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ABSTRACT 

 

Sixty-four cross bred 6 week-old intact male pigs (initial BW = 13.8 ± 2.3 kg) were randomly distributed to 4 separated 

modules using a three-phase feeding program in which two dietary crude protein (CP) and total dietary fiber (TDF) levels 

were tested in a 2 × 2 factorial arrangement under a commercial-like production system. The room air was sampled and 

analyzed for NH3 and CH4 while the slurry pit air was sampled and analyzed for CH4 content during the early growing 

(phase I, 13.8–38.6 kg of body-weight), growing (phase II, 38.6–72.8 kg of body-weight) and finishing periods (phase III, 

72.8–108.7 kg of body-weight); at the end of the finishing phase, 16 random pigs were sacrificed and cecum and colon 

contents were sampled to determine fer- mentation and microbial parameters. The pH and ammonium content increased 

with digesta transit being lower in cecum (6.0 and 69.7 mg/L) than in colon (6.3 and 156.3 mg/L) whereas the opposite 

trend was seen for total VFA and acetate (175.2 mM and 62.6 mol/100 mol vs. 141.1 mM and 57.2 mol/100 mol, 

respectively; P < 0.05). Low protein (LP) and high fiber (HF) diets showed a higher NH3 concentration in the colon but not 

in cecum samples. Dietary fiber also altered intestinal VFA concentration where animals fed Low fiber (LF) diet showed 

high VFA’s concentrations and such effect was more pronounced in colon samples. Total NH3  (1.8, 4.8 and 8.5 g/day) 

and methane (2.5, 3.5 and 7.5 g/day for Phase I, II and III, respectively) emissions increased consistently with age (P < 

0.05), dietary CP level increased NH3 volatilization (6.3 vs. 3.8 g/d for high protein (HP) and LP diets respectively; P < 

0.01) and fiber tended to increase methane emission (5.0 vs. 4.0 for HF and LF diets, respectively P < 0.1). The methane 

pro- duction measured at slurry pit contributed significantly to total CH4 emission (3.26, 9.02 and 16.91% in the phases I, 

II and III respectively). Dietary CP increased total bacteria (TB; 9.7 vs. 9.5; P < 0.03) and total methanogenic archaea 

(TMA; 7.2 vs. 6.4; P < 0.01) abundances in the intestinal as well as the slurry (6.8 vs. 6.3 Log n° copy/ g fresh matter 

(FM); P < 0.01) samples whereas TDF did not alter microbial titers. Differences in CH4  emission did not reflect the TMA 

concentration in hindgut contents. 
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Introduction 

 

The environmental impact of the intensified pig production in Europe is significant. Pig manure is a source 

of greenhouse gases (GHG) like methane (CH4) and other harmful gases such as ammonia (NH3). Increased 

public concern on the livestock environmental footprint made EU legislation to regulate the potential quota 

of atmospheric pollution (IPPC Directive; Directive EU 2016/2284 on the reduction of national emissions of 

certain atmospheric pollutants) where animal nutrition is considered as a key strategy. Under intensive 

production, ≈ 20% dietary N is retained in the animal’s body (Canh et al., 1997). Irreversible NH3-losses 

(through the urine and feces) may approach 50% of N intake (Ryden et al., 1987; Hartung and Phillips, 

1994) due to the excess or unbalanced dietary protein together with manure-handling strategies. Methane 

is identified as a main contributor to global warming (Johnson et al., 2002) and represents an irreversible 

energy loss. Methane production in pigs has been commonly linked to dietary gross energy intake (1.2% 

of DE intake; Christensen, 1987), and a positive correlation between fiber intake and methanogens diversity 

(Cao et al., 2012) or abundance (Liu et al., 2012) has been reported. Methanogens have been identified in 

hindgut digesta and pig feces, being the genus Methanobrevibacter (Steinberg and Regan, 2009; Luo et 

al., 2012) the most abundant. CH4 production is the main disposal sink for reducing equivalents (H2), and a 

competition between H2-consuming organisms (hydrogenotrophic) and sulphate reducing bacteria (SRB) 

has been reported in the human colon (Bernalier et al., 1996) and rabbit caecum (Belenguer et al., 2011) 

but factors that determine the end-routes of reducing equivalents (H2) are not well understood. 

 

This study was designed to determine the impact of dietary factors on emissions of harmful gases in pigs 

under commercial-like conditions and to analyze the ecology of lower gut methanogens to prevent the 

negative impact of CH4 production on energy utilization and the environment. 

 

 

 

Materials and methods 

 

All procedures were carried out under Project License CEEA 03/01-10 and approved by the in-house Ethics 

Committee for Animal Experiments at the University of Lleida. The care and use of animals were in 

accordance with the Spanish Policy for Animal Protection RD 53/2013, which meets the European Union 

Directive 2010/63 on the protection of animals used for experimental purposes. 

 

Installations, animals, diets and experimental design 

 

The study was conducted at the Swine Research Center of Catalonia, located in Torrelameu (CEP; 

Lleida, Spain); the center comprised a growing-finishing facility with 4 separated modules that were 



 
 

connected to each other by isolation doors. The space inside each module was divided into four pens (2 

pens at each side of the module) of 4.2 m2 (2.1 m × 2 m) and keeping 0.55 of its area covered by concrete 

slatted floor, and thus facilitating the access to the slurry pit beneath. Each two lateral pens drained into a 

single slurry pit (145 cm × 150 cm × 40 cm) and each one was equipped with a single space self-feeder in 

the concrete floor area and a square nipple drinker in the slatted floor area. The modules were sealed 

allowing a single air inlet (34 cm × 106 cm), at 208 cm from the ground level along with a single exhaust 

outlet (40 cm Ø) located at 185 cm of height and ventilated (24 h continuous air flow) using an air 

extractor (Fan coil, SP 400, Hept, SODECA, Barcelona, Spain), regulated by a flow controller (Ambitrol 

100 Environmental Controller, Model 103, Electronic Systems Progress SA, Bellpuig, Spain).The air outflow 

was determined twice a day (0800 and 1700 h) during gas collection period by an anemometer (Testo 

425, telescopic tube speed / temperature, temperature sensor NTC, Postfach 1140. Lenzkirch 79849, 

Germany). Temperature and relative humidity were controlled inside each module through a data logger 

(Testo 174 H; Testo AG, Lenzkirch, Germany) suspended at 185 cm of height at a distance of 150 cm from 

the aperture of the exhaust outlet. 

 

The experiment was performed during spring time March-June (105 days) in 3 feeding phases. The manure 

collection system and sampling protocol was described by Morazán et al. (2015a), briefly, the slurry was 

maintained into the pits for 15 days period (maximum depth = 0.5 m each) and at the end of each period, 

the slurry of 4 pits of a single module was homogenized, sampled (≈ 1 kg) and immediately frozen at -20 

°C then drained into a lagoon. Slurry production was calculated considering the area of the pit and the 

depth of the slurry produced. The temperature and the relative humidity were 23.9 °C (SD 2.4) and 52.3% 

(SD 13.9), 21.7 °C (SD 2.5) and 67.5% (SD 10.3), 25.9 °C (SD 3.4) and 60.5% (SD 11.1) for phases 1, 2 

and 3 of the experiment, respectively. 

 

Sixty four entire male pigs (the progeny of Large-White sires × Landrace dams) were purchased at 6 weeks 

of age from Nucleus S.A.S., Le Rheu, France. Piglets were weighed (mean initial BW = 13.8 ± 2.3 kg) 

before entering the fattening installation and were randomly assigned to four modules of 16 individuals 

based on minimum BW variation. Piglets inside each module were accom- modated in 4 pens (4 pigs/pen) 

once again based on minimum BW variation in order to comply with homogeneity and avoid any 

competition between the animals to procure the feed. 

 

To assess the impact of dietary changing on the emission of gases as well as evaluate the hindgut 

fermentation, two crude protein (CP; High vs. Low) and total dietary fiber (TDF; Low vs. High) 

concentrations were compared in a 2 × 2 factorial arrangement 

considering 4 replicates (pen) per each treatment through a three-phase feeding program: phase I (from 6 

to 11), II (from 12 to 16), and III (from 17 to 21 wk of age). The diets were formulated to be iso-energetic and 

to meet or exceed the CP (i.e. SID lysine) and TDF levels recommended by the NRC (2012) and Fundación 

Española para el Desarrollo de la Nutrición Animal (FEDNA, 2006) for pigs of that BW interval. 



 
 

 

The diets (ground using 6 mm screen which resulted in 1–2 mm feed meal) were composed primarily of 

cereals plus soybean meal/rapeseed meal as the CP source and/or sugar-beet pulp as an extra fiber 

source. 

 

 Diet description is provided in Morazán et al. (2015a) and briefly described in Table 1. 

 

 

 

Gas collection 

 

Gas emission (CH4 plus NH3) was measured at the end of each experimental period (during 48 h 

continuously) when the slurry stored into the pit reached the maximum level (end of every 15 days slurry 

collection period), in the case of CH4, slurry from total emissions were considered separately. For total 

gas emission, a representative air sample was obtained from (i) outside of each experimental module 

and (ii) the midpoint of the exhaust air outlet in each module following the procedure suggested by (AMCA, 

2009). Continuous samples of both (air flow rate of 1 l/h), outside and exhaust air from each module were 

continuously pumped (Gilson, Mini pulse 3, Le Bel Villiers, France) through a Teflon tube (0.1 mm Ø) 

toward a separate inert gas collection bag (10 L volume). 

