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Abstract 

Radiative cooling is a technology intended to provide cooling using the sky as a heat sink. This 

technology has been widely studied since 20
th
 century but its research is scattered all over the 

literature, requiring of a review to gather all information and a state-of-the-art. In the present 

article, the research has been classified in: (1) radiative cooling background, (2) selective 

radiative cooling, (3) theoretical approach and numerical simulations, and (4) radiative cooling 

prototypes. Even though this is a low-grade technology it can dramatically reduce the energy 

consumption, since it is renewable and requires low energy for its operation. However, new 

functionalities of the device, apart from radiative cooling, are required for profitable reasons. 

Some recommendations extracted from the literature to improve the efficiency of radiative 

cooling are: to use a cover to achieve low temperatures, to use water instead of air as heat-

carrier fluid, and to couple the device with heat storage. Finally, further research should be 

focused in the development of new materials with improved radiative properties, the 

measurement of incoming infrared atmospheric radiation and/or new technics to predict it, and 

the evaluation of new device concepts. 
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1. Introduction 

The environmental awareness is growing fast nowadays with special attention to the energy 

consumption and environment preservation. Regarding to energy consumption, the building 

sector can contribute in a remarkable way in achieving the transition to a less energy intensive 

system. There is huge potential in reducing energy consumption with profitable measures that 

reduce the economic and environmental costs. The energy consumption of buildings represents 

40% of total energy consumption in the European Union [1], where space conditioning of 

buildings represents almost half of the building energy consumption. 

For space conditioning, especially in hot climate countries, most of the buildings use reversible 

heat pumps which consume a large amount of electrical energy. New legislations consider 
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electrically driven heat pumps as a renewable source of energy when they achieve seasonal 

average efficiencies higher than             [2,3], since they take advantage of the air 

temperature to reduce electrical consumption. However, there are other renewable sources that 

further reduce the use of non-renewable energy, since they can achieve the required temperature 

level with no or very low electrical use. Solar energy is one of the most widely studied sources; 

however, its use for cooling is limited by the implementation of absorption heat pumps. 

Another technology that has been studied in order to provide cooling and displace the use of 

heat pumps is radiative cooling. This technique is based on emitting long-wave thermal 

radiation from a terrestrial body toward space through the infrared atmospheric window 

between 8-13 µm wavelengths. The atmosphere infrared window is the dynamic behaviour of 

earth’s atmosphere that allows some infrared radiation pass through the atmosphere without 

being absorbed and, thus without heating the atmosphere. 

It is known that a body emits electromagnetic radiation in a wavelength range depending on its 

temperature. At ambient temperature most of the radiation is emitted in the infrared spectrum. 

Radiative cooling technique uses these properties to generate a cooling net balance between the 

emitted thermal radiation from the terrestrial surface and the received from the atmosphere. 

Using this technology for cooling purposes will dramatically reduce the energy consumption; 

depending on the case, the energy consumption can be zero or just the energy consumed by a 

small pump running on the operating hours. The performance of the radiative cooling 

technology is affected by the physical properties of the device and also by the surrounding 

conditions. Therefore, special attention must be paid to materials and environmental conditions. 

From early 20
th
 century, several authors have worked on the field of radiative cooling. However, 

in the present all the information is scattered in the literature, making it difficult to identify new 

research opportunities. Although Lu et al. developed a practical review of radiative cooling [4], 

they focused in passive radiative cooling in buildings, and they did not include detailed 

information about the phenomenon and the studied materials for radiative cooling as well as the 

radiative cooling devices and models. Therefore, there is a clear need to compile and structure 

all this information. For that reason, this paper reviews all different aspects of radiative cooling, 

such as the environmental conditions affecting the phenomena, the selection and development 

of materials, the analytical and numerical methods, and the experimental prototypes. 

2. Radiative cooling background 

Radiative cooling is the thermal process by which a body loses heat by emitting long-wave 

radiation to another body at lower temperature. Referred to buildings, radiative cooling is a 

http://en.wikipedia.org/wiki/Thermal_radiation
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passive cooling technique which uses thermal radiation properties to cool a body or part of a 

building facing a colder surface such as the sky. This cooling process occurs when a surface 

presents a cooling net balance between the emitted and the absorbed radiation, considering also 

convection and conduction between the surface and the surroundings. With this technique, 

temperatures below ambient temperature can be achieved. The effective outgoing infrared 

radiation from a surface on earth     is defined as the difference between the infrared radiation 

emitted by this surface      and the infrared radiation from the atmosphere absorbed by this 

surface      (Eq. 1) [5]: 

Eq. 1            

The spectral distribution of the radiation emitted by the clear sky atmosphere is similar to a 

blackbody’s one at ambient dry bulb temperature but with a gap in the spectral region between 

wavelengths 8-13 µm. This gap is known as “infrared atmospheric window”. 

Research has been conducted in order to determine and analyse the infrared atmospheric 

window while analysing the atmospheric infrared radiation [6]. The spectral location of the 

infrared atmospheric window corresponds to the spectrum where most of the terrestrial surfaces 

emit with its maximum intensity. 

2.1. Infrared atmospheric radiation 

Atmospheric radiation originates from gases that compose the atmosphere such as water vapour, 

carbon dioxide, ozone, and other asymmetrical molecules. 90 percent of the total infrared 

atmospheric radiation received at ground level comes from the first 800-1600 meters above the 

surface [5]. The main gases involved in infrared atmospheric radiation at ground level are water 

vapour and carbon dioxide, being water vapour the major contributor [7]. Analysing the 

radiative properties of these gases can be seen that the atmosphere spectrum in the 8-13 µm 

band (infrared atmospheric window) is very transparent under clear sky conditions [8]. 

These dynamic properties of earth’s atmosphere make the atmosphere an interesting heat sink to 

eliminate heat excess. As the atmosphere does not act like a blackbody emitter, it is difficult to 

predict its behaviour although the physical phenomenon can be physically described as it was 

presented in [4]. Therefore, for engineering purposes, it would be interesting to measure and/or 

predict the incoming infrared radiation from the atmosphere on a surface facing the sky. 

This data can be measured with specific equipment or predicted with some empirical 

correlations. When the incoming infrared radiation from the atmosphere is known, there are two 

methods to express it in an understandable and simple form: 



1. To assume the sky acting as a blackbody emitter (effective sky emissivity       ) at an 

effective sky temperature        which equals the incoming infrared radiation from the 

atmosphere based on the Stefan-Boltzmann law (Eq. 2): 

Eq. 2           
        

  

 
 
   

 

2. To assume the sky having the ambient dry bulb temperature      with an effective sky 

emissivity        which equals the radiation coming from the atmosphere based on the 

Stefan-Boltzmann law (Eq. 3): 

Eq. 3              
       

  

    
  

These two methods simplify the way the incoming infrared radiation from the atmosphere is 

quantified for engineering calculations. However, the incoming infrared atmospheric radiation is 

not commonly measured in meteorological stations; therefore, correlations must be elaborated 

to connect measured simple meteorological parameters to the infrared atmospheric radiation. 

There are two types of methods to estimate the incoming infrared radiation from atmosphere 

under clear sky conditions [8]. The first type is based on direct measurements of the atmosphere 

radiation spectrum or sky irradiance. These empirical methods use measurements of the 

incoming infrared atmospheric radiation to generated suitable correlations. The second type 

consists on analysing the profiles of atmospheric constituents to calculate their spectral 

atmospheric radiation based on radiative properties of the gases. Although more rigorous, this 

second type is more complex, and detailed information on the state of the atmosphere is needed, 

such as pressure, temperature and density variation with altitude, concentration profiles and 

spectral absorption coefficients of the gases. 

2.1.1. Clear sky correlations 

Making a proper estimation of the incoming infrared atmospheric radiation is important for 

modelling and engineering purposes. Although estimations never adapt perfectly to the reality, 

neither clear sky is the most common condition depending on the weather; however they can be 

enough accurate as a first approach. In this section, different correlations for clear sky 

conditions are presented and reviewed, distinguishing between empirical and detailed 

correlations. 



Empirical correlations 

Empirical correlations are based on total atmospheric radiation measurements made with a 

pyrgeometer. A pyrgeometer is a device that measures downward atmospheric long wave 

radiation. In some measurements a spectral radiometer was also used to calibrate the 

pyrgeometer and also to detect the presence of clouds. 

However, these measurements do not provide any spectral information of the incoming infrared 

atmospheric radiation. This is a simple way to estimate the incoming infrared atmospheric 

radiation but it cannot be enough accurate for some calculations, especially when spectral 

information is required. 

First works providing a correlation were presented by Ångström (1915 and 1936) [9,10] and 

Brunt (1832) [11], relating sky emissivity to the partial pressure of water vapour (Eq. 4 and Eq. 

