2009 Bayrischer 
Wald, 
Germany 

2009 Abies alba (40), Fagus sylvatica 
(40), Picea abies (40), Sorbus 
aucuparia (40) 

Promberger (2010) Biomasse und sommerliches Äsungsangebot von  
Jungbäumen im Nationalpark Bayerischer Wald. Diplomarbeit  

(10) GEB2013 Göttingen, 
Germany 
greenhouse 

2013 Acer pseudoplatanus (12), 
Fagus sylvatica (6), Fraxinus 
excelsior (12) 

Masterarbeit, unpublished data 
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experiment 

(11) GEL2001 Graupa, 
Germany 

2001 Fagus sylvatica (32) Gellrich M, Steinke C, Schröder J (2001) Ergebnisse der Biomasseuntersuchungen für Probebäume des 
Buchenprovenienzversuches auf der Versuchsfläche "Pflanzgarten", LAF Graupa. Ergebnissbericht Technische 
Universität Dresden 

(12) HAΒ2009 Bechsted, 
Germany 

2009 (?) 
gehört zu 
Kahl und 

Wirth 

Fagus sylvatica (3), Tilia 
cordata (9) 

 

(13) HAM2014 Sachsen, 
Germany 

2010 Abies alba (194) Hamm et al. (2014) Wachstumsreaktionen junger Weißtannen-Voraussaaten auf Begleitvegetation und 
Strahlungskonkurrenz. AFJZ 185:45-59 

(14) HIR2010 Sachsen, 
Germany 

2010 Fagus sylvatica (88) Masterarbeit (Die Untersuchung der Wachstumsparameter und der Wurzeldeformationen von Rotbuchen-
Voranbauten (Fagus sylvatica L.) aus Saat und Pflanzung, unter einem Fichtenschirm (Picea abies [L.] Karst.), im 
Tharandter Wald. Fachrichtung Forstwissenschaften Tharandt 2011), unpublished data 

(15) HOF2008 Freising, 
Landshut 
Germany 

2004 Fagus sylvatica (289) Hofmann R, Ammer C (2008) Biomass partitioning of beech seedlings under the canopy of spruce. Austrian Journal 
of forest science (1):51-66 

(16) KAE2006 Baden-
Württemberg, 
Germany 

2005 ? Abies alba (117), Acer 
pseudoplatanus (51), Fagus 
sylvatica (149), Fraxinus 
excelsior (63), Picea abies 
(156), Pinus sylvestris (40), 
Quercus robur (44) 

Kändler et al. (2006) Herleitung vonBiomassefunktionenfürVerjüngungs-Bäume(„NichtDerbholz“-Kollektiv) – 
erste Ergebnisse. DVFFA– Sektion Ertragskunde, Jahrestagung 2006  

(17) KAH2009 Bechsted, 
Germany 

2009 Acer pseudoplatanus (12), 
Fagus sylvatica (5), Fraxinus 
excelsior (15), Prunus avium 
(7), Quercus petraea (15), Tilia 
cordata (1) 

 

(18) KAW2013 Göttingen, 
Germany 

2011 Carpinus betulus (296), Prunus 
serotina (176), Quercus robur 
(288), Robinia pseudoacacia 
(238) 

Kawaletz et al. (2013) Exotic tree seedlings are much more competitive than natives but show underyielding when 
growing together. J Plant Eco &:305-315 

(19) KUE2011 Freiburg, 
Germany 

2008 Pseudotsuga menziesii (48) Kühne et al. (2011) Einfluss von Überschirmung, Dichtstand und Pflanzengröße auf die Wurzelentwicklung 
natürlich verjüngter Douglasien. (Effects of canopy closure, crowding and plant size on root system development in 
Douglas-fir saplings). Forstarchiv 82, 184-194. AND Merkel (2009) Zur Ästigkeit von Douglasie unter Schirm. 
Diplomarbeit 

(20) KUE2014 Freiburg, 
Germany 

2012 Acer pseudoplatanus (15), 
Carpinus betulus (15), Quercus 
robur (15), Quercus rubra (15) 

Kühne et al. (2014) A comparative study of physiological and morphological  
seedling traits associated with shade tolerance in introduced  
red oak (Quercus rubra) and native hardwood tree species  
in southwestern Germany. Tree Physiology 34, 184–193 
doi:10.1093/treephys/tpt124 