 

To collect the air sample from the slurry pits, portables flux chamber (PFC, dome-made using PVC with 

a coverage area of 

283.5 cm2 [20 cm Ø with 40 cm length]) were devised and placed in duplicate inside each pit under the 

concrete slatted floor (Fig. 1). The lateral trunk of the flux chambers located below the slurry surface was 

pierced to allow the dynamic efflux of the slurry in order to maintain homogeneous of the material in-out of 

the PFC. During the gas collection period, the head space area at the top of the PFC was being washed out 

by the fresh outside inlet air (reaching the PFC through Teflon tube) and the contaminated air was being 

extracted through a second Teflon tube located at counterpart of the outside inlet air aperture. The air sample 

was being collected in a separate inert gas collection bag. Air flow was also adjusted to 1 L / h using a 

digital flow check (Alltech, IL, USA). 

 

 

 

 

Slaughtering procedure and collection of intestinal digesta 

 

At the end of the experiment, 16 pigs (1 pig per pen chosen at random) were selected and sacrificed 

approximately 18 h post feeding after captive bolt stunning. Immediately after sacrifice, the ventral side was 

opened and the whole gastrointestinal tract was ligated and excised. The cecum and colon segments were 



 
 

mid-incised and the pH of their contents was recorded using a portable pH meter equipped with a Crison 507 

penetrating electrode (Crison Instruments S.A., Barcelona, Spain). Thereafter, subsamples (15 g) of digesta 

were collected from cecum and colon in falcon tubes, immediately frozen in liquid nitrogen tank, then 

transported to the laboratory and kept frozen at −80 °C until further analyses. Four grams of the same 

gut sections were also sampled into tubes containing 1 mL of an extraction solution (20 mL/ 

ortophosphoric acid and 2 mL/L of 4-methylvaleric acid as internal marker) until further analysis for volatile 

fatty acids (VFA). Samples were also taken to determine the ammonia nitrogen (2 g over 0.8 mL of 0.5 N 

HCl). Both types of samples were stored at −20 °C. 

 

 

Chemical  analyses 

 

The air from each storage bag was sampled with intervals of 3 h (from 0900 to 2100 h) and 12 h (from 

2100 to 0900 h of the day after) during 48 h using 100-mL plastic syringes adapted with a valve (Maris et 

al., 2016). The air sample was held inside the syringe by closing the valve and immediately analyzed for 

NH3 and CH4 concentration using the photoacoustic technique (Innova 1312 Photoacoustic Multigas 

Monitor, Denmark). 

 

Digesta samples collected from the cecum, and colon were thawed at 4 °C overnight, dried in an oven 

at 60 °C for 48 h for determination of their DM content and the dried samples were used to measure the 

crude protein (CP) content using Kjeldahl method (ref. 976.05) and the proportion of neutral detergent 

fiber (aNDFom) according to Van Soest et al. (1991) procedures, using α- amylase but not sulphites, 

and subtracting ash from the residue. The fermentable fiber (was estimated as sum of total soluble fiber 

and hemicellulose components. The total dietary fiber (TDF) was determined using a gravimetric-enzymatic 

procedure (AOAC, 2000; method 991.43) with α-amylase, protease, and amyloglucosidase treatments 

(Megazyme Int. Ireland Ltd., Wicklow, Ireland). Total soluble fiber was estimated by subtracting the 

aNDFom content from the total dietary fiber (TDF) whereas hemicellulose content was estimated as the 

difference between aNDFom and ADFom contents (NRC, 2012). VFA concentrations were determined 

by gas chromatography  (Jouany,  1982)  using  a  capillary  column  (BP21  30 m × 0.25 mm  i.d. × 

0.25 μm,  Australia).  Ammonia-N concentration was determined (Chaney and Marbach, 1962) after 

sample centrifugation (25,000 g, 20 min). 

 

 

DNA extraction and quantification of microbial communities 

 

The cecum and colon samples kept at −80 °C were freeze dried and the DNA was extracted using a 

QIAamp DNA Stool Mini Kit (Qiagen Ltd., West Sussex, UK) following the manufacturer’s instructions. The 

yield and purity of extracted DNA was assessed using a Nanodrop™, by measuring the absorbance 

intensity at 260 nm and the absorbance ratio 260/280, respectively. Quantification of microbial 



 
 

communities was performed by quantitative PCR (qPCR) using a CFX-96 Touch Real-Time PCR 

Detection System. PCR amplification conditions used were as follows: 1 cycle (95 °C for 10 min); 40 

cycles (95 °C for 15 s, 60 °C for 10 s, 72 °C for 55 s); amplicon specificity was assessed using melting 

curve analyses of the PCR end products by increasing the temperature from 55 °C to 95 °C at a rate of 0.5 

°C/30 s. Reactions were run in triplicate in 96-well plates which contained 0.5 μL of each forward and 

reverse primer, 12.5 μL of 1X Bio-Rad SYBR Premix Ex Taq, and 2 μL of DNA template. MiliQ water was 

added to reactions to complete a final volume of 25 μL. Abundance of Total Bacteria (TB), Total Archaea 

(TA) and Total Methanogenic Archaea (TMA) were assessed using absolute quantification with a standard 

curve. Technical triplicates were averaged while checking overlaying of amplification plots at threshold cycle 

(Ct) value. Absolute quantification of TB, TA and TMA were expressed as log10 rrs or mcrA gene copies 

number/g FM, respectively. 

 

The primer sets and amplicon sizes are described in Table 2. 

 

 

 

Calculation for gases [i.e.NH3  and CH4] production 

 

The airflow rate of the outlet air (VSt) was calculated by multiplying air velocity at exhaust (m/s) by the 

exhaust outlet area (m2) and was corrected to standard temperature (TSt) and pressure (PSt) as: [VSt = 

P0V0TSt/PStT0] where P0 is the atmospheric pressure and V0 is the gas volume under the experimental 

condition. Then the gas emission production (difference between outlet and inlet) was calculated as [Mgas 

(g) = Vgas ρgas], where Vgas = V St × gas ratio in air sample and ρgas (g/L) is the density of gas at 

standard temperature (Cao et al., 2013). 

 

 

 

 

Statistical analyses 

 

Data of fermentation parameters (pH, NH3-N, concentration and proportion of VFA) together with microbiota 

quantification were tested using a repeated measures ANOVA (PROC MIXED, SAS Institute Inc., Cary, NC, 

USA) using the following model: 

Yijklm =μ+Si + Aj + CPk + TDFl + (Si × CPj) + (Si x TDFl) + (CPk × TDFl) + Ɛijklm 

 

Being: Yijklm, dependent variable, μ overall mean; Si: Intestinal section within each individual (i = cecum 

and colon); Aj, animal (random effect) j; CPk, dietary CP level effect (k = HP and LP); TDFl, dietary TDF 

level effect (l = HF and LF); and Ɛijklm, residual error term. 

 

The same statistical model but including three experimental phases; Phi (i = 6–11 weeks, 12-16weeks 



 
 

and 17-21weeks of age) instead of the intestinal section (cecum vs colon) was used to analyze 

statistical significances for gases emission and slurry com- position. The Tukey multiple comparison 

procedure was applied and significant differences and tendencies were declared at P≤0.05 and 0.05 < 

P≤0.10, respectively. 

 

 

 

Results 

 

The experiment was carried out using a three phase feeding system, in which the amino acid supply 

was adjusted for each production stage to match nutrient intake with requirements. Intake, digestibility, 

growth and carcass characteristics were fully addressed and discussed previously in Morazán et al. 

(2015a). 

 

 

Fermentation traits 

 

The effect of sample collection site (cecum vs. colon) and dietary CP and TDF content as well their 

interactions on pH value, ammonia (mg/L) and total VFA (mM) concentrations, and their proportion (as 

percentage) are shown in Table 3. Data obtained from slurry are also presented. 

Sampling site (cecum vs. colon) affects pH values, pH being lower in the cecum than in the colon 

(6.0 vs. 6.3 SEM 0.06; 

P < 0.01). Neither CP nor TDF altered pH values, although TDF level interacted with sampling site, pigs fed 

HF diets showed greater pH than those fed LF but only in the colon (6.4 vs. 6.1 SEM 0.08; P = 0.03). 

Samples in the slurry pits were apparently more alkalinized than digesta and slurry from animals fed HP 

diets showed higher pH value than those fed LP (7.5 vs. 7.0; P = 0.04). 

Similar to pH, NH3 concentration was higher in the colon than in the cecum (156.3 vs. 69.7 mg/L SEM 

8.38; P < 0.01) and sampling site interacts with both dietary treatments. In colon samples, LP diets caused 

higher NH3 concentration (182.1 vs. 130.5 mg/ L SEM 11.85; P = 0.02 for HP and LP diets respectively) as 

HF diets (166.7 vs. 145.9 mg/L for HF and LF SEM P = 0.05, respectively). High concentrations of ammonia 

were found in the slurry (up to 6 g/L) where the ammonia concentrations in pits of animals fed HP were 

greater than LP (P < 0.01). No differences related to fiber composition in the diet were detected. 

 

Total VFA’s concentrations and the proportion of acetic acid were higher in cecum samples, whereas butyric 

and branched chain fatty acids (BCFAs; iso-butyric and iso-valeric acids) showed the opposite tendency 

being higher in colon samples. No significant changes were detected in propionic and valeric acids (P > 

0.1). Dietary CP tended to increase valerate concentration. 