5). Both correlations are based in clear-sky atmospheric radiation values measured in specific 

locations (Algeria and California). 

Eq. 4                                

Eq. 5                         

These expressions require the calculation of some empirical coefficients             which are 

somewhat variable and depend on the geographical region. Later works calculated empirical 

coefficients for Ångström’s and Brunt’s equations considering different meteorological and 

geographical conditions. A compilation of theses coefficients can be found in Elsasser [12] and 

Kondratyev [13], where significant discrepancies can be seen in the coefficients found for 

different locations. 

Later on, Elsasser (1942) concluded that the sky emissivity has a logarithmic relation with the 

partial pressure of water vapour [12], developing a new correlation (Eq. 6). 

Eq. 6                           

While the previous correlations to estimate the incoming infrared atmospheric radiation depend 

on the partial pressure of water vapour, later works use ambient temperature as the main 

parameter. 

Swinbank (1963) [14] conducted a reassessment of previous work published in [9–11] on the 

attempt to avoid local specificity of the correlation coefficients (as demonstrated in [12]) and 

proposed alternatively a correlation that only depends on ambient temperature, showing the low 

influence of humidity at low level stations (Eq. 7). 



Eq. 7                    
                     

  

From original equation it is readapted to have it in function of       . 

Swinbank’s correlation [14] attempted to be general. However, Idso and Jackson (1969) [15] 

stated that, based on new findings, Swinbank’s correlations were not general. Therefore, they 

attempted to relate atmospheric radiation to ambient temperature to a universally applicable 

correlation which should be valid for any air temperature reached on earth and for any latitude 

(Eq. 8). However, in a following work [16], Aase and Idso concluded that below 273 K this 

correlation overestimates the total effective emissivity. 

Eq. 8                                         
 
  

In 1983, Hatfield et al. [17] concluded that correlations models which only use ambient 

temperature [14,15] do not estimate properly the effective emissivity over wide geographical 

areas. They concluded that these models are too specific for a location because they assume a 

relationship between ambient temperature and partial pressure of water vapour in their empirical 

constants. From here on, authors developed correlations which depend on both ambient 

temperature and partial pressure of water vapour. 

Satterlund (1979) [18], based on experimental measurements from literature, proposed a new 

correlation to take into account both ambient temperature and vapour pressure (Eq. 9). This 

correlation presents improvements on estimating the incoming infrared atmospheric radiation 

over a wide range of temperatures, particularly at low temperatures where most of the formulas 

perform poorly for air temperatures below freezing. This model has also probed to perform 

better when compared to two other models [15,19] (see Detailed method section). 

Eq. 9                    
       

  

Idso (1981) [20] performed an experiment at Phoenix, Arizona (USA) to obtain measurements 

of the total incoming infrared atmospheric radiation and proposed two correlations for different 

wavelengths (10.5-12.5 µm in Eq. 10 and 8-13 µm in Eq. 11) and another one for the whole 

range (Eq. 12). The three correlations depend on the temperature and the partial pressure of 

water vapour. 

Eq. 10                               
           

Eq. 11                           
           



Eq. 12                                   

Andreas and Ackley (1982) [21] proposed a modification of Eq. 12 to be used at the Arctic and 

the Antarctic where the concentration of aerosols in these remote areas is lower. 

Eq. 13                                     

From here on, authors started to use other parameters such as altitude, dew point temperature, 

relative humidity, and ambient pressure in their correlations, trying to predict in a better way the 

incoming infrared atmospheric radiation. 

Centeno (1982) [22] proposed a clear sky emissivity correlation based on measurements from 

the literature and his own measurements at Venezuela. This correlation takes into account the 

altitude, the ambient temperature and the relative humidity (Eq. 14). To develop this correlation 

the author forced the correlation to be constituted by the product of three functions, each 

dependant of a parameter. 

Eq. 14                                    
                    

Berdahl and Fromberg (1982) [8], based on their own measurements at three USA cities 

(Tucson, Arizona; Gaithersburg, Maryland; and St. Louis, Missouri), proposed two different 

correlations to estimate the sky emissivity: one for night-time (Eq. 15) and one for day-time 

(Eq. 16). These correlations only depend on the dew point temperature. 

Eq. 15                                  

Eq. 16                                

Later on, Berdahl and Martin (1984) [23] corrected a previous work [8] by using more 

measurements (also in USA: San Antonio, Texas; West Palm Beach, Florida; and Boulder City, 

Nevada) and proposed a new correlation (Eq. 17) with a diurnal correction factor (Eq. 18). 

Finally, Martin and Berdahl (1984) [24] further extended their correlation by adding a pressure 

correction factor (Eq. 19 and Eq. 20). 

Eq. 17                     
   

   
        

   

   
 
 
     

Eq. 18                
   

  
  

Eq. 19                     
   

   
        

   

   
 
 
         



Eq. 20                        

Berger et al. (1984) [25] based on measurements at Carpentras, France proposed a night-time 

correlation that depends on the dew point temperature (Eq. 21). Moreover, they also proposed a 

correlation for the whole day (Eq. 22), where the ambient temperature must be corrected (Eq. 

23) in order to include annual and diurnal effects. 

Eq. 21                                 

Eq. 22                                   

Eq. 23                                     

Alados-Arboledas and Jimenez (1988) [26] proposed a deviation correction factor (Eq. 24) to 

take into account the day-night and seasonal variation of the effective emissivity based on 

measurements in Granada, Spain. This correction factor was tested in Eq. 12 and Eq. 5, being 

Eq. 12 the one with better results. 

Eq. 24            
    

  
  

 

  
                    

The parameters in Eq. 24 should be calculated according to the region and the season. 

Niemelä et al. (2001) [27], based on measurements at Sodankylä, Finland, proposed two 

correlations (Eq. 25 and Eq. 26) for cold and dry weather conditions which only depend on the 

partial water vapour pressure. 

Eq. 25                                  

Eq. 26                                   

Tang et al. 2004 [28], based on measurements at Negev Highlands, Israel, proposed a 

correlation (Eq. 27) for warm and dry weather conditions which only depend on the dew point 

temperature. 

Eq. 27                          

Empirical correlations are designed to make estimations of the incoming infrared atmospheric 

radiation from the atmosphere in an easy way. A tendency to use the simplest atmospheric 

parameters that allow a proper estimation is observed. However, there is no agreement in which 

parameters are better. From the literature, the importance of the atmospheric humidity and the 

ambient temperature is demonstrated to provide a good regression. Nevertheless, using just one 



or two parameters does not allow the correlation to be applicable at any location. Therefore, 

most of the correlations above are valid for specific locations and their empirical coefficients 

should be recalculated for new locations. Last tendencies are to provide correlations easy to use 

and location dependant. 

It is also important to highlight that the difference in the correlations which use the same 

parameters is on the mathematical model that the authors choose to adapt the physical 

phenomena. Some of them are based on physical properties while others are based in a 

statistical approach. 

Detailed method 

Detailed methods are based on radiative properties of the gases that compound the atmosphere 

and on their concentration. They can provide a rigorous estimation of the incoming infrared 

atmospheric radiation, although they need detailed information. There are three methods: using 

the gas transmittance to estimate the atmospheric emissivity; using an accurate radiative-transfer 

models/modelization (LOWTRAN, MODTRAN, SBDART); and using a flux emissivity model. 

Based on theoretical concepts of gas emissivity and empirical correlations for gas properties, 

Bliss (1961) [7] obtained sky emissivity values with the only dependence of dew point 

temperature (Eq. 28 created from data in [7]): 

Eq. 28                            

Staley and Jurica (1972) [29] proposed a correlation (Eq. 29) based on the analysis of the 

radiation properties of water vapour, carbon dioxide and ozone. 

Eq. 29                
    

 

Brutsaert (1975) [19], based on analytical correlations of atmosphere parameters, proposed a 

sky emissivity correlation (Eq. 30) which depends on the vapour pressure and the ambient 

temperature. Below 273 K this correlation underestimates the total effective emissivity [16]. 

Eq. 30                      
    

Prata (1996) [30], based on an emissivity model, proposed a correlation (Eq. 31) which depends 

on ambient temperature and partial pressure of water vapour. This model has been tested with 

experimental measurements from several locations and has also been assessed by using 

radiosonde profiles and an accurate radiative-transfer model (LOWTRAN-7) to find the 

coefficients. The model has also been compared to five previous models [14,15,18–20] showing 

a better performance. 



Eq. 31                                   
  

  
  

Dilley and O’Brien (1998) [31], based on parameterization of physical processes and using a 

computer software model (LOWTRAN), proposed two correlations (Eq. 32 and Eq. 33) which 

depend on ambient temperature and partial pressure of water vapour. 