(21) LIN2014 Solling, 
Germany 

2012 Fagus sylvatica (30) Lin N, Bartsch N, Vor T (2014) Long-term effects of gap creation and liming on understory vegetation with a focus 
on tree regeneration in a European beech (Fagus sylvatica L.) forest. Annals of forest science 57(2): 249-262, DOI: 
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10.15287/afr.2014.274 

(22) LOE2006 Skarhul, 
Sweden 

2004 Quercus robur (48) Löf, M.; Rydberg, D.; Bolte, A. (2006): Mounding site preparation for forest restoration: Survival and growth 
response in Quercus robur L. seedlings. For. Ecol. Manage. 232: 19-25. AND: Bolte, A.; Löf. M. (2010): Root 
spatial distribution and biomass partitioning in Quercus robur L. seedlings: the effects of mounding site preparation. 
Eur. J. Forest Res. 129, 4: 603-612. 

(23) MUE2011 Freiburg, 
Germany 

2011 Betula pendula (11), Pinus 
sylvestris (10), Salix spec (10) 

Scherer-Lorenzen, M., Schulze, E.-D., Don, A., Schumacher, J. & Weller, E. (2007) Exploring the functional 
significance of forest diversity: A new long-term experiment with temperate tree species (BIOTREE). Perspectives 
in Plant Ecology, Evolution and Systematics, 9, 53-70. FOR DETAILS ON SOIL, BUT DATA SAMPLING 

FROM 2011! 
(24) PRO2008 Charensat, 

France 
2004 Fagus sylvatica (54) Provendier D, Balandier P (2008) Compared effects of competition by grasses (Graminoids) and broom (Cytisus 

scoparius) on growth and functional traits of beech saplings (Fagus sylvatica). Ann. For. Sci., 65, 510, 9p.; and 

partly (? Not sure?) in: Coll et al. (2003) Morphological and physiological responses of beech (Fagus sylvatica) 
seedlings to grass-induced belowground competition. Tree physiology 24:45-54 

(25) SCH2012 Göttingen, 
Germany 
greenhouse 
experiment 

2008 Fagus sylvatica (184), Picea 
abies (172) 

Schall P, Lödige C, Beck M., Ammer C (2012) Biomass allocation to roots and shoots is more sensitive to shade 
and drought in European beech than in Norway spruce seedlings. For Eco Manag 266:246-253 
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605 

Appendix B. Parameters of the biomass equations, estimating aboveground biomass (AGB) from the predictor variable  root-collar-diameter (RCD). 606 

All models were significant (p < 0.001). Biomass equations took the form of Equation [6]. Parameters are: n = number of observations for each 607 

species (total = 4225 single observations); β1 and β2 = estimated model coefficients; se = standard error of the regression coefficients; 608 

p = significance values of coefficients; CF = correction factor for back-transformation of β1 (Equation [9]); exp(β1) = back-transformed anti-log of 609 

β1 multiplyed with CF; R² = multiple R-squared of the model; RSE = residual standard error. 610 