Dietary fiber altered intestinal VFA concentration and its profile; animals fed LF diets showed high VFA’s 

concentrations being this effect explained mostly by differences registered in the colon compartment 

(Interaction intestinal segment × TDF, P < 0.04). HF diets induced higher acetate and lower butyrate 



 
 

concentrations than LF diets whereas in the slurry samples, HF diets numerically increased total VFA 

concentrations and LF diets tended to reduce the proportion of propionate. 

 

 

Gut microbiota 

 

Changes throughout the hindgut together with the effect of dietary CP and TDF content and their 

interactions on absolute abundances of Bacteria (TB), Archaea (TA) and Methanogenic Archaea (TMA) are 

shown in Table 4. Abundances of TB, TA and TMA were greater in colon than in cecum samples. Dietary CP 

increased TB (P = 0.03) and TMA (P < 0.01) abundances in the intestine as well as in the slurry (P < 0.01) 

samples whereas TDF did not alter TB, TA and TMA abundances. However, slurry from animals fed HF 

presented abundances (Log N° copy/g FM) of TB (9.7 vs. 9.5), TA (9.2 vs. 8.8) and TMA (6.6 vs. 6.4) higher 

than those receiving LF diets. 

 

Interaction detected between main effects (CP × TDF) in slurry microbiota is shown in Fig. 2. The 

abundances of TB in the LP diets were not modified by level of TDF although in HP diets those animals fed 

HF showed higher abundances of TB. Moreover, TMA abundances in pigs fed LP-LF diet showed a 

significant reduction in TMA titers comparing with animals receiving LP-HF diets. Animals fed HP diets did 

not show changes in TMA abundance related to TDF supply. 

 

 

 

Gas emissions 

 

Environmental (directly produced by animal plus slurry pit g/an/day) emissions of NH3 and CH4 together with 

CH4 emission from slurry pit (expressed as g CH4/an/day and g CH4/m3 of slurry) during the three experimental 

phases at the experimental modules are presented independently in Tables 5 and 6, respectively. The 

interaction between dietary CP and NDF did not alter gas emission throughout the experimental period (P 

> 0.05), therefore results are described as independent effects. 

 

Total (environmental) NH3 volatilization increased with the age of the animals, reaching the maximum at 

21st week (8.5 g per animal and day; P < 0.01) of age. Dietary CP content had a significant impact on this 

parameter. Animals fed HP showed higher NH3 volatilization than those fed LP diets (P < 0.01) where the 

differences were mostly explained by the volatilization values recorded in phase 3 (Interaction CP level × 

Phase P < 0.02). No effect of TDF concentration on NH3 volatilization was observed. 

 

Methane emission increased with the age (P < 0.01), the last phase (108.7 kg LW; phase III) marked 

the highest methane emission values whereas no statistical differences in CH4 emission between the initial 

(38.6 kg LW; phase I) and the middle (72.8 kg LW; phase II) phases were observed. In addition, emission 



 
 

per unit of DMI also increased, mostly at the end of the fattening period (1.8, 1.6 and 2.8 g/kg DMI for 

Phase I, II and III respectively, SEM 0.875; P < 0.05). Neither CP nor TDF affected the emission of 

methane, although those pigs fed HF diets tended (P < 0.1) to increase CH4 emission in relation to those 

fed LF diets. 

 

In order to distinguish CH4 origin emission values corresponding to slurry stored in pits are presented in 

Table 6. 

 

Methane emission from the slurry pits were 2.5, 3.5 and 7.6 g/m3 slurry, for I, II and III feeding phase 

respectively (P < 0.01) and also the proportion of CH4 in total emissions increased with age (3.26%, 9.02% 

and 16.9%, for the phases I, II and III, respectively). No effect of dietary CP level was detected but TDF 

altered CH4 emission although the effect only reached statistical significance in the Phase III (Interaction 

TDF × phase; P < 0.01) 

 

 

Slurry composition 

 

Chemical composition of the slurry stored into the pits is presented in Table 7; samples were taken at the end 

of each experimental phase when the 15 days slurry storage period was ended. The interaction between 

dietary CP and TDF did not affect pH and OM, N (total or ammonia-N), P and K concentrations 

throughout the experimental period (P > 0.05); therefore, they are described as independent effects. In 

case of dry matter concentration, CP and TDF interacted and values of Table 7 are completed with Fig. 3. 

Data on dry matter production (kg/animal/day), conductivity and density were detailed in Morazán et al. 

(2015a). 

 

Mean values of pH registered in the slurry were closed to neutrality (7.3 SEM 0.11) and were not altered 

by growing phase nor dietary TDF content, however the slurry of those pigs fed LP diets were slightly acidic 

(P < 0.04) than those fed HP diets. The water content of the slurry was high (Average dry matter content 

was 7.6% SEM 1.43), and was independent of the phase of study although an interaction was observed 

between CP and TDF contents of the diets as the main effects. Among those animals fed HP diets those 

received HF diets showed the highest concentration of dry matter whereas the opposite was true in those 

pigs fed LP diets and the highest DM concentration was observed in those animals fed LF diets (Fig. 3). 

Total N concentration in the slurry averaged 78.2 g/kg DM (SEM 7.07), which mostly was as ammonia-N 

form (45.6 g/kg DM SEM 8.18). No significant effect of the experimental treatment was found in total N 

content or ammonia-N. The average (expressed as g/kg DM) of Phosphorous (42.6 SEM 2.95) and 

Potassium (59.7 SEM 10.01) contents of the slurries were not affected by the experimental treatments. 

 

 

 



 
 

Discussion 

 

Experimental  approach 

 

In the present approach CH4 emission and NH3 volatilization were analyzed simultaneously in an open-circuit 

system while trying to maintain the “standard” commercial housing conditions and minimizing the impacts of 

the experimental handling over the ani- mals. 

Total emissions included gases originating from the digestive tract and also those originated from the slurry 

storage; in this sense, authors are aware of a wide variation existing in both housing conditions (i.e. 

aeration level, slats/concrete ratio, water supply, etc) but mainly in the features in which manure is stored 

into the pits (i.e. DM composition, temperature, period, depth and aeration rate). 

 

In such scenario it is important to relate slurry gas emission to specific storage conditions, i.e: storage period 

was fifteen days and gas emission was measured in the last 48 h, no intervention into the manure 

ecosystem and a constant aeration rate of the experimental plot surface was assumed. 

 

Gas emission from the slurry is commonly estimated by “simulation” approaches (i.e. Jarret et al., 2012; 

Morazán et al., 2015b) due to the experimental difficulties to obtain consistent values of the real, “in situ” 

situation (Le et al., 2008). In the present approach, gas emission from slurry surface was obtained using 

PFC and data has been treated with caution due to the particular condition in which gas samples were 

harvested. 

 

 

 

Ammonia volatilization 

 

Ammonia volatilization falls within the limits proposed by Best Available Techniques (Commission 

Implementing Decision (EU) 2017/302 of 15 February 2017); however, due to a high variability in pig 

housing conditions, several authors have already reported lower (Osada et al., 1998; Philippe et al., 2007) 

and higher values (Fernández et al., 1999).Moreover, NH3-volatilization increased with dietary CP supply 

and growth phase (Table 5), even when volatilization was expressed by unit of metabolic body weight (127, 

209 and 262 mg NH3/kg BW0.75, for Phase I, II and III respectively, SEM 16.5; P < 0.05). 

 

For instance, an association between N excretion, mostly urine, and NH3 volatilization does exist and 

reductions in N excretion and NH3-volatilization per decrease in dietary CP supply have already been 

proposed (Canh et al., 1998; Zervas and Zijlstra, 2002; Le et al., 2008; Sajeev et al., 2018). Thus, NH3 

volatilization was proportionally reduced by 8.6% per each percentage unit (%) of CP reduction when 

comparing LP and HP diets in the last phase of the study. Similar responses in NH3-volatilization (from 3.2–



 
 

12.5%) have been reported in studies with an excess of dietary CP (Latimier and Dourmad, 1993; Kay 

and Lee, 1997; Canh et al., 1998). 

It is important to mention that lower NH3 volatilization might be a consequence of lower NH3 content in the 

slurry, considering fresh basis (see important differences in Table 3), presumably originated from a lower 

urine N excretion of low CP diets. Differences in slurry DM contents can also be an important factor which 

may be affecting the emissions. Besides, previously it was mentioned that the slurry of those pigs fed LP 

diets were slightly acidic than those fed HP diets and the slurry pH also affects NH3 emissions. 

Therefore, reducing CP might have a combined effect reducing NH3 emissions by reducing the amount of 

total ammonia nitrogen on the one hand and reducing pH on the other hand. 

 

Following the conventional rationing protocol, dietary CP was reduced (2.5, 2.2 and 5% for phase I, II and 

III, respectively). This practice has been demonstrated to be effective at substantially reducing N wastage 

(Rademacher, 2000; Sajeev et al., 2018); however, NH3-volatilization still increased with animal maturity, 

which suggests that CP could be further reduced in the employed rations if such reduction is combined 

with the adequate supply of essential amino acids (Dourmad et al., 1993). 