Eq. 32                                   
  

      
              

  

  
  

Eq. 33         
 

    
                

  

      
 
 
            

  

  
   

The detailed method can provide good estimations of the incoming infrared atmospheric 

radiation. However, this method requires detailed information about atmosphere composition. It 

has been confirmed that radiative transfer modelling produces better results than previously 

published simple parameterizations based only on surface measurements [32]. 

There is a lack of comparisons between different correlations in the literature. There just exist 

few articles comparing correlations [18,30]. 

It is also important to highlight that measurements are sporadically made and not very regular in 

time and location. So this means that it is difficult to get available data that fits a specific 

climate. 

Clear-sky correlations are a first approach, although they do not represent the common scenario. 

Moreover, most of the correlations do not provide real-time values but average values. Table 1 

presents a summary of the correlations found in the literature for clear-sky conditions. 

Table 1 Summary of clear-sky correlations. 

Authors Clear-sky correlations Equation 

Ångström (1915 

and 1936) [9,10]  
                   

4 

Brunt (1832) [11]                5 

Elsasser (1942) 

[12] 
                       

6 

Bliss (1961) [7]                          28 

Swinkbank 

(1963) [14] 
                   

  
7 

Idso and Jackson 

(1969) [15] 
                                       

 
  

8 

Staley and Jurica               
    

 29 



(1972) [29] 

Brutsaert (1975) 

[19] 
                    

    
30 

Satterlund (1979) 

[18] 
                  

       
   

9 

Idso (1981) [20]                                    12 

Andreas and 

Ackley (1982) 

[21] 
                                   

13 

Centeno (1982) 

[22] 
                                    

                    
14 

Berdahl and 

Fromberg (1982) 

[8] 

                              

                            
 

15, 16 

Berdahl and 

Martin (1984) 

[23] 

                  
   

   
       

   

   
 
 

    

             
   

  
 

 

17, 18 

Martin and 

Berdahl (1984) 

[24] 

                  
   

   
       

   

   
 
 

        

                    

 

19, 20 

Berger et al. 1984 

[25] 

                              

                                
 

21, 22 

Alados-Arboledas 

and Jimenez 

(1988) [26] 
         

      

  
  

 

  
   

24 

Prata (1996) [30]                                  
  
  

  
31 

Dilley and 

O’Brien (1998) 

[31] 

                                 
  

      
              

  
  

 

       
 

    
                

  
      

 
 

            
  
  

  

 

32, 33 

Niemelä et al. 

(2001) [27] 

                                

                                 
 

25, 26 

Tang et at 2004 

[28] 
                        

27 

 

2.1.2. Cloudy sky relations 

Clear sky conditions do not happen all the time. The presence of clouds increases the incoming 

infrared atmospheric radiation compared to clear sky conditions. This is because clouds act like 

a blackbody emitter supplementing the waveband the atmospheric emission lacks of. Any cloud 



which is visually opaque can be considered as a blackbody emitter at the temperature of the 

cloud base [7] and its radiative effect is to close the infrared atmospheric window. Thus, clear 

sky correlations must be modified to adjust the cloudiness. 

According to its own observations, Ångström [33] proposed a relation to take into account the 

cloudiness (Eq. 34). 

Eq. 35              

Eq. 34 is a cloud correction relation which is being applied to the emitted radiation from the 

earth surface, and also to the incoming infrared atmospheric radiation. A more logical relation 

has been proposed by Bolz (1949) [34]. This relation (Eq. 35) takes into account the cloudiness 

of the sky only on the incoming infrared atmospheric radiation. 

Eq. 35                                      

Centeno (1982) [22] proposed a correlation to estimate the clear-sky emissivity (Eq. 14) and 

also a relation to get the effective sky emissivity bearing in mind the cloudiness (Eq. 36). 

Eq. 36                                     

Kimball et al. (1982) [35] developed a method that assumes that the cloud radiation is 

transmitted through the air only at the infrared atmospheric window. The model (Eq. 37) takes 

into account the information obtained from every cloud layer. 

Eq. 37                                
  

  

The authors also proposed a series of correlations to calculate these parameters. 

Martin and Berdahl (1984) [24] proposed a relation that takes into account the cloud emissivity 

and the cloud-base temperature (Eq. 38). 

Eq. 38                                    

Sugita and Brutsaert (1993) [36] proposed new and more accurate values (Eq. 39) for 

parameters of a previous correlation (Eq. 35). 

Eq. 39                                        

Aubinet (1994) [37] proposed a correlation to estimate the effective sky temperature that takes 

into account the clearness index (Eq. 40). 



Eq. 40                                     

Crawford and Duchon (1999) [38] improved a previous correlation [19] (Eq. 30) to take into 

account the annual variation between dry and wet season and also proposed a relation for 

estimating the effect of cloudiness (Eq. 41). 

Eq. 41                                            
 

 
   

  

  
 

 

 
 

        

Sridhar et al. (2002) [39] modified a correlation from previous work [19] (Eq. 30) by calibrating 

it for different sites representing different climatic and geographical conditions to make it valid 

for all sky conditions (day and night; clear and cloudy) (Eq. 42). 

Eq. 42             
  

  
  

   
 

Note that in Equation 42 e0 must be used in mbar, in contrast to the original reference, where it 

is used in kPa (introducing a conversion factor in the equation). 

Also, with overcast sky can be used previous presented radiative-transfer models/modelization 

(LOWTRAN, MODTRAN, SBDART), showing good agreement with pyrgeometer 

measurements [40]. Also, this work shows that cloud base height should be measured and taken 

into account. 

All the relations that consider cloudy-sky just take into account the long-wave radiation. Under 

cloudy conditions short-wave radiation is reduced; however long-wave radiation is increased. 

Therefore, previous equations are not suitable when short-wave radiation needs to be calculated. 

As proposed at the beginning of this section, some works conclude that clear-sky correlations 

underestimate the incoming infrared atmospheric radiation under cloudy conditions [36,38,41]. 

Also, in Table 2 is presented a summary of the correlations found in the literature for cloudy-

sky conditions. 

Table 2 Summary of cloudy-sky correlations. 

Authors Cloudy-sky correlations Equation 

Ångström [33]             34 

Bolz (1949) [34]                     35 

Centeno (1982) [22]                                    36 



Kimball et al. (1982) [35]                               
 

 

 

 

37 

Martin and Berdahl 

(1984) [24] 
                                  

38 

Sugita and Brutsaert 

(1993) [36] 
                     

39 

Aubinet (1994) [37]                                    40 

Crawford and Duchon 

(1999) [38] 

                

                          
 

 
   

  
  

 
   

 

41 

Sridhar et al. (2002) [39]            
  
  

  
   

 
42 

 

2.1.3. Influence of the zenith angle / tilted surfaces / sky view factor 

To maximise the effective outgoing infrared radiation, the radiator should be placed 

horizontally, facing the sky. However, sometimes it is desirable to install the radiator with an 

inclination, as for example to allow drainage or because it is the inclination of the roof where it 

is placed. The inclination of the radiator increases the incoming infrared radiation at radiator 

surface. This increase in the incoming radiation is mainly caused by the reduction of the sky 

view factor from the radiator surface (therefore, the surface is facing the ground which acts 

more likely to a blackbody), and also because the radiator’s surface is more exposed to the 

“warmer” regions of the sky near the horizon (due to the less “visual thickness” of the 

atmosphere in the zenith direction [6] than in other directions). 

As the effect produced by the variation of the view factor is easier to estimate than the effect of 

being exposed to “warmer” zones of the sky, research was mainly focused on finding simple 

expressions of the effect of having the radiator surface exposed to “warmer” regions of the sky, 

rather than the analytical expression of the phenomenon as presented in [4]. 

Some of the authors tried to establish correlations to relate the incoming infrared radiation or the 

effective outgoing infrared radiation to the inclination angle or the zenith angle. To express the 

variation of the net outgoing infrared radiation in relation with the zenith angle Linke (1931) 

[42] found an expression (Eq. 43) that adapts adequately to measurements from literature. 

Eq. 43                
   

Eq. 44                   



In a similar way, Strong (1941) [43], based on its own measurements of the angular dependence 

of clear-sky infrared radiation from the atmosphere, readapted a previous formula (Eq. 5) to take 

into account the zenith angle (Eq. 45). 

Eq. 45                          
  

Based on Eq. 43 and Eq. 45, and from experimental measurements from the literature [5,42,43], 

it can be drawn that for angles smaller than     the effect of the deviation from the zenith angle 

is not significant (about 4 to 6% error [44]). 

Other authors made some effort on searching good expressions that allow calculating the effect 

of inclination on the equivalent sky emissivity. 

Granqvist and Hjortsberg (1981) [45] proposed an expression to relate the sky emissivity to the 

zenith angle (Eq. 46), considering the atmospheric transmittance proportional to the pathlength, 

which depends on wavelength and zenith angle. 