Species n β1 β2 se(β1) se(β2) p(β1) p(β2) CF 
exp(β1

) 
R² RSE 

Abies alba 399 -3.489 2.854 0.034 0.016 < 0.001 < 0.001 1.089 0.033 0.988 0.413 
Acer pseudoplatanus 130 -3.59 2.797 0.104 0.034 < 0.001 < 0.001 1.072 0.03 0.981 0.373 
Betula pendula 58 -3.67 2.72 0.181 0.088 < 0.001 < 0.001 1.172 0.03 0.944 0.564 
Carpinus betulus 311 -3.59 2.73 0.153 0.059 < 0.001 < 0.001 1.104 0.03 0.874 0.445 
Fagus sylvatica 1182 -3.565 2.846 0.04 0.015 < 0.001 < 0.001 1.092 0.031 0.968 0.419 
Fraxinus excelsior 90 -3.965 2.927 0.207 0.061 < 0.001 < 0.001 1.14 0.022 0.963 0.513 
Picea abies 368 -3.084 2.676 0.085 0.029 < 0.001 < 0.001 1.091 0.05 0.959 0.418 
Pinus sylvestris 95 -3.508 2.728 0.095 0.034 < 0.001 < 0.001 1.08 0.032 0.985 0.392 
Pinus uncinata 46 -2.595 1.958 0.392 0.274 < 0.001 < 0.001 1.066 0.08 0.537 0.358 
Prunus avium 7 -2.044 2.306 0.596 0.148 < 0.05 < 0.001 1.014 0.131 0.98 0.165 
Prunus serotina 211 -3.748 2.902 0.195 0.06 < 0.001 < 0.001 1.052 0.025 0.919 0.317 
Pseudotsuga menziesii 48 -2.408 2.522 0.22 0.07 < 0.001 < 0.001 1.032 0.093 0.966 0.25 
Quercus petraea 465 -3.918 2.565 0.1 0.038 < 0.001 < 0.001 1.137 0.023 0.906 0.506 
Quercus robur 502 -3.286 2.612 0.092 0.037 < 0.001 < 0.001 1.134 0.042 0.907 0.501 
Quercus rubra 15 -1.595 1.929 0.515 0.207 < 0.05 < 0.001 1.035 0.21 0.869 0.261 
Robinia pseudoacacia 238 -2.083 2.325 0.22 0.073 < 0.001 < 0.001 1.064 0.133 0.813 0.352 
Salix spec 10 -3.299 2.686 0.402 0.111 < 0.001 < 0.001 1.029 0.038 0.986 0.239 
Sorbus aucuparia 40 -2.663 2.325 0.378 0.157 < 0.001 < 0.001 1.174 0.082 0.853 0.567 
Tilia cordata 10 -3.284 2.485 1.2 0.317 < 0.05 < 0.001 1.041 0.039 0.885 0.282 
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Appendix C. Parameters of the biomass equations, estimating aboveground biomass (AGB) from the predictor variable height (H). All models were 611 

significant (p < 0.001), exept for Q. rubra (p = 0.049). Biomass equations took the form of Equation [7]. Parameters are: n = number of observations 612 

for each species (total = 4097 single observations); β1 and β2 = estimated model coefficients; se = standard error of the regression coefficients; 613 

p = significance values of coefficients; CF = correction factor for back-transformation of β1 (Equation [9]); exp(β1) = back-transformed anti-log of 614 

β1 multiplyed with CF; R² = multiple R-squared of the model; RSE = residual standard error. 615 

Species n β1 β2 se(β1) se(β2) p(β1) p(β2) CF exp(β1) R² RSE 

Abies alba 399 -8.072 2.829 0.089 0.025 < 0.001 < 0.001 1.236 0.00038589 0.97 0.651 
Acer pseudoplatanus 90 -8.598 2.598 0.325 0.059 < 0.001 < 0.001 1.172 0.0002162 0.957 0.564 
Betula pendula 58 -10.372 2.862 0.414 0.098 < 0.001 < 0.001 1.194 0.00003737 0.938 0.596 
Carpinus betulus 311 -5.916 2.168 0.357 0.083 < 0.001 < 0.001 1.275 0.00343802 0.69 0.697 
Fagus sylvatica 1142 -7.33 2.386 0.099 0.021 < 0.001 < 0.001 1.255 0.00082251 0.92 0.674 
Fraxinus excelsior 90 -7.818 2.504 0.37 0.068 < 0.001 < 0.001 1.24 0.00049889 0.939 0.655 
Picea abies 368 -5.486 2.316 0.128 0.029 < 0.001 < 0.001 1.122 0.00465274 0.946 0.481 
Pinus sylvestris 95 -9.001 2.886 0.275 0.063 < 0.001 < 0.001 1.248 0.00015394 0.958 0.666 
Pinus uncinata 46 -5.879 1.997 1.075 0.354 < 0.001 < 0.001 1.084 0.00303008 0.42 0.401 
Prunus avium 7 -14.967 3.978 2.342 0.42 < 0.05 < 0.001 1.036 0.00000033 0.947 0.267 
Prunus serotina 211 -5.448 2.175 0.313 0.061 < 0.001 < 0.001 1.091 0.00469647 0.859 0.418 
Pseudotsuga menziesii 48 -7.99 2.583 0.786 0.15 < 0.001 < 0.001 1.132 0.00038354 0.865 0.497 
Quercus petraea 465 -6.516 2.33 0.199 0.05 < 0.001 < 0.001 1.274 0.00188429 0.823 0.695 
Quercus robur 454 -6.007 2.213 0.197 0.048 < 0.001 < 0.001 1.285 0.00316311 0.822 0.708 
Quercus rubra 15 -8.935 2.646 5.563 1.217 0.132 < 0.05 1.21 0.00015937 0.267 0.617 
Robinia pseudoacacia 238 -7.493 2.488 0.536 0.107 < 0.001 < 0.001 1.106 0.0006159 0.695 0.449 
Salix spec 10 -16.01 3.876 2.353 0.409 < 0.001 < 0.001 1.189 0.00000013 0.918 0.588 
Sorbus aucuparia 40 -2.56 1.22 1.02 0.23 < 0.05 < 0.001 1.869 0.14446644 0.426 1.118 
Tilia cordata 10 -9.848 3.09 2.772 0.537 < 0.05 < 0.001 1.07 0.00005651 0.806 0.367 
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Appendix D. Parameters of the biomass equations, estimating aboveground biomass (AGB) from the predictor variable RCD² H (both in cm). All 616 