 

Increasing total dietary fiber improves microbial hindgut fermentation and allows the redirection of plasma N 

toward the hindgut and thus constitutes a strategy to reduce N wastage through urine excretion (Kreutzer 

and Machmüller, 1993; Canh et al., 1997). In our case, increasing TDF did neither reduce NH3 volatilization 

nor alter microbial fermentation conditions in the colon, (Tables 4 and 5); in fact, animals fed HF diets 

showed lower colonic concentrations of VFAs and NH3, and higher pH values than LF ones (Table 3), such 

discrepancy with the existing studies (Kreutzer and Machmüller, 1993; Canh et al., 1997) could be due to 

low inclusion level of SBP. 

 

 

 

Methane emissions 

 

Methane emission (g/animal per day) varied between 2.23 and 8.83 g per animal per day (between 

189.2 and 283.4 mg/kg BW0.75). Values fall within the range reported in the existing literature 

(Christensen, 1987; Osada et al., 1998; Jørgensen, 2007; Hansen et al., 2014), and lower than those 

reported by Atakora et al. (2011). Portables flux chambers allow measuring emission of CH4 from the 

surface of the slurry (Table 5) and therefore the values can be distinguished from the total emission ones 

(Table 6). Enteric origin constituted the main source for methane emission, although a relevant fraction 

(averaging 9.7%) did come from the slurry pit, this contribution reached 17.8% at the end of the fattening 

period. Since slurry was removed every 15 days, a lower proportion of CH4 emission from the slurry was 

expected, considering that IPCC (2006) proposes important differences in emission factors from stored 

slurry depending on the slurry storage time (less or more than 1 month). Methane emission from the slurry 



 
 

pits (between 0.07 and 15.2 g/ m3) placed within the range reported using both, “in situ” (from 0.3 to 30 g 

CH4/m3; Zhang et al., 2007) or ‘in vitro’ (from 3.4 g to 41.9 g CH4/m3  ; Amon et al., 2007; Moset, 2009; 

Moset et al., 2010) procedures. 

 

In agreement with previous results of Ji et al. (2011), the current data suggest that maturation of the 

fermentation compartment does occur probably through an increase in the symbiotic gastrointestinal 

population, among them methanogenic microorganisms (Haeussermann et al., 2006). In relation to dietary 

effects, CP supply did not alter CH4 emissions, in line with other studies (Le et al., 2009; Atakora et al., 

2011; Osada et al., 2011), however increases in TDF intake trended to increase CH4 emissions. However, 

we could not detect an equivalent improvement in microbial activity (by increasing VFA concentration and 

pH reduction) in the colon of those pigs that received HF diets and trended to emit more CH4 (Table 5). It 

is known that microbial activity depends on the indigestible material that reaches the hindgut compartment 

(Morales et al., 2002). In our experiment SBP as an extra fiber source, has a high fermentability and most of 

its structures may be fermented earlier, in the terminal ileum (up to 50%, Gidenne and Jehl, 1996). In this 

scenario, an increase in CH4 production would occur with little or no effect on colon fermentation. 

 

 

 

Hindgut fermentation and Methanogen Community 

 

Throughout the ceco-colonic tract, digesta showed relevant changes; pH and VFA concentration were 

reduced by fiber level, which may reflect either a reduction in microbial activity or a hypothetical increase in 

VFA absorption rather than production when fermentable substrate availability decreases. The former 

possibility seems to be unlikely because throughout the intestine, abundance of TB showed a low but 

significant increase (P < 0.05), assuming that TB in the pigs’ hindgut includes all the predominant digesting 

bacteria (Varel and Yen, 1997). 

 

Changes observed in fermentation conditions between the intestinal digesta and the slurry stored into 

the pits are shown in Table 3. Among other factors, significant alterations in bacterial fermentation end 

products (i.e. NH3, VFA) would reflect changes in microbial population in such compartments; indeed, the 

decrease in TB (between 1011-109 log gene copies/FM) probably can be explained by a reduction in 

substrate (e.g. TDF and CP) availability into the media. 

 

Bearing in mind that data available in methanogens diversity and concentration in hindgut of pigs are scarce 

(Luo et al., 2012; Cao et al., 2016), density of methanogens  (Log  N°  mcrA  gene  copies/  g  FM)  found  

in  caecal  (5.9 ± 0.19)  and  colonic  digesta (7.7 ± 0.14) falls within the range described in existing 

literature using the conventional culture methods (6–8; Sorlini et al., 1988; Butine and Leedle, 1989) and it 

is slightly lower than those values proposed by Luo et al. (2012) using the same PCR based approach (8.80 

or 8.23 Log N° mcrA gene copies/ g FM). 



 
 

 

In agreement with previous results (Butine and Leedle, 1989) methanogen concentration increased 

throughout the cecum-colon tract (5.9 vs. 7.7 log N° copy/ g FM, P < 0.01), reflecting an improvement in 

the archaea fermentation conditions. Gut fermentation is a complex synchrony where archaea occur in the 

latter positions in the metabolic-ecological niche and therefore their increment may occur in latter and 

more favorable sections of the intestine, such as colon (Seradj et al., 2015). 

 

Those pigs receiving high TDF tend to emit more CH4, but no relevant changes in methanogen 

concentrations were detected in respect; effectively, the relationship between abundance of methanogens 

and CH4 production in the hindgut ecosystem remains unclear and our results would confirm previous 

assays conducted by (Cao et al., 2013, 2016), where it was demonstrated that fiber availability improved 

the diversity of methanogens but not their abundance. NDF fraction in TDF stimulates microbial species 

within the complex cellulolytic-methanogens (Miller and Lin, 2002). The reductive activity (H2) released 

during the degradation process is used by methanogens to reduce carbon dioxide to methane (Zhou et 

al., 2010; Seradj et al., 2014). However, such relationship is masked by the promotions of SRB in hindgut 

(Lin et al., 1997) that compete with methanogens for the substrate (H2). 

 

The extra methane production from aceticlastic archaea may also bias the relationship between fiber 

availability and CH4 gen- eration. Presence of the aceticlastic methanogens has been previously evidenced 

(Smith and Ingram-Smith, 2007) and with the aim of clarifying the aceticlatic role within the hindgut 

ecosystem and using the specific 16S rRNA gene for Methanosaeta ssp., proposed originally by Rowe 

et al. (2008), we detected Methanosaeta ssp. in all the samples and its quantification, relative to total 

archaea was in general, high and varied from 5 to 50 (2−Δct; Livak and Schmittgen, 2001). Relative 

abundance was higher in colon than in cecum and relative concentration was neither altered, nor by the 

experimental treatment nor by acetate concentration (as unique substrate for Methanosaeta ssp) in 

hindgut compartments. The aceticlastic role in hindgut compartments has been recently evidenced but 

we decided to consider such values with caution due to the limited value of 16S rRNA gene identification 

when low number of copies is found (Fogel et al., 1999; Acinas et al., 2004; Fricke et al., 2006). 

 

Animals fed HP diets showed greater abundances of methanogens than those fed LP ones. The authors 

are not aware of data describing a positive relationship between dietary CP and methanogen abundance 

although theoretically, the effect of dietary CP on methanogen abundances should be exerted through 

ammonia concentration as essential nutrient for microbial survival and growth (Jha and Berrocoso, 2016). 

We hypothesize that the differences might be due to two reasons, i) the low NH3 concentration registered in 

the cecum [close to threshold level (50 mg/l; Satter and Slyter, 1974)] limits microbial and methanogen 

growth and, ii) the synchronic competition between methanogens and some NH3 degradative species as S. 

Ruminantium (Saengkerdsub and Ricke, 2014). This competitive mechanism has already been described in 

human GI tract between Mbb. Smithii and B. thetaiotamicron (Samuel et al., 2007); S. ruminantium also 



 
 

possesses NH3 fixation pathways (Ricke and Schaefer, 1996) and may also explain the (numerical: P 

> 0.05) lower concentration of methanogens and NH3 registered in the cecum compartment of animals 

fed HF diets, compared with those fed LF diets. In the colon the protein degradative activity or plasma 

recycling improves colonic NH3 concentration but the ceca-carry over effect would maintain differences in 

the latter compartment. 

 

 

Conclusions 

 

In the present approach, in an open-circuit system designed to maintain commercial-like conditions NH3-

volatilization increased with dietary CP supply and growth phase and proportionally reduced as a whole, a 

mean values of 8.6% per each percentage unit (%) of CP reduction. Enteric origin constituted the main 

source for CH4 emission, although a relevant fraction (averaging 9.7%) did come from the slurry pit. Pigs of 

HF diets trended to increase CH4 emission. Methanogen concentration increased throughout the cecum- 

colon tract reflecting an improvement in the archaea fermentation conditions, but no changes between 

middle colon digesta and slurry may due to the ability of the methanogen archaea communities to adapt 

to the new environmental imposed into the pits. Differences in CH4 emission did not reflect the TMA 

concentration whereas the aceticlastic populations were rather relevant in hindgut compartment and its 

role in CH4 emission has to be further developed. 

 

 

 

Declarations of interest 

 

None. 

 

Acknowledgments 

 

This work is part of the Feed-a-Gene project and was supported by the European Union's H2020 program 

under National Institutes of Health [grant number 633531, 2016]. Authors would like to thank Dr. David 

Parker who generously gave his assistance and constructive comments to the manuscript, his effort is 

sincerely appreciated. 