Eq. 46                                
      

 

Eq. 46 relates the sky emissivity at zenith angle to any sky emissivity at any angle from the 

zenith, showing good agreement in the atmospheric window range when compared to 

LOWTRAN data (Figure 1). 

 

Figure 1 Spectral emittance of the atmosphere for three zenith angles as obtained from the 

radiance data computed from a LOWTRAN model [45]. 

 

As Eq. 46 performs well in the infrared atmospheric window, the “box model” was proposed 

[45], which consists of dividing the infrared range in three parts where each part has an 

emissivity according to Eq. 47. 



Eq. 47               

                   

                         
      

         

                     

  

In a similar way, Martin and Berdahl (1984) [46] measured and studied the spectral and angular 

dependence of the sky radiation. Considering the atmospheric transmittance proportional to the 

pathlength and also making some approximations, they proposed a correlation (Eq. 48) that 

relates the equivalent sky emissivity with the zenith angle and the wavelength. 

Eq. 48                                     
              

Due to the low influence of zenith angle for small angles and the difficulty to calculate accurate 

correlations, no extended research had been conducted in this issue. 

2.2. Radiative cooling potential (resource) 

Radiative cooling as a technology is considered new and little tested. Before evaluating any 

device, the energetic and economic potential of the technology should be analysed. The main 

factors that determine whether to use this technology are the weather (meaning by weather the 

atmospheric conditions), and the cooling requirements of the building in the particular location. 

All work done until date is limited to taking into account the weather, but omitting the cooling 

requirements. 

In the early research, Atwater and Ball (1978) [47] computed values of infrared atmospheric 

radiation from 11 USA meteorological stations (continental/subtropical climates) to create a 

model to estimate the average sky temperature. They also created some contour maps with the 

areal distribution of the sky temperature and the temperature depression (difference between 

ambient temperature and sky temperature) for each season, showing temperature depressions 

between      degrees. Later on, Martin and Berdahl (1984) [24] calculated the radiative 

cooling potential in the USA using their own model. They presented some average monthly 

temperature depression maps, percentage maps (showing sky temperature below    ) and 

temperature depression histograms to characterise the radiative cooling resource. These results 

show up some climates to be more suitable to use radiative cooling than others, as for example 

Fresno’s (California) climate. 

The radiative cooling potential of a tropical country as Thailand, has also been analysed. Exell 

(1978) [48] used two methods to determine the potential in Thailand. The first method uses 

empirical correlations previously shown (Eq. 8 and Eq. 34), while the second method uses a 

theoretical equation of radiative transfer for atmospheric radiation [13]. Results show effective 



sky temperatures about    below minimum daily temperature, demonstrating the potential of 

radiative cooling to provide some of the cooling demands. Moreover, Hanif et al. (2014) [49] 

performed an analysis of the radiative cooling potential for Malaysia. They attempted to get a 

correlation to relate the radiative cooling power and the temperature depression by using climate 

data from 10 different locations. The study found that the potential savings in Malaysia due to 

radiative cooling are up to 11% of cooling energy consumption. 

Exploring another typology of climate, Pissimanis and Notaridou (1981) [50] calculated the 

radiative cooling potential in Athens (Subtropical/Mediterranean) during summer using the 

model proposed by Atwater and Ball [47]. Their results were corroborated with 7 years of 

measurements and 2 empirical correlations (Eq. 5 and Eq. 8). In the same way, Argiriou et al. 

(1994) [51] calculated the radiative cooling potential also in Athens, using 12 years of hourly 

weather measurements. Argiriou et al. (1994) used Berdahl and Martin (1984) [23] model to 

calculate the sky emissivity. They presented sky-temperature depression histograms, cumulative 

frequency distribution of the stagnation temperature graphs, and cumulative frequency 

distribution of the outlet temperature with or without wind screen graphs, concluding that the 

location is suitable to apply radiative cooling techniques. 

After initial research in assessing radiative cooling potential, Burch et. al. (2004) [52] presented 

a new insight by taking into account the energy demand coverage of a standard building when 

assessing radiative cooling potential in a specific location. It was used a model to predict the 

energy production and energy demand coverage, space heating and cooling and domestic hot 

water, for a building located in Albuquerque, Madison and Miami (USA). Overall results of 

energy demand coverage and money savings were presented for each city. 

Very little is done in evaluating the potential of the technology and also very few climates had 

been evaluated. More research is needed to evidence which climates are meaningful to 

implement this technology according not just to the weather conditions but also to the cooling 

requirements. 

In conclusion, a world climate analysis should be performed in order to determine where this 

technology may be implemented and how well can it perform. However, as radiative cooling is 

a new technology, some parameters should be standardized. 

3. Selective radiative cooling 

The net thermal balance between a terrestrial surface and its surroundings determines the 

surface temperature. Radiative cooling takes into account radiative properties of the atmosphere 

to generate a net cooling thermal balance. To take advantage of the infrared atmospheric 



window, some authors proposed the use of selective materials with specific optical properties, in 

order to achieve lower surface temperatures by emitting mainly in the infrared atmospheric 

window [53–56]. These optical properties should ideally be those of a perfect emitter in the 

infrared atmospheric window (8-13 µm) and a perfect reflector elsewhere. In this case the 

cooling power is on the order of          at ambient temperature, and temperatures around 

50  below ambient temperature could be reached (considering radiation balance only) [57]. 

A perfect material for radiative cooling applications does not exist, but some research has been 

conducted in order to determine the optical properties of existing materials and also to create 

new materials with better properties. 

Selective properties can be achieved by using a selective surface, but they can also be achieved 

by using a selective screen, which can at the same time block the convection heat transfer 

between the cold surface and the ambient air, as well as reflect some unwanted radiation. A 

combination of a selective surface and a selective screen can also be a solution. If a cover screen 

is used, there is also the possibility to replace the air between the radiator surface and the cover 

screen with another gas with more desirable radiative properties or create vacuum. Moreover, 

the use of mirrors to focus the radiation of a specific zone from the sky is also seen as a 

potential improvement. 

In this section, research and advances in selective materials for radiative cooling are reviewed, 

classified and discussed. The main classifications for the materials, bearing in mind their 

specific position in the device, are: surface of the radiator, cover for the radiator, gas between 

cover and surface, and auxiliary systems (as mirrors). 

3.1. Selective surface 

Some research has been conducted on this topic trying to find a suitable material or coating to 

enhance radiative cooling. The aim is to develop an ideal material with high emissivity in the 

infrared atmospheric window wave range (8-13 µm) and high reflection in the remaining 

wavelengths. 

To optimize and compare selective surfaces for radiative cooling applications, some parameters 

are defined [45] in order to represent the potential of the selective surface. This parameters are: 

the average emissivity for different wavelengths ranges (   
  and      

 ) (Eq. 49 and Eq. 50) and a 

new comparative parameter (  ) (and Eq. 51): 

Eq. 49     
                          

 

 
               

 

 
 



Eq. 50       
                          

    

   
                

    

   
 

Eq. 51          
     

  

Eq. 49 is the average emissivity of the material, Eq. 50 is the average emissivity of the material 

between        wavelenghts and indicates the maximum achievable cooling power, and Eq. 

51 is a comparison parameter between the previous two parameters and indicates the maximum 

achievable temperature drop. Therefore, high values of      
 and    are desired. These 

parameters appear in some of the works presented below to discuss and analyse the feasibility of 

the selective surfaces. 

These selective surfaces can be obtained by means of Polymer foils on metal surfaces, Silicon-

based coatings on metal surfaces, Ceramic oxide layers, Paints and New Materials (multilayers). 

 

3.1.1. Polymer foils on metal surfaces 

In the search of a selective surface for radiative cooling applications, polymer foils on metal 

surfaces (highly reflective) have been tested, mainly on aluminium. Three different polymers 

were analysed (polyvinyl-chloride (PVC) [58], polyvinyl-fluoride (PVF-TEDLAR) [53–55] and 

poly 4-methyl-1-pentene (TPX) [59]), and had been also compared to each other [45]. Results of 

the comparison between the three polymers can be seen in Figure 2. 

 

 

Figure 2 Left: Transmittance spectra for three different plastic films. Right: Table of cooling 

parameters estimated for plastic films backed by aluminium [45]. 



 

These results show that the three polymer foils present a low reflectivity in the infrared 

atmospheric window (consequently high emissivity) but do not show such a good performance 

outside it. When compared with     films, the polymer foils show a better performance in the 

infrared atmospheric window but worse reflectivity outside the window, therefore, polymer foils 

show worse overall performance [45]. 

Polyvinyl-difluoride (PVDF) was also proposed as selective material for radiative cooling 

applications but only when used also in solar collection [60]. Even though the radiative 

performance was not as good as other selective materials, it performed better than non-selective 

surfaces. 