models were significant (p < 0.001). Biomass equations took the form of Equation [8]. Parameters are: n = number of observations for each species 617 

(total = 4097 single observations); β1 and β2 = estimated model coefficients; se = standard error of the regression coefficients; p = significance 618 

values of coefficients; CF = correction factor for back-transformation of β1 (Equation [9]); exp(β1) = back-transformed anti-log of β1 multiplyed 619 

with CF; R² = multiple R-squared of the model; RSE = residual standard error. 620 

Species n β1 β2 se(β1) se(β2) p(β1) p(β2) CF 
exp(β1

) 
R² RSE 

Abies alba 399 -0.672 0.956 0.022 0.016 < 0.001 < 0.001 1.076 0.549 0.99 0.383 
Acer pseudoplatanus 90 -1.228 0.922 0.076 0.034 < 0.001 < 0.001 1.036 0.303 0.99 0.265 
Betula pendula 58 -1.67 0.948 0.092 0.088 < 0.001 < 0.001 1.092 0.206 0.969 0.42 
Carpinus betulus 311 -1.195 0.955 0.082 0.059 < 0.001 < 0.001 1.069 0.323 0.915 0.364 
Fagus sylvatica 1142 -1.033 0.922 0.022 0.015 < 0.001 < 0.001 1.054 0.375 0.982 0.323 
Fraxinus excelsior 90 -1.314 0.949 0.112 0.061 < 0.001 < 0.001 1.074 0.289 0.98 0.377 
Picea abies 368 -0.164 0.868 0.042 0.029 < 0.001 < 0.001 1.052 0.892 0.976 0.317 
Pinus sylvestris 95 -1.062 0.939 0.057 0.034 < 0.001 < 0.001 1.056 0.365 0.99 0.331 
Pinus uncinata 46 -0.828 0.798 0.132 0.274 < 0.001 < 0.001 1.056 0.461 0.606 0.331 
Prunus avium 7 -0.931 0.905 0.458 0.148 0.098 < 0.001 1.01 0.398 0.985 0.144 
Prunus serotina 211 -0.774 0.921 0.107 0.06 < 0.001 < 0.001 1.033 0.476 0.947 0.256 
Pseudotsuga menziesii 48 -0.626 0.89 0.132 0.07 < 0.001 < 0.001 1.019 0.545 0.98 0.194 
Quercus petraea 465 -1.341 0.898 0.045 0.038 < 0.001 < 0.001 1.068 0.279 0.952 0.364 
Quercus robur 454 -0.772 0.893 0.047 0.037 < 0.001 < 0.001 1.088 0.503 0.941 0.41 
Quercus rubra 15 -1.397 0.931 0.342 0.207 < 0.05 < 0.001 1.018 0.252 0.933 0.186 
Robinia pseudoacacia 238 -0.622 0.865 0.155 0.073 < 0.001 < 0.001 1.052 0.565 0.846 0.319 
Salix spec 10 -2.103 1.013 0.387 0.111 < 0.05 < 0.001 1.035 0.126 0.984 0.262 
Sorbus aucuparia 40 -0.432 0.721 0.297 0.157 0.153 < 0.001 1.269 0.824 0.781 0.691 
Tilia cordata 10 -1.447 0.931 0.866 0.317 0.133 < 0.001 1.033 0.243 0.906 0.256 
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