 

 

 

 

 

 



 
 

References 

 

Acinas, S.G., Marcelino, L.A., Klepac-Ceraj, V., Polz, M.F., 2004. Divergence and Redundancy of 

16S rRNA Sequences in Genomes with Multiple rrn Operons. J.  Bacteriol.  186,  2629–2635. 

 

AMCA, 2009. Field Performance Measurement of Fan Systems. AMCA Publication, Arlington 

Heights, pp. 203–290. 

 

Amon, B., Kryvoruchko, V., Fröhlich, M., Amon, T., Pöllinger, A., Mösenbacher, I., Hausleitner, A., 

2007. Ammonia and greenhouse gas emissions from a straw flow  system for fattening pigs: housing 

and manure storage. Livest. Sci. 112, 199–207. 

 

AOAC, 2000. Official Methods of Analysis, 17th ed. Assoc. Off. Anal. Chem., Arlington, VA. 

 

Atakora, J.K.A., Moehn, S., Ball, R.O., 2011. Enteric methane produced by finisher pigs is affected 

by dietary crude protein content of barley grain based, but not by  corn based, diets. Anim. Feed Sci. 

Tech. 166-167, 412–421. 

 

Belenguer, A., Fondevila, M., Balcells, J., Abecia, L., Lachica, M., Carro, M.D., 2011. 

Methanogenesis in rabbit caecum as affected by the fermentation pattern: in vitro and in vivo 

measurements. World Rabbit Sci. 19, 75–83. 

 

Bernalier, A., Lelait, M., Rochet, V., Grivet, J.P., Gibson, G.R., Durand, M., 1996. Acetogenesis from 

H2 and CO2 by methane- and non-methane-producing human  colonic bacterial communities. FEMS 

Microbiol. Ecol. 19, 193–202. 

 

Butine, T.J., Leedle, J.A.Z., 1989. Enumeration of selected anaerobic bacterial groups in cecal and 

colonic contents of growing-finishing pigs. Appl. Environ. Microbiol. 55, 1112–1116. 

 

Canh, T.T., Verstegen, M.W.A., Aarnink, A.J.A., Schrama, J.W., 1997. Influence of dietary factors 

on nitrogen partitioning and composition of urine and feces of  fattening pigs. J. Anim. Sci. 75, 

700–706. 

 

Canh, T.T., Aarnink, A.J.A., Schutte, J.B., Sutton, A., Langhout, D.J., Verstegen, M.W.A., 1998. 

Dietary protein affects nitrogen excretion and ammonia emission from  slurry of growing–finishing 

pigs. Livest. Prod. Sci. 56, 181–191. 

 

Cao, Z., Di Liao, X., Liang, J.B., Wu, Y.B., Yu, B., 2012. Diversity of methanogens in the hindgut 

http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0005
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0005
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0005
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0010
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0010
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0015
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0015
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0015
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0015
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0020
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0025
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0025
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0025
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0025
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0030
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0030
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0030
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0030
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0035
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0035
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0035
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0035
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0040
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0040
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0040
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0040
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0045
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0045
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0045
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0045
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0050
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0050
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0050
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0050
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0055


 
 

of grower and finisher pigs. Afr. J. Biotechnol. 11, 4949–4955.  

 

Cao, Z., Gong, Y.L., Liao, X.D., Liang, J.B., Yu, B., Wu, Y.B., 2013. Effect of dietary fiber on 

methane production in Chinese Lantang gilts. Livest. Sci. 157, 191–199.  

 

Cao, Z., Liang, J.B., Liao, X.D., Wright, A.D.G., Wu, Y.B., Yu, B., 2016. Effect of dietary fiber on the 

methanogen community in the hindgut of Lantang gilts. Animal 1–11. 

 

Chaney, A.L., Marbach, E.P., 1962. Modified reagents for determination of urea and ammonia. 

Clin. Chem. 8, 130–132.  Christensen, K., 1987. Methane excretion in the growing pig. Br. J. Nutr. 

57, 355–361. 

 

Denman, S.E., Tomkins, N.W., McSweeney, C.S., 2007. Quantitation and diversity analysis of ruminal 

methanogenic populations in response to the antimethanogenic  compound bromochloromethane. 

FEMS Microbiol. Ecol. 62, 313–322. 

 

Dourmad, J.Y., Henry, Y., Bourdon, D., Quiniou, N., Guillou, D., 1993. Effect of growth potential and 

dietary protein input on growth performance, carcass char- acteristics and nitrogen output in growing-

finishing pigs. In: Verstegen, M.W.A., den Hartog, L.A., van Kempen, G.J.M., Metz, J.H.M. (Eds.), 

Nitrogen Flow in Pig Production and Environmental Consequences, Wageningen (Doorwerth), The 

Netherlands, pp. 206–211. 

 

Einen, J., Thorseth, I.H., Øvreås, L., 2008. Enumeration of Archaea and Bacteria in seafloor basalt 

using real-time quantitative PCR and fluorescence microscopy. FEMS  Microbiol.  Lett.  282,  182–

187. 

 

FEDNA, 2006. Normas FEDNA para la formulación de piensos compuestos. In: de Blas, C., Mateos, 

G.G., Rebollar, P.G. (Eds.), Fundación Española para el Desarrollo de la Nutrición Animal,  Madrid, 

Spain. 

 

Fernández, J.A., Poulsen, H.D., Boisen, S., Rom, H.B., 1999. Nitrogen and phosphorus consumption, 

utilisation and losses in pig production: Denmark. Livest. Prod. Sci. 58, 225–242. 

 

Fogel, G.B., Collins, C.R., Li, J., Brunk, C.F., 1999. Prokaryotic genome size and SSU rDNA copy 

number: estimation of microbial relative abundance from a mixed  population. Microb. Ecol. 38, 93–

113. 

 

 

http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0055
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0060
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0060
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0065
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0065
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0065
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0070
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0070
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0075
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0075
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0080
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0080
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0080
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0080
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0085
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0085
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0085
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0085
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0085
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0085
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0085
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0090
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0090
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0090
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0090
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0095
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0095
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0095
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0095
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0100
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0100
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0100
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0105
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0105
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0105
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0105


 
 

Fricke, W.F., Seedorf, H., Henne, A., Krüer, M., Liesegang, H., Hedderich, R., Gottschalk, G., 

Thauer, R.K., 2006. The genome sequence of Methanosphaera stadtmanae  reveals why this 

human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP 

synthesis. J. Bacteriol. 188, 642–658. 

 

Gidenne, T., Jehl, N., 1996. Replacement of starch by digestible fibre in the feed for the growing 

rabbit. 1. Consequences for digestibility and rate of passage. Anim. Feed Sci. Tech. 61, 183–192. 

 

Haeussermann, A., Hartung, E., Gallmann, E., Jungbluth, T., 2006. Influence of season, ventilation 

strategy, and slurry removal on methane emissions from pig houses. Agric. Ecosyst. Environ. 112, 

115–121. 

 

Hansen, M.J., Nørgaard, J.V., Adamsen, A.P.S., Poulsen, H.D., 2014. Effect of reduced crude protein 

on ammonia, methane, and chemical odorants emitted from pig  houses.  Livest.  Sci. 169,  118–124. 

 

Hartung, J., Phillips, V.R., 1994. Control of gaseous emissions from livestock buildings and 

manure stores. J. Agric. Eng. Res. 57, 173–189.  IPCC, 2006. Guidelines for National Greenhouse 

Gas Inventories, Reference Manual, 3. 

 

Jarret, G., Cerisuelo, A., Peu, P., Martinez, J., Dourmad, J.Y., 2012. Impact of pig diets with different 

fibre contents on the composition of excreta and their gaseous  emissions and anaerobic digestion. 

Agric. Ecosyst. Environ. 160, 51–58. 

 

Jha, R., Berrocoso, J.F.D., 2016. Dietary fiber and protein fermentation in the intestine of swine and 

their interactive effects on gut health and on the environment: a  review. Anim. Feed Sci. Tech. 212, 

18–26. 

 

Ji, Z.Y., Cao, Z., Liao, X.D., Wu, Y.B., Liang, J.B., Yu, B., 2011. Methane production of growing and 

finishing pigs in southern China. Anim. Feed Sci. Tech. 166-167, 430–435. 

 

Jørgensen, H., 2007. Methane emission by growing pigs and adult sows as influenced by 

fermentation. Livest. Sci. 109216–109219. 

 

 

Johnson, K.A., Kincaid, R.L., Westberg, H.H., Gaskins, C.T., Lamb, B.K., Cronrath, J.D., 2002. The 

effect of oilseeds in diets of lactating cows on milk production and  methane emissions. J. Dairy 

Sci. 85, 1509–1515. 

 

http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0110
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0110
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0110
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0110
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0110
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0115
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0115
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0115
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0115
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0120
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0120
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0120
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0120
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0125
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0125
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0125
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0130
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0130
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0135
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0135
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0140
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0140
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0140
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0140
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0145
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0145
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0145
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0145
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0150
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0150
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0150
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0155
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0155
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0160
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0160
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0160
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0160


 
 

Jouany, J.P., 1982. Volatile fatty acid and alcohol determination in digestive contents, silage juices, 

bacterial cultures and anaerobic fermentor contents. Sci. Aliments  2,   131–144. 

 

Kay, R.M., Lee, P.A., 1997. Ammonia emission from pig buildings and characteristics of slurry 

produced by pigs offered low crude protein diets. Proceedings of Symposium on Ammonia and 

Odour Control from Animal Production Facilities. pp. 253–259. 