In a recent work [61], where solar heating and radiative cooling were required, polyethylene 

terephthalate (PET) coated with titanium (Ti) was studied (called TPET by the authors), 

showing selective properties in the infrared window and also in the solar band, as shown in 

Figure 3. 

 

Figure 3 Spectral absorptivity (emissivity) of TPET composite surface [61]. 

3.1.2. Silicon-based coatings on metal surfaces 

Several authors have studied the use of thin silicon-based coatings. The idea was to coat highly 

reflective metals, as aluminium, with silicon coatings which selectively emit in the infrared 

atmospheric window. 

Silicon monoxide (   ) is a coating that shows good performance. The reflectance and 

transmittance of    on transparent       and the reflectance of     films on aluminium 

substrates were studied by Hjortsberg and Granqvist (1980) [62] (Figure 4).The purpose of their 

research was to provide accurate knowledge of the optical properties over the whole thermal 



infrared range. They conclude that their measurements are similar to what is found in the 

literature, so they endorsed results pointed out in previous works. 

 

Figure 4 Spectral infrared reflectance and transmittance for evaporated     films [62]. 

 

Also, Granqvist et al. (1982) [57] tested     films on aluminium for different thicknesses 

(Figure 5 Left). In this research was compared a     film on aluminium to a black painted plate. 

The selective surface reached      below ambient whereas the black plate reached slightly 

lower temperatures. The reason for this small difference between the selective surface and the 

black plate lied in an unfavourable low value of      
  for the     coating and an insufficient 

thermal insulation of the test box. 

Moreover, Granqvist et al. (1982) [57] also studied       films on aluminium (Figure 5 Right), 

showing better performance than     coatings according to the greater infrared atmospheric 

window range covered. 



 

Figure 5 Left: Measured spectral reflectance for        films on glass with three     film 

thicknesses [57]. Right: Measured spectral reflectance for an          film on glass [57]. 

 

Another coating,           , was tested by Eriksson and Granqvist (1983) [63] and by Eriksson 

et al. (1984) [64], showing better performance than     but worse than       . Nevertheless, it 

showed suitable properties for radiative cooling (Figure 6). 

 

Figure 6 Left: Spectral reflectance and transmittance of evaporated            films on two 

different substrates [63]. Right: Spectral reflectance for a film of            deposited onto    
[64]. 

 

A bilayer coating of                     on    was also analysed by Eriksson et al. (1985) [65], 

showing a worse performance regard to            coating (Figure 7). 



 

Figure 7 Computed spectral reflectance of                     coating on    [65]. 

 

The performance of a multilayer coating of        using different concentrations of oxygen 

and nitrogen was measured by Diatezua et al. (1995) [66] (Figure 8). The authors pointed out 

that the performances of the analysed multi-layered samples are far from the perfect selective 

material. Moreover, their results are even worse than other single layer materials [53,65]. 

 

Figure 8 Reflectance measured for the sample represented on the figure [66]. 

 

Another configuration using a     film as outer layer consisting of vanadium dioxide (doped 

with tungsten or not)           , a thermochromic film, as intermediate layer, and a 

blackbody surface as base, was numerically studied by Tazawa and Tanemura [67] and Tazawa 

et al. [68]. 



Transition metal oxide thermochromic films, like         , show optical switching behaviour 

corresponding to the phase transition from metallic to semiconductor at a certain temperature. 

Thermochromic materials have a high reflectance in the high temperature phase and low 

reflectance in the low temperature phase. Due to the fact that spectral selectivity only appears at 

higher temperatures, as seen in Figure 9 (left), it provides an automated temperature control of 

the surface. 

Vanadium dioxide films (doped with tungsten or not) are candidate materials because the 

transition temperature of Vanadium dioxide (around     ) can be reduced down  below room 

set point temperature by adjusting the doping level. These works [67,68] present results of 

radiative cooling power and temperature stability of sky radiators for different doping level of 

tungsten. 

Although these configurations do not show better performance than        configurations, as 

can be seen in Figure 9 (centre), they present higher temperature control and stability as can be 

seen in Figure 9 (right) [68]. 

 

Figure 9 Left: Radiative cooling power of the sky radiator with respect to the phase transition of 

the thermochromic film [67]. Centre: Calculated radiative cooling power of the three different 

sky radiators[67]. Right: Temperature changes of the spectral selective radiating material [68]. 

 

3.1.3. Ceramic oxide layers 

Another possibility to achieve radiative cooling to low temperatures is to use materials with 

high values of reflectivity at high wavelengths           instead of using high reflective 

materials all over the spectrum and coat it with high emissive materials at the infrared 

atmospheric window. 



Magnesium oxide (   ) ceramic samples have been studied [69] (Figure 10) and their 

behaviour has been compared to white painted surfaces, showing the first ones a better 

performance.     can reach lower temperatures than selective surfaces based on polyvinyl-

fluoride (   ), and has a high solar reflectivity which may allow radiative cooling with 

daylight.  

Lithium fluoride (   ) is also considered a good material for radiative cooling due to the similar 

optical properties at the infrared region as     [69] (Figure 10). Furthermore, it has also been 

suggested to manufacture selective radiators with         mixtures. 

 

Figure 10 Computed normal specular reflectance for layers of     and     backed with a 

reflecting layer, and normal specular reflectance of a polished     ceramic sample [69]. 

 

3.1.4. Paints 

In hot regions, white paints are commonly used when painting buildings in order to reflect solar 

radiation. Furthermore, the use of additives to enhance painting performance has been tested in 

order to provide high emissivity at the infrared atmospheric window. Therefore, the 

combination of white paints with these additives provides both high emissivity at the infrared 

atmospheric window and high reflectivity of solar radiation. White paints with some 

concentration of      were tested (on aluminium plate) by Harrison and Walton (1978) [70] 

showing that high concentrations of            can cool down     below ambient 

temperature in Calgary, Canada. 

In the same way, Awanou (1986) [71] developed a diode roof system that had a pebbled roof 

with white paint with      in order to reduce absorption of solar radiation and to emit radiation 



during the night. The results were not as good as expected but better results are foreseen for hot 

and dry climates with long nights      . 

Two other white pigmented paints based on            and          were analysed by Orel 

et al. [72] showing that the addition of       improves the performance of radiative cooling. 

3.1.5. New Materials (multilayers) 

Recently, new manufacturing techniques allowing the development of new materials have been 

developed. These new materials are nanoscale multilayer combinations of materials, optimized 

to have better optical properties for radiative cooling. 

Two new multilayer combinations of materials have been tested. The first one made of several 

layers of titanium dioxide      and magnesium fluoride      on silver cover with silicon 

carbide     and quartz [73], and the other consisting of alternating layers of silicon dioxide 

       and hafnium dioxide        on top of silver and silicon [74]. Both of them showed a 

good performance even under sunlight due to its high reflectivity of solar radiation and high 

emissivity in the infrared atmospheric window, as can be seen in Figure 11. 

 

 

Figure 11 Up: Emissivity of the optimized daytime radiative cooler [73]. Down: Measured 

emissivity of the photonic radiative cooler [74]. 



 

3.2. Selective screen and convection shield 

Due to the difficulty of achieving a material with perfect properties for radiative cooling and 

also reduce convection heat gains, the use of selective screens is proposed. 

3.2.1. Polyethylene (PE) 

First attempts in using convection shields [53–55,57,64,69,70] were conducted with 

polyethylene (PE) foils due to their good transmittance almost all over the spectrum (Figure 12). 

Due to its high transmittance at the infrared atmospheric window (85% [75]) it could be 

complementary to a selective surface radiator. 

 

Figure 12 Normal spectral transmittance of a 30 µm thick foil of high-density polyethylene [75]. 

 

Different configurations were analysed instead of flat screens, as for example a V-corrugate 

screen design of high-density polyethylene (HDPE) foils (Figure 13, [75]). A better 

performance than a flat screen was observed when analysing its transmittance and thermal 

insulation as a convection shield. 



 

Figure 13 Sketch of the material with high infrared transmittance and low non-radiative heat 

exchange [75]. 

 

For a better understanding of polyethylene performance as a convection shield and selective 

screen, Ali et al. (1998) [76] studied the effects of aging, thickness, and colour on both the 

radiative properties of polyethylene films and the performance of the radiative cooling system, 

highlighting the poor aging of polyethylene foils. The authors also concluded that thinner films 

present a better performance in terms of night sky radiation, but worse mechanical properties. 

Moreover, the colour of the film does not significantly affect its optical properties. In a recent 

research a polymeric mesh has been proposed as a solution for structural weakness of PE [77]. 

However, although the authors (Gentle et al.) state that this configuration could extend the PE 

film life span to more than five years, they do not provide any data to support this statement, 

and do not analyse any potential optical properties degradation. 