 

Kreutzer, M., Machmüller, A., 1993. Reduction of gaseous nitrogen emission from pig manure by 

increasing the level of bacterially fermentable substrates in the ration. In: Verstegen, M.W.A., den 

Hartog, L.A., van Kempen, G.J.M., Metz, J.H.M. (Eds.), Nitrogen Flow in Pig Production and 

Environmental Consequences, pp.  151–156 Wageningen (Doorwerth), The Netherlands. 

 

Latimier, P., Dourmad, J., 1993. Effect of three protein feeding strategies for growing-finishing pigs 

on growth performance and nitrogen output in the slurry and in the air. In: Verstegen, M.W.A., den 

Hartog, L.A., van Kempen, G.J.M., Metz, J.H.M. (Eds.), Nitrogen Flow in Pig Production and 

Environmental Consequences, pp.  242–246 Wageningen (Doorwerth), The Netherlands. 

 

Le, P.D., Aarnink, A.J.A., Jongbloed, A.W., van der Peet-Schwering, C.M.C., Ogink, N.W.M., 

Verstegen, M.W.A., 2008. Interactive effects of dietary crude protein and  fermentable carbohydrate 

levels on odour from pig manure. Livest. Sci. 114, 48–61. 

 

Le, P.D., Aarnink, A.J.A., Jongbloed, A.W., 2009. Odour and ammonia emission from pig manure as 

affected by dietary crude protein level. Livest. Sci. 121, 267–274.  

 

Lin, C., Raskin, L., Stahl, D.A., 1997. Microbial community structure in gastrointestinal tracts of 

domestic animals: comparative analyses using rRNA-targeted oli-gonucleotide probes. FEMS 

Microbiol. Ecol. 22, 281–294. 

 

Liu, C., Zhu, Z.P., Liu, Y.F., Guo, T.J., Dong, H.M., 2012. Diversity and abundance of the rumen and 

fecal methanogens in Altay sheep native to Xinjiang and the influence of diversity on methane 

emissions. Arch. Microbiol. 194, 353–361. 

 

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time 

quantitative PCR and the 2 -ΔΔCT method. Methods 25, 402–408. 

 

Luo, Y.H., Su, Y., Wright, A.D.G., Zhang, L.L., Smidt, H., Zhu, W.Y., 2012. Lean breed landrace pigs 

harbor fecal Methanogens at higher diversity and density than obese breed Erhualian pigs. Archaea 

2012. 

http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0165
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0165
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0165
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0170
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0170
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0170
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0170
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0175
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0175
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0175
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0175
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0175
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0175
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0180
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0180
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0180
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0180
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0180
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0180
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0185
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0185
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0185
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0185
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0190
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0190
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0195
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0195
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0195
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0195
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0200
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0200
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0200
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0200
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0205
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0205
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0210
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0210
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0210
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0210


 
 

 

Maeda, H., Fujimoto, C., Haruki, Y., Maeda, T., Kokeguchi, S., Petelin, M., Arai, H., Tanimoto, I., 

Nishimura, F., Takashiba, S., 2003. Quantitative real-time PCR using TaqMan and SYBR Green for 

Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene 

and total bacteria. FEMS Immunol. Med. Microbiol. 39, 81–86. 

 

Maris, S.C., Teira-Esmatges, M.R., Bosch-Serra, A.D., Moreno-Garcï¿½a, B., Catalï¿½, M.M., 2016. 

Effect of fertilising with pig slurry and chicken manure on GHG emissions from Mediterranean 

paddies. Sci. Total Environ. 569-570, 306–320. 

 

Miller, T.L., Lin, C., 2002. Description of Methanobrevibacter gottschalkii sp. nov., 

Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. Nov. And  

Methanobrevibacter wolinii sp. nov. Int. J. Syst. Evol. Microbiol. 52, 819–822. 

 

Morales, J., Pérez, J.F., Baucells, M.D., Mourot, J., Gasa, J., 2002. Comparative digestibility and 

lipogenic activity in Landrace and Iberian finishing pigs fed ad libitum corn- and corn-sorghum-acorn-

based diets. Livest. Prod. Sci. 77, 195–205. 

 

Morazán, H., Alvarez-Rodriguez, J., Seradj, A.R., Balcells, J., Babot, D., 2015a. Trade-offs among 

growth performance, nutrient digestion and carcass traits when feeding low protein and/or high 

neutral-detergent fiber diets to growing-finishing pigs. Anim. Feed Sci. Tech. 207, 168–180. 

 

Morazán, H., Seradj, A.R., Alvarez-Rodriguez, J., Abecia, L., Babot, D., Yañez-Ruiz, D.R., Balcells, 

J., 2015b. Effect of slurry dilution, structural carbohydrates, and  exogenous archaea supply on in 

vitro anaerobe fermentation and methanogens population of swine slurry. Environ. Prog. Sustain. 

Energy 34, 54–64. 

 

Moset, V., 2009. Estudio de la caracterización y estabilización anaerobia de purín con y sin 

separación previa de sólido. Universidad Politécnica de Valencia. 

 

Moset, V., Torres, L., Torres, A.G., Cerisuelo, A., 2010. Increasing energy and lysine in diets for 

growing-finishing pigs in hot environments: a preliminary study of the consequences on productive 

performance, slurry composition and gas emission. ASABE - International Symposium on Air Quality 

and Waste Management for  Agriculture  2010.  pp.  741–748. 

 

NRC, 2012. Nutrient Requirements of Swine. National Academic Press, Washington, DC. 

 

 

http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0215
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0215
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0215
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0215
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0215
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0215
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0220
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0220
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0220
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0220
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0225
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0225
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0225
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0230
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0230
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0230
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0230
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0235
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0235
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0235
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0235
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0240
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0240
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0240
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0240
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0240
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0240
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0245
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0245
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0250
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0250
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0250
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0250
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0250
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0250
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0255


 
 

Osada, T., Rom, H.B., Dahl, P., 1998. Continuous measurement of nitrous oxide and methane 

emission in pig units by infrared photoacoustic detection. Trans. ASAE 41,    1109–1114. 

 

Osada, T., Takada, R., Shinzato, I., 2011. Potential reduction of greenhouse gas emission from swine 

manure by using a low-protein diet supplemented with synthetic amino acids. Anim. Feed Sci. Tech. 

166–167, 562–574. 

 

Philippe, F.X., Laitat, M., Canart, B., Vandenheede, M., Nicks, B., 2007. Comparison of ammonia and 

greenhouse gas emissions during the fattening of pigs, kept either on fully slatted floor or on deep 

litter. Livest. Sci. 111, 144–152. 

 

Rademacher, M., 2000. How can diets be modified to minimize the impact of pig production on the 

environment? Amino News 1, 3–10. 

 

Ricke, S.C., Schaefer, D.M., 1996. Growth and fermentation responses of Selenomonas ruminantium 

to limiting and non-limiting concentrations of ammonium  chloride. Appl. Microbiol. Biotechnol. 46, 

169–175. 

 

Rowe, A.R., Lazar, B.J., Morris, R.M., Richardson, R.E., 2008. Characterization of the community 

structure of a dechlorinating mixed culture and comparisons of gene  expression in planktonic and 

biofloc-associated "Dehalococcoides" and Methanospirillum species. Appl. Environ. Microbiol. 74, 

6709–6719. 

 

Ryden, J.C., Whitehead, D.C., Lockyer, D.R., Thompson, R.B., Skinner, J.H., Garwood, E.A., 1987. 

Ammonia emission from grassland and livestock production systems  in the UK. Environ. Pollut. 48, 

173–184. 

 

Saengkerdsub, S., Ricke, S.C., 2014. Ecology and characteristics of methanogenic archaea in 

animals and humans. Crit. Rev. Microbiol. 40, 97–116. 

 

Sajeev, E.P.M., Amon, B., Ammon, C., Zollitsch, W., Winiwarter, W., 2018. Evaluating the potential 

of dietary crude protein manipulation in reducing ammonia  emissions from cattle and pig manure: a 

meta-analysis. Nutr. Cycl. Agroecosys. 110, 161–175. 

 

Samuel, B.S., Hansen, E.E., Manchester, J.K., Coutinho, P.M., Henrissat, B., Fulton, R., Latreille, P., 

Kim, K., Wilson, R.K., Gordon, J.I., 2007. Genomic and metabolic  adaptations of Methanobrevibacter 

smithii to the human gut. Proc. Natl. Acad. Sci. U. S. A. 104, 10643–10648. 

 

http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0260
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0260
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0260
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0265
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0265
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0265
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0265
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0270
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0270
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0270
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0270
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0275
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0275
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0280
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0280
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0280
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0280
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0285
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0285
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0285
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0285
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0285
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0290
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0290
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0290
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0290
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0295
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0295
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0300
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0300
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0300
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0300
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0305
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0305
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0305
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0305


 
 

Satter, L.D., Slyter, L.L., 1974. Effect of ammonia concentration on rumen microbial protein 

production in vitro. Br. J. Nutr. 32, 199–208. 

 

Seradj, A.R., Abecia, L., Crespo, J., Villalba, D., Fondevila, M., Balcells, J., 2014. The effect of 

Bioflavex® and its pure flavonoid components on in vitro fermentation  parameters and methane 

production in rumen fluid from steers given high concentrate diets. Anim. Feed Sci. Tech. 197, 85–

91. 

 

Seradj, A.R., Morazán, H.J., De la Fuente, G., Babot, D., Alvarez-Rodriguez, J., Balcells, J., 2015. 

Evolution of archaeal population in the intestine of growing-finishing  pigs: effect of protein and fiber 

level in the ration., XVI Jornadas sobre produccion animal. Zaragoza 146–148. 

 

Smith, K.S., Ingram-Smith, C., 2007. Methanosaeta, the forgotten methanogen? Trends Microbiol. 

15, 150–155. 

 

Sorlini, C., Brusa, T., Ranalli, G., Ferrari, A., 1988. Quantitative determination of methanogenic 

bacteria in the feces of different mammals. Curr. Microbiol. 17, 33–36.   

 

Steinberg, L.M., Regan, J.M., 2009. mcrA-targeted real-time quantitative PCR method to examine 

methanogen communities. Appl. Environ. Microbiol. 75, 4435–4442.  

 

Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent 

fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597. 

 

Varel, V.H., Yen, J.T., 1997. Microbial perspective on Fiber utilization by swine. J. Anim. Sci. 75, 

2715–2722. 

 

Zervas, S., Zijlstra, R.T., 2002. Effects of dietary protein and fermentable fiber on nitrogen 

excretion patterns and plasma urea in grower pigs. J. Anim. Sci. 80,  3247–3256. 

 

Zhang, Q., Zhou, X.J., Cicek, N., Tenuta, M., 2007. Measurement of odour and greenhouse gas 

emissions in two swine farrowing operations. Can. Biosyst. Eng. 49,  613–620. 

 

Zhou, M., Hernandez-Sanabria, E., Luo Guan, L., 2010. Characterization of variation in rumen 

methanogenic communities under different dietary and host feed efficiency conditions, as 

determined by PCR-denaturing gradient gel electrophoresis analysis. Appl. Environ. Microbiol. 76, 

3776–3786. 

 

 

http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0310
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0310
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0315
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0315
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0315
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0315
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0315
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0315
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0320
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0320
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0320
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0320
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0325
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0325
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0330
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0330
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0335
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0335
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0340
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0340
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0340
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0345
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0345
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0350
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0350
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0350
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0350
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0350
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0355
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0355
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0355
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0360
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0360
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0360
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0360
http://refhub.elsevier.com/S0377-8401(18)30081-6/sbref0360


 
 

 

 

Table 1 

Main ingredients (g/kg) of the three-phase experimental diets, differing in CP content (high, HP vs. low, LP) and/or TDF content (Low, LF vs. high, HF) 

from 6 to 21 weeks of age. 
 

Item Feeding phase 

 

 

I (6–11 weeks of age) II (12–16 weeks of age) III (17–21 weeks of age) 

 

 HP   LP   HP   LP   HP   LP 

Ingredients HF LF  HF LF  HF LF  HF LF  HF LF  HF LF 

Barley 193 267  253 203  297 276  301 268  217 274  398 253 

Soybean meal, 47% CP 266 265  199 217  186 246  102 156  114 226  16 90 

Sorghum 52 260  59 151  – 205  – 227  – 200  – 101 

Wheat 379 152  382 375  296 205  298 288  201 199  201 396 

Rapeseed meal 00 – –  – –  70 –  78 –  100 –  81 – 

Maize – –  – –  16 –  95 –  173 60  152 101 

Sunflower meal – –  – –  – –  – –  80 –  36 – 

Sugar beet pulp 53 –  50 –  53 –  50 –  50 –  50 – 

Soybean oil 3.1 –  3.2 –  8.6 –  6.9 –  9.9 –  8.7 – 

Animal-vegetable fat 3/5 30 31  31 31  40 31  40 30  40 23  40 31 

Vitamin-mineral premix and additives
1

 4.1 4.1  4.1 4.1  4.4 4.4  4.4 4.4  4.5 4.5  4.5 4.5 

Calcium carbonate 2.8 8.9  2 –  2.5 5.9  0.8 0.8  4.3 7  4.2 13.5 

Monocalcium phosphate 9 5.5  8.1 9.1  6.1 6.3  7.1 7.5  3.4 4.2  5.5 6.3 

Sepiolite – –  – –  4.1 8.4  3.3 4.2  – –  – – 

Sodium chloride 1.8 2.1  2.1 2.1  2 1.9  1.9 2.1  1.9 2.2  1.9 2.2 

l-Lysine, CP 50% 2.51 3.57  1.63 3.66  – –  0.9 1.4  – –  1.4 1.53 

dl-Methionine, 88% 1.6 0.5  1.73 –  – –  – –  – –  – – 

l-Threonine 1.1 0.3  1.22 3.96  5.29 –  – –  – –  – – 

l-Tryptophan 1.08 –  1.21 –  – –  0.82 –  0.5 –  – – 

Chemical Composition (g/kg as fed basis)                  
DM

2
 891   887   883   883   890   887  

CP
1

 197.5   172   173   151.5   175   125.5  
aNDFom

1
 141 120  154 123  174 130  162 126  175 123  167 135 

ADFom
2

 41 36  43 35  51 44  52 32  66 35  56 31 

CF
2

 26 27  29 21  39 27  39 23  55 28  47 26 

TDF
2

 195 162  182 165  196 178  223 169  228 167  225 138 

Fermentable fiber 155 126  138 130  145 134  172 137  161 132  169 108 

Starch 383 380  399 380  374 384  380 444  361 417  426 472 

AEE
1

 50 49  48 48  60 49  64 45  67 42  60 46 

Ash 56 66  51 48  44 67  48 46  48 47  46 63 

1  The vitamin and mineral premix compositions for pigs in the three phases were already described by Morazán et al. (2015a). 

2 DM, dry matter; CP, crude protein, aNDFom, neutral detergent fiber expressed exclusive of residual ash; ADFom, acid detergent fiber expressed 

exclusive of residual ash; CF, crude fiber; AEE = acid hydrolyzed ether extract; TDF = total dietary fiber. 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Fig. 1. Flux chamber (made of PVC) used to collect the air sample from the slurry pits, located under the concrete slatted floor. 

 

 

 

 

 

 

 

 

Table 2 

Specific primer sets for qPCR used in the experiment. 
 

Target Sequences References 

Total bacteria F 5´-GTGSTGCAYGGYTGTCGTCA-3´ (Maeda et al., 2003) 

 R   5´-ACGTCRTCCMCACCTTCCCC-3´  
Total Archaeae F 5´- AGGAATTGGCGGGGGAGCA-3´ (Einen et al., 2008) 

 R 5´- BGGGTCTCGCTCGTTRCC-3´  
Total Methanogens F 5´-TTCGGTGGATCDCARAGRGC -3´ (Denman et al., 2007) 

 R    5´-GBARGTCGWAWCCGTAGAATCC-3´  
Methanosaeta F5´-GGGGTAGGGGTGAAATCTTGTAATCCT-3´ (Rowe et al., 2008) 

 R5´-CG-GCGTTGAATCCAATTAAACC   GCA-3´  

 

 

 

 

 

 

 

 



 
 

 

Table 3 

The effect of crude dietary protein and total dietary fiber content as well as sample collection site (cecum, colon and slurry) and their interactions on pH 

value, ammonia concentration (mg/L), the absolute quantity (mM) of total volatile fatty acids and the proportion (in percentage) of each VFA. 
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1Standard error of the mean for comparisons between CP or TDF content within cecum and colon, 2between segments and 3between CP or TDF 

content within slurry. Different upper case superscripts (j, k) within columns denote differences between segments (P < 0.05). Different upper case 

superscripts (a, b) within rows denote differences among high/low CP and different upper case superscripts (e, f) within rows denote differences 

among high/low TDF content (P < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

Segment CP   TDF  mean SEM P values  

 HP LP  HF LF   Seg CP TDF Seg × CP Seg × TDF  

Cecum 5.9 6.1  5.8k
 6.1 6.0k

 0.081
 < 0.01 0.54 0.84 0.08 < 0.01  

     Colon 6.3 6.2 
         Slurry 7.5a

 7.0b
 7.2 7.2  0.123

  0.04 0.94   
NH3 mg/L Cecum 75.3k

 64.1k
 55.5k

 84.0k
 69.7k

 11.85 < 0.01 0.10 0.75 0.01 0.05 

  Colon 130.5b,j
 182.1a,j

 166.7j
 145.9j

 156.3j
 8.38      

 g/L Slurry 6.2a
 2.9b

 5.1 4.1  0.39  < 0.01 ns   
Total VFA mM Cecum 169.6 180.8 175.6

j
 174.8 175.2

j
 13.92 0.02 0.57 0.04 0.82 0.04 

  Colon 138.8 143.5 110.7f,k
 171.6e

 141.1k
 9.85      

  Slurry 219.3 162.7 176.7 205.3  33.70  ns ns   
Acetate mol/100 mol TVFA Cecum 60.9 64.2 64.1 61.0 62.6j

 1.33 < 0.01 0.25 0.04 0.19 0.85 

  Colon 57.2 57.2 59.0 55.5 57.2k
 0.95      

  Slurry 66.7 64.4 65.8 65.4  1.02  ns ns   
Propionate  Cecum 24.3 23.8 24.5 23.5 24.0 0.87 0.20 0.41 0.66 0.76 0.12 

  Colon 23.4 22.4 22.0 23.8 22.9 0.62      
  Slurry 14.2 17.8 17.9 17.1  0.26  t t   

Butyrate  Cecum 10.8 8.9k
 7.8 11.9 9.9k

 0.73 < 0.01 0.73 < 0.01 < 0.01 0.09 

  Colon 11.5 14.0j
 11.8 13.7 12.7j

 0.54      
  Slurry 11.6 10.3 11.4 10.5  2.56  ns ns   

Valorate  Cecum 1.7 1.1 1.2 1.6 1.4 0.30 0.06 0.07 0.59 0.82 0.60 

  Colon 2.2 1.7 1.9 2.0 2.0 0.21      
  Slurry 1.4 1.7 1.6 1.5  0.18  ns ns   

BCFA  Cecum 2.2 1.9 2.3 1.9 2.1k
 0.68 < 0.01 0.37 0.68 0.63 0.93 

  Colon 5.6 4.7 5.3 5.0 5.2j
 0.48      

  Slurry 6.1 5.7 6.3 5.5  0.55  ns ns   

 



 
 

 

Table 4 

The impacts of crude protein and total dietary fiber content as sole and their interactions with the sample collection site (cecum, colon and slurry) on 

absolute counts of total bacteria and, total archaeas and total methanogen archaeas (TMA). 
 