In order to reduce solar gains and increase the longevity of polyethylene foils several researches 

have been conducted, analysing different types of coatings. Nilsson et al. (1992) [78] studied 

zinc sulphide       coating on low-density polyethylene (LDPE), showing a good solar 

reflectance and also a good transmittance in the infrared atmospheric window. This coating 

enables radiative cooling during the night and reduces heating under direct sunlight. Later on, 

Nilsson and Niklasson (1995) [79] described the optimization of optical properties and 

simulations of thermal performance during the day for pigmented polyethylene foils. The 

simulated pigment materials were    ,     ,     ,     , and    . Simulations showed that 

    is the best of the pigmented materials tested for a cover foil. 

Similarly, Mastai et al. (2001) [80] studied the optical properties of a coating of      on 

polyethylene for different thicknesses, showing favourable optical characteristics, high 

reflectance in the solar band, and high transmittance in the atmospheric window band. 

Low ban gap semiconductors (  ,    , and     ), are expected to block solar radiation, while 

being transparent in the infrared region. Engelhard et al. (2000) [81] studied semiconductors of 



   on polyethylene foils, exhibiting suitable characteristics for radiative cooling, high 

transmission in the mid-IR region, and high solar blocking. In the same way, Dobson et al. 

(2003) [82] studied the performance of semiconductor coatings of     and      on 

polyethylene foils, showing that combined with pigmented polyethylene foils of     and     

they can provide optical and radiative cooling properties. 

3.2.2. Other convection covers 

Benlattar et al. (2005) [83] described the use of thin film      onto Silicon substrate by 

measuring its optical properties.      thin film is suitable for radiative cooling due to its low 

reflectance and high transmittance in the atmospheric infrared window. Moreover, Benlattar et 

al. (2006) [84] also described the use as selective cover of    , showing good optical properties 

for radiative cooling. 

Mouhib et al. (2009) [85] studied stainless steel deposited on a tin coating layer and on a float 

glass sheet, as a selective screen over a blackbody emitter. This screen has negligible 

transmittance so it has a different behaviour in each side. The overall behaviour is that the upper 

face prevents the transmission of the greatest part of radiation coming from the sky, and allows 

the lower face to evacuate most of the thermal radiation emitted by an underlying material. The 

energy balance indicates that this configuration would be suitable for radiative cooling device 

based on spectral selectivity. Direct measurements confirmed this conclusion. 

Bathgate and Bosi (2011) [86] analysed and tested experimentally the use of polyethylene and 

zinc sulphide as selective covers. They concluded that both covers perform similarly in thermal 

aspects, such as heat loss and radiative power, but mechanical/structural properties and 

durability of     are much better, making it a more suitable material. Finally, they also 

mentioned the high price of     glass and suggested that a much cheaper way to manufacture 

zinc sulphide screens should be developed to make it affordable to be used as cover. 

3.3. Gas slab 

Another point to take into account is the air gap between the cover and the radiator plate. Little 

research has been conducted in the study of optical properties of certain gases to emit through 

the infrared atmospheric window. These gases should emit/absorb mainly in the infrared 

atmospheric window but transmit elsewhere. 

The main gases studied for this purpose are ethylene        [64,87–89], ethylene 

oxide         [64,88,89] and ammonia       [64,88–90]. 



Lushiku and Granqvist (1984) [89] presented a concise summary of the research conducted in 

this topic, identifying ethylene       , ethylene oxide         and ammonia       as proper 

gases for radiative cooling. They measured the optical properties of these gases for different 

thicknesses and also computed and analysed the cooling capacity of the three gases as well as 

for mixtures of ethylene and ethylene oxide. Finally, they tested ethylene and ammonia as 

infrared selective gases in a simple radiative cooling device. The experiment showed the cooling 

effect but did not demonstrate its full potential. They concluded that ammonia was preferred 

when larger cooling power is required at near-ambient temperature, whereas mixtures of 

ethylene and ethylene oxide allow cooling to lower temperatures. 

3.4. Directional selectivity 

Part of the research in this topic has been conducted in analyse the behaviour of the radiator 

when using parabolic mirrors or in analyse how to control the direction of the incident/outgoing 

radiation. Such approaches are based on perfect reflector materials acting as mirrors; therefore, 

the system and not the material is analysed. 

Du Marchie van Voorthuysena and Roes (2013) [91] proposed the use of parabolic mirrors to 

produce radiative cooling effect, even in daytime, by focusing the mirrors to a low effective 

temperature part of the sky . This concept is based on the adaptation of a parabolic solar 

collector for this purpose, so these collectors could produce both effects. The purpose of the 

research was to find out if radiative cooling and wind cooling have enough power to cool down 

large parabolic trough solar power stations. They conclude that there exists such potential to be 

used but occasionally supported by additional cooling. 

Another research [92,93] proposed the use of Compound Parabolic Concentrator (CPC) 

technology to improve the radiative cooling effect focusing the radiator to the lowest effective 

temperature part of the sky. CPCs allow absorbing radiation coming from just a specific part of 

sky, reject all emitted radiation from other parts of sky and also reject all radiation emitted by 

the radiator. This technology could provide up to          at      below the ambient [93]. 

4. Theoretical approach and numerical simulation 

Some authors have conducted their research in theoretical approaches of radiative cooling 

phenomenon and in simulating them. Also, numerical simulations are suitable tools for the 

design and evaluation of radiative cooling systems. Moreover, several authors have focussed 

their research in the development of numerical models capable to accurately simulate radiative 

cooling systems. In this section, these models are reviewed and compared in order to identify 

research needs for improvement. 



When analysing radiative cooling devices, the radiator plate is the main part of the device. Most 

authors modelled the radiator plate in a similar way as a solar flat-plate collector that, instead of 

gaining heat from the Sun, loses heat toward sky. 

Most solar collectors have a cover to reduce the heat losses. However, in radiative cooling 

devices, losses are beneficial, therefore, for particular weather conditions, the cover is not 

desired. For instance, if ambient temperature is lower than the radiator one, using cover is a 

disadvantage. Otherwise, using a cover when ambient temperature is higher than the radiator 

temperature avoids undesired heat gains. 

The thermal behaviour of the radiator is influenced by the heat transfer between the radiator and 

the surrounding media (sky, ambient, and internal fluid). Most of the authors consider at least 

the sky and the ambient when performing simulations to assess the potential of the device. 

The most challenging effect to model is the influence of the sky, especially when the radiator is 

covered with a screen. Nevertheless, first attempts [94–99] considered the use of a screen. They 

presented analytical approaches combined with optical transmittance profiles of the screen and 

the sky. 

Most recent works [73,74,100–114] on simulation either did not consider a cover or omit its 

influence. In these works the sky influence is treated in two ways: having it an effective 

temperature determined with empirical correlations [100–114] or considering the sky to have a 

wavelength dependant emittance and treat it analytically [73,74]. 

Not using a cover on the radiator plate simplifies the model of the radiative cooling device. 

However, if low temperatures are required, the use of a cover is necessary to reduce heat 

transfer from the ambient. 

Another effect is the influence with ambient which is mainly by convection. When analysing 

convection between the device and the ambient is more difficult when there is a cover. This is 

due to the additional phenomena involving the air between the radiator surface and the cover 

that must be taken into account. Even that, it is difficult to determine the convection heat 

transfer coefficient in both cases. So, to deal with it, some authors [73,74,95] used parametric 

analysis with different convection heat transfer coefficients, in order to avoid to calculate for 

every condition, and to provide enough information to present some conclusions. 

Finally the influence of the internal fluid with the radiator temperature for some authors it is 

considered in different ways: function of the accumulation tank temperature or conditioned 



space temperature [101–104,108,109,111–113], simulated with CFD [105], or not used (just 

calculated the maximum reachable temperature) [95,96,73,74]. 

There exists a formula (Eq. 52) that gathers the overall of the effects and gives the fluid 

temperature at any point of a solar collector when operating at steady state [115]: 

Eq. 52  
          

           
  

 
           

     
  

 

Where    is the temperature of the fluid at the desired point (normally the outlet fluid 

temperature),     is the inlet fluid temperature,    is the ambient temperature,   is the radiation 

absorbed by the solar collector,    is the overall heat loss coefficient,    is the number of 

parallel tubes,   is the distance between parallel tubes,   is the collector efficiency factor,    is 

the tubes length,    is the mass flow rate and    is the specific heat of the fluid. This equation is 

for solar collectors. Readapting it for a radiator plate by replacing the solar heat gain for the net 

radiative heat loss was used by some authors [100–103,106–108,110,114] to predict the outlet 

fluid temperature. 

The research conducted in this topic has now been introduced according to its influence to 

surroundings. From here on, conclusions from their authors are presented. 