Seg CP  TDF   SEM P values  

 HP LP HF LF mean  Seg CP TDF CP × TDF Seg × CP Seg × TDF  

Absolue quantification, Log N° copy/ g FM  
Total Bacteria Cecum 11.6 11.5 11.6 11.6 11.6

k
 0.11

1
 0.01 0.03 0.31 0.06 0.14 0.16  

 Colon 12.1 11.7 12.1 11.8 11.9
j
 0.08

2
        

 mean 11.9
a

 11.6
b

 11.8 11.7  0.08
3

        
 Slurry 9.7

a
 9.5

b
 9.7

e
 9.5

f
  0.03

4
  0.02 0.01 0.04    

Total Archaea Cecum 9.3
k

 9.8 9.5 9.5 9.5
k

 0.15 0.03 0.43 0.32 0.42 < 0.01 0.13  
 Colon 9.9

j
 9.7 10 9.6 9.8

j
 0.11        

 mean 9.6 9.7 9.7 9.6  0.12        
 Slurry 9.1 9 9.2

e
 8.8

f
  0.04  0.27 < 0.01 0.16    

TMA Cecum 6.2 5.6 5.7 6 5.9
k

 0.19 < 0.01 < 0.01 0.17 0.13 0.33 0.96  
 Colon 8.2 7.2 7.6 7.9 7.7

j
 0.14        

 mean 7.2
a

 6.4
b

 6.7 7  0.15        
 Slurry 6.8

a
 6.3

b
 6.6

e
 6.4

f
  0.03  < 0.01 0.01 0.01    

Different upper case superscripts (j, k) within columns denote differences between segments (P < 0.05). Different upper case superscripts (a, b) within 

rows denote differences among high/low CP and different upper case superscripts (e, f) within rows denote differences among high/low TDF content (P  

< 0.05). 

1Standard error of the mean for comparisons between CP or TDF content within cecum and colon, 2between segments, 3between CP or TDF content 

and 4between CP or TDF content within slurry. 



 

 

 

 

 
 

Fig. 2. The interactions between CP level (high or low) and TDF content (high or low) of the experimental diets on absolute abundance 

(N° copy/ g FM) of Total Bacteria and Total Methanogenic Archaea in the slurry. 

 

 

 

 

 

 

Table 5 

Values of methane and ammonia emitted at modules (environment). 
 

Gas Unit Phase CP   TDF mean SEM P values  

   HP LP  HF LF  Ph CP TDF Ph × CP Ph × TDF  

Environment Methane g/ animal/ day I 2.7 2.2  2.7 2.3 2.5
k

 0.85
1

 < 0.01 0.23 0.14 0.42 0.82  
  II 3.5 3.5  4.2 2.8 3.5

k
 0.59

2
       

  III 8.5 6.5  8.3 6.8 7.6
j
 0.48

3
       

  mean 4.9 4.1  5.0 4.0        
Ammonia  I 2.3 1.2  2.1 1.4 1.8

l
 0.54 < 0.01 < 0.01 0.28 0.02 0.91  

  II 5.7 4.0  5.0 4.7 4.8
k

 0.38       
  III 10.8

a
 6.2

b
  8.7 8.3 8.5

j
 0.31       

  mean 6.3
a

 3.8
b

  5.3 4.8        
1,2,3Standard error of the mean for comparisons between CP or TDF content within phases, between phases and between CP or 

TDF content, respectively. 

Different upper case superscripts (j,k,l) within columns denote differences between phases (P < 0.05). Different upper case 

superscripts (a, b) within 

rows denote differences among high/low CP and different upper case superscripts (e, f) within rows denote differences among high/low TDF 

content (P  < 0.05). 

 

 

 

 

 

 

 

 



 

 

 

Table 6 

Values of methane expressed as g/an/day or g/m3  of slurry per day as the main greenhouse gases emitted at slurry pits. 
 

Gas Unit Phase CP   TDF  mean SEM P values  

  HP LP  HF LF   Ph CP TDF Ph × CP Ph × TDF  

Slurry pit     Methane     g/ m
3 

slurry I 1.86
k

 0.33.1
k

  1.10
l
 1.09

l
 1.09

l
 0.876

1
 < 0.01 0.35 0.2 0.49 0.01  

 II 4.03
k

 3.04
k

  4.66
k

 2.42
l
 3.54

k
 0.621

2
       

 III 11.99
j
 12.51

j
  9.72

f,j
 14.78

e,k
 12.25

j
 0.507

3
       

 mean 5.97 5.29  5.16 6.10         
g/ animal/ day I 0.14 0.02  0.04 

k
 0.13 

k
 0.08 

l
 0.087 < 0.01 0.94 0.02 0.47 0.01  

 II 0.28 0.35  0.37 
k

 0.26 
k

 0.32 
k

 0.062       
 III 1.25 1.32  1.03 

f, j
 1.54 

e, j
 1.28 

j
 0.050       

 mean 0.56 0.56  0.48 
f
 0.64 

e
         

1,2,3Standard error of the mean for comparisons between CP or TDF content within phases, between phases and between CP or 

TDF content, respectively. 

Different upper case superscripts (j,k,l) within columns denote differences between phases (P < 0.05). Different upper case 

superscripts (e, f) within 

rows denote differences among high/low TDF content (P < 0.05). 

 

 

 

 

 

 

 

 

Table 7 

Chemical composition of slurry (g/kg DM) stored into the pits at the end of each collection period. 
 

 Phase CP   TDF  mean SEM P values  

 HP LP  HF LF   Ph CP TDF CP × TDF Ph × CP Ph × TDF  

pH I 7.5 7.2  7.4 7.2 7.3 0.161 0.73 0.04 0.16 0.34 0.53 0.59  
 II 7.3 7.2  7.4 7.1 7.2 0.112        
 III 7.5 7.0  7.2 7.2 7.2 0.093        
 mean 7.4a 7.1b  7.4 7.2          
DM, g/ kg FM I 85.0 62.4  85.3 62.2 73.7 20.3 0.61 0.12 0.13 < 0.01 0.91 0.98  
 II 79.6 54.5  81.5 52.6 67.0 14.35        
 III 106.0 68.5  102.7 71.8 87.3 11.89        
 mean 90.2 61.8  89.8 62.2          
OM I 778.3 788.3  793.9 772.7 783.3 21.87 0.81 0.65 0.09 0.32 0.84 0.4  
 II 786.8 808.1  803.5 791.3 797.4 15.46        
 III 795.5 789.8  826.3 759.1 792.7 12.81        
 mean 786.9 795.4  807.9 774.4          
Total N I 88.6 86.3  89.3 85.6 87.5 10.00 0.17 0.66 0.95 0.12 0.49 0.4  
 II 73.9 81.9  83.2 72.6 77.9 7.07        
 III 77.9 60.8  61.3 77.4 69.4 5.86        
 mean 80.1 76.4  77.9 78.5          
N-NH3 I 52.4 52.1  52.0 52.5 52.3 11.56 0.56 0.95 0.81 0.08 0.88 0.6  
 II 40.6 45.9  47.7 38.9 43.3 8.18        
 III 44.8 38.0  33.7 49.0 41.4 6.77        
 mean 45.9 45.4  44.5 46.8          
Phosphorous I 41.2 42.0  46.0 37.2 41.6 4.17 0.85 0.62 0.7 0.45 0.58 0.3  
 II 39.0 46.0  40.3 44.7 42.5 2.95        
 III 45.0 42.4  43.5 43.9 43.7 2.44        
 mean 41.7 43.5  43.3 41.9          
Potassium I 73.3 68.0  72.5 68.9 70.7 14.16 0.34 0.92 0.92 0.15 0.75 0.32  
 II 50.3 63.0  68.3 45.0 56.7 10.01        
 III 57.3 46.5  40.4 63.4 51.9 8.29        
 mean 60.3 59.2  60.4 59.1          

Different upper case superscripts (a, b) within rows denote differences among high/low CP (P < 0.05). 

1,2,3Standard error of the mean for comparisons between CP or TDF content within phases, between phases and between CP or 

TDF content, respectively. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. The interactions between CP level (high or low) and TDF content (high or low) of the experimental diets on DM content of the 

slurry stored into the pits. 

 

 