First approaches of radiative cooling devices showed that this technology could be used to 

provide part of the cooling demand of a building (50% cooling demand [94]), achieving 

promising values of net cooling power and reaching temperatures far below ambient (        

-         [95] and         -         [96]). Also, some of this research has been 

conducted in hot and arid areas (Jordan) [98] modelling a radiative cooling device and 

validating it with empirical data showing good correlation and also good results (reducing the 

temperature of a      tank to      in a night,              ). Later on, the same authors 

used this device to improve a previous nocturnal cold storage [99], presenting some conclusions 

about its dynamic thermal behaviour. 

Recent research [73,74] computed selective materials with photonic design optimization, 

showing that this new combination of materials can produce cooling (up to          

[73]).They also demonstrated that cooling can be achieved even under daylight conditions, 

reaching experimental values of         of cooling power [74]. 

The coupling between radiative cooling and photovoltaic solar collection [109] was also 

studied. After validating the model with empirical data, it was used to perform an analysis of its 



performance in two cities, Madrid and Shanghai. The cooling annual potential calculated is of 

   and                for each location. 

Some research [101–103] studied multistep refrigeration systems combining radiative cooling 

with evaporative cooling for climate conditions in Iran. Their model has been validated with the 

results from [116].The potential of the radiative cooling device was investigated for four cities 

showing that can be provided air up to     below ambient temperature and when combined 

with evaporative cooling up to     below ambient temperature, entailing savings up to 80% of 

the total cooling demand. 

A research combining radiative cooling with microencapsulated phase change material [104], 

was simulated in five typical cities across China also showing great performance with savings 

up to 77% of the total cooling demand. 

The one using CFD to simulate radiative cooling devices do not show good results if only is 

considered the thermal radiation (up to         [105]). Maybe, this is because the thermal 

radiation is calculated in a chosen steady state by the author that may not represent the reality. 

An air-based system tested in a building in Greece [108], using an aluminium painted tube set to 

work as a nocturnal metallic plate radiator, was used to validate an analytical model showing 

good agreement. 

A model using water as inner fluid and using general heat transfer equations was proposed 

[110]. The model was validated with experimental data with statistical methodology of analysis. 

The model showed uncertainty less than 5% when validated with data under experimental 

conditions showing experimental average powers of        . 

The combination of solar heating and radiative cooling, as passive system, has been simulated 

to condition the interior temperature of a building [111]. Savings up to 54% of heating and 53% 

of cooling can be achieved. 

Some of the numerical simulations, validated with experimental data, were used to determine 

the effects of different parameters on the performance of the radiative cooling device, such as 

fin efficiency factor, flow rate, and overall heat transfer coefficient in [106,107,114], 

area/volume tank ratio, flow ratio, tank volume, and radiators surface in [116], and flow rate in 

[112,113]. In [107] are presented some different required characteristics between radiative 

cooling radiators and solar flat plate collectors used for solar heating. The authors concluded 

that fins used in flat plate solar collectors are less efficient for cooling applications, and an 

appropriate solution is radiators consisting entirely of pipes. Moreover, previous experimental 



data [114] was also used to validate a research [112] which also assess the influence of the flow 

rate in the model performance. 

After analysing all research done in theoretical approach and numerical simulations of radiative 

cooling devices it can be seen that great effort has been done since the first attempts in testing 

new aspects that improve its performance and applicability. 

 

5. Radiative cooling prototypes 

Part of the research has been conducted in testing experimental radiative cooling devices under 

certain circumstances. Most of this research has been done in order to provide experimental data 

to validate numerical models and to experimentally analyse the thermal behaviour of the 

prototypes. Most of the prototypes have the same shape as a solar collector, a flat plate as 

radiator. 

First attempts [71,117] aimed at providing a roof which could produce some cooling during 

night and reflect the incident solar radiation during day. Air based systems were used to cool 

down the temperature of huts where were tested. In [117] 2 different covers were compared, 

galvanised steel painted white and aluminium coated with Tedlar. Both cases provided low 

cooling powers          , showing better performance the painted one, which reached lower 

temperatures (6  below ambient temperature during night).In [71] a new concept called diode 

roof was tested. Although this concept allows reaching lower temperatures than ambient during 

night, the main purpose was to avoid the heat to go inside the building. 

Another type of air-based system was tested in a building in Greece [108], using an aluminium 

painted tube set to work as a nocturnal metallic plate radiator. This study was performed in two 

different offices, one office using a radiative cooling and the other one with no cooling device. 

The system operation is to pass interior air through the tube to be cooled down before 

reintroduce it inside the room during night hours. Experimental results showed that the office 

using radiative cooling achieved temperatures between        below the one with no cooling 

device. Two different paints were tested, demonstrating the importance of a high emissivity of 

the radiator to achieve lower temperatures. Moreover, a numerical model was developed and 

experimentally validated. 

Later research focussed in the use of high heat capacity transfer fluids, as water, because water-

based systems can be better controlled and operated. Water-based systems can either be open or 

closed. Open water-based systems combine evaporative cooling, radiative cooling and 



convective cooling. However, water is in contact with ambient, therefore it can evaporate and 

the system may need refilling. One of the first open water-based systems was developed by Dan 

and Chinnappa (1989) [118]. They used a solar collector where water was trickled over the 

cover glass during the night and 400L of heated water were cooled down almost to the diurnal 

minimum temperature. Another purpose of open water-based systems is to use water to clean 

and remove the dust from the collector cover. 

To avoid losing water and catching dust in the water, the majority of water-based systems are 

closed systems. A closed water-based system was used by Matsuta et al. (1987) [60] who were 

some of the first authors to combine and evaluate solar heating and radiative cooling using a 

solar collector. They showed that, even this combination does not perform as well as they do 

separately, it could provide a good heating and cooling power (up to                 

respectively).  

In a similar way, Ezekwe (1990) [119] tested a radiative cooling device to cool down a small 

refrigerator to store food and other perishable goods in developing countries and in remote 

areas. The system provided an average cooling capacity of               and reached 

temperatures 7  below ambient. 

Bearing in mind that the thermal demand of cooling is required during day time and the cooling 

is obtained during night; the use of thermal storage is needed. Ito and Miura (1989) [120] started 

using sensible thermal storage in combination with radiative cooling. An experimental and 

theoretical investigation of an uncovered radiative cooling radiator was performed. Results 

showed cooling powers of           in clear summer nights and           in winter, 

with thermal storage temperatures      below ambient temperature.  

Later on, a Erell and Etzion did a series of experiments in Israel about how radiative cooling 

performs in this hot and arid weather [106,107,121–123]. First experiment was set to determine 

the effect of the thermal storage mass in radiative cooling plate [121]. Four test boxes including 

an internal concrete slab at different locations were tested, trying to show the influence of this 

slab with the heat transfer by natural convection. The authors stated that the thermal storage 

mass has the role of being a heat sink and also of preventing the radiator to have lower 

temperatures than the design temperature of the cooled space. The authors concluded that the 

existence of a thermal storage mass is a very important part of a cooling system but even more 

important is the location of the thermal mass and the coupling between it and the radiating 

surface. 



Later on, the same authors set an experiment using water as heat exchange medium [122]. The 

experiment was performed using a test box similar to those used in [121] which was adapted to 

a solar collector (without glass) by adding a roof pond and a pumping system. The effect of the 

water flow rate was tested, showing that it affects the temperature difference between radiators 

inlet and outlet temperature. So, in this sense, the emerged hypothesis that a higher flowing rate 

increases the cooling rate was not supported by the data. The authors concluded that this is a 

self-regulated system, in the sense that higher daytime heat loads results in higher night-time 

cooling rates. Moreover, the amount of water in the pond is an important parameter; it can be 

used to regulate the radiator temperature in order to achieve a suitable temperature for cooling 

purposes when needed as well as an acceptable cooling rate during night. Finally, they found 

that the coupling of the radiator with the thermal mass of the building results in higher 

temperatures than ambient air, making it possible to take advantage of convective cooling. This 

feature of the system obviates the need for wind screens, which previous research demonstrated 

that are essential for achieving low radiator temperatures. For this prototype, the cooling 

potential, taking into account convective and radiative cooling, was up to        . 

Additionally, Erell and Etzion used this previous radiative cooling device to test it as a solar 

heating collector [123], resulting in a considerable heating output (mean daily heating 

rate                ), although it was not designed for such use. Finally, the authors 

proposed an analytical formulation to simulate a radiative cooling device based on a solar 

collector analysis [106,107,114]. The model was experimentally validated, showing good 

agreement. 

In a similar approach, Meir et al. (2002) [116] tested an unglazed radiator, using water as a heat 

transfer fluid, coupled to a large storage tank in Norway. An analytical model was developed 

and validated with experimental data, and then it was used to optimise some parameters. 

Although the device performed well for clear and low humidity nights, the authors 

recommended analysing the performance of the system in climates with significant cooling 

demands, with outdoors nocturnal temperature not suitable to meet the comfort temperatures, to 

corroborate their simulation results. 

Similarly to preceding research, Hosseinzadeh and Taherian (2012) [113] tested an unglazed 

radiator with storage in Iran. The experimental results were also used to validate an analytical 

model. The prototype showed an average net cooling power of 45 W/m
2
 and capability of 

lowering 8  a 130L water tank. 

Also using a closed water-based system, Ferrer Tevar et al. (2015) [110] tested 3 different 

radiators with different infrared emissivities (0.02, 0.5 and 0.9) in Almeria, Spain. The one with 



low emissivity material was used to isolate the effect of convection from the others. The 

experimental results showed averaged powers of        . They conclude that the use of this 

technology could lower the cooling demands of buildings and also that is interesting to integrate 

it in buildings, specially combined with inertial elements. 

Lately, Ahmadi et. al. (2016) [124] tested a prototype, using a plastic sheet as cover and with a 

storage tank, in Iran. The radiator surface reached temperatures     below ambient 

temperature. It was also tested the influence of the numbers of plastic layers as cover showing 

that the best performance was achieved when there was a single layer. 

Apart from research in testing specific devices, development and testing of new materials was 

also addressed. Bathgate and Bosi (2011) [86] used two different covers, Polyethylene (PE) and 

Zinc Sulphide (ZnS), to analyse its potential and to justify the use of ZnS instead of PE, based 

on the similar behaviour of both covers and the higher durability of ZnS. The study showed a 

good performance of both PE and ZnS covers, reaching    below ambient and a total net heat 

radiation loss up to                for PE and                 for ZnS. 

Recent research have been conducted in order to find new ways to enhance radiative cooling or 

combine it with other technologies that could benefit its economical profit/overall performance 

[61,74,109,125]. 

Eicker and Dalibard (2011) [109] tested and developed a combination of radiative cooling with 

photovoltaic solar collector to produce cooling and electricity. This device was tested in Madrid, 

showing cooling powers of            when coupled to the heat sink storage tank 

(depending on the temperature the tank was used to cool a radiant floor or for heat rejection 

from a chiller), and            when directly used to cool down a ceiling containing phase 

change material (PCM). For this research, a numerical model was developed and validated. 

Selective materials could improve the performance of radiative cooling in such a way that it can 

even work during daytime. Raman et al. (2014) [74] used the so called photonics design 

optimization to develop a material which can reflect 97% of the sunlight and also strongly emit 

in the infrared window. This improvement allows producing cooling during the whole day 

rather than only during the night. Empirical results showed a radiator temperature    below 

ambient temperature and a         cooling power during exposition at direct sunlight 

conditions. 

Finally, some research has been conducted in combining radiative cooling and solar heating 

[61,125,126] in the same device, showing a great potential. In [125] the systems was a vertical 

wall with a coated aluminium plate. This research showed perfect integration between the 



building and the heating/cooling system. Further on this concept, Hu et. al. [61] developed and 

tested a selective material that performs well on both heating and cooling. Results showed a 

performance of 76.8% in heating and 75% in cooling compared to that of conventional systems. 

Afterwards, Hu et al. [126] used this material in a prototype whose performance was compared 

to a traditional flat-plate solar collector. In diurnal testing mode it showed a thermal efficiency 

of 86.4% compared to the traditional solar collector, whereas in cooling mode, it presented a 

cooling power density of        when the radiator surface was at ambient temperature, as 

well as a capability of reaching      below ambient temperature. 

Research tendencies from the development of the first prototype have gone to the use of 

selective materials and the combination of radiative cooling with other technologies. The main 

goals are to reduce the payback time and to be able to provide different energy demands (e.g. 

cooling, heating, electricity). 

6. Conclusions 

In the present paper, research in the topic of radiative cooling is reviewed and classified, 

presenting the main results and conclusions. The articles are classified in four different sections: 

radiative cooling background, selective radiative cooling, theoretical approach and numerical 

simulation for radiative cooling, and radiative cooling prototypes. 

Radiative cooling has been long, but not widely, analysed as a physical phenomenon in order to 

determine its influence in superficial heat balances, showing that, due to its low energy density, 

even minor heat fluxes are significant for the system performance. This phenomenon is fitted by 

straightforward correlations which are explained and summarized in the present work. These 

correlations depend on meteorological parameters, meaning that somehow they are very 

location dependant. As this phenomenon is not usually measured, the implementation potential 

for cooling purposes was barely analysed. Although correlations do not depict radiative cooling 

phenomenon better than real data, they can be used as a good approach, if adapted to the 

specific location. It is also important to mention that the radiation coming from the sky is not 

uniform through the spectrum as explained before; therefore the optical properties in the 

specific wave range (atmospheric window) may be important and should be accurately 

measured. 

Given the low cooling power reached by this technology, different improvements have been 

analysed and studied. Materials with appropriate properties were fully analysed in the literature, 

from optical to thermal properties. General tendency leads to two possibilities: to develop/use 

materials that improve the cooling capacity of the system, or to develop/use materials that 



provide other benefits to the system (such as solar collection, PV, structural strength, etc.). 

Currently the design of these materials has entered to a microscopically level of precision. 

Despite radiative cooling is a novel technology, analytical approaches and numerical 

simulations are spread all over the literature. The research done is mainly orientated to flat plate 

design. This design presents similarities to a solar collector, since both designs have similar 

shape, both can adapt to the building envelope and both should face upward to the sky. 

In the present review, the research about numerical simulations and prototypes has been 

classified bearing in mind the influencing parameters of the sky, the ambient, and the internal 

fluid. From this research, some interesting conclusions are extracted: (1) the use of cover is 

recommended to achieve low temperatures, (2) the use of water instead of air as a heat-carrier 

fluid is also recommended to control the system, and (3) heat storage is recommend to reach 

high cooling power densities. 

Experimental analysis of this technology has also been widely performed in order to prove the 

concept and it has also been used to validate numerical models. Results show that the 

applicability of this technology is possible in some climates. These results lead new prototypes 

to provide new functionalities apart from radiative cooling for profitable reasons, such as 

generate heating using solar collection or electricity using PV. 

Even though this is a low-grade technology and may not be enough for some particular 

requirements, the use of this technology for cooling purposes, actively or passively, can 

dramatically reduce the energy consumption, since it requires low energy for its operation and it 

comes from a renewable source. 

Nevertheless, there exist some issues to be taken into account that limit the implementation of 

this technology. For instance, the use of a material with appropriate properties is an issue to be 

solved. Also, referring to simulations, some optical phenomena are omitted, when developing 

the model, related to electromagnetic optics or to photonics. This omission is a simplification of 

such complex effects. Finally, mention that this technology has a low energetic density for 

cooling purposes, so significant improvements are expected. 

Thus, further research is warranted in order to determine the real potential of such technology, 

to develop new concepts and systems, and to overcome the main limitations existing at the 

moment. 
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Nomenclature 

Symbol Description 
Equations where 

appears 
Variable adapted 

   maximum day length (hour) 24  

   

correction factor to take into 

account the day-night and seasonal 

variation (-) 

24  

    pressure correction factor (-) 19, 20  

    diurnal correction factor (-) 17, 18, 19    in [23] 

A 
factor that takes into account the 

variation of the emissivity 
24  

clf cloud fraction term (-) (see [38]) 41  

   
specific heat of the fluid (       

   ) (see [115]) 
52  

   
partial pressure of water vapour 

(mbar). 

4, 5, 6, 9, 10, 11, 

12, 25, 26, 29, 30, 

31, 32, 33, 40, 41, 

42, 44, 45 

e in [5,9–

12,29,38,42,43],    in 

[39] 

   
 ,      

  and 

   

parameters to compare radiative 

cooling selective materials (see 

[45]) (-) 

49, 50, 51  

f 

factor that takes into account the 

delay of the emissivity cycle in 

relation to the solar cycle (-) 

24  

     
fraction of black body radiation 

emitted through the infrared 

window by layer “i” (-) 

37  

  
collector efficiency factor (-)(see 

[115]) 
52 F’ in [115] 

H relative humidity (%), 14  

     
spectral radiance of a blackbody 

(     ) 
49, 50 W in [45] 

k 

empirical coefficient depending on 

the cloud type, to be defined in the 

original paper (-) 

34  

    ,     
correction factors (see values in 

[25]) 
23           in [25] 

   daily clearness index (-) (see [37]) 40  

   
mass flow rate (      ) (see 

[115]) 
52  

  
number of parallel tubes (-)(see 

[115]) 
52  



   atmospheric pressure (mbar) 20 P in [24] 

R 

effective outgoing infrared 

radiation from a surface on earth 

(     ) 

1, 34 I in [5],    in [33] 

   

infrared radiation emitted by a 

surface on earth (     ) 

normally calculated using Stefan-

Boltzmann law 

1    in [5] 

   

infrared radiation from atmosphere, 

absorbed by a surface on earth 

(     ). 

1, 35, 37 
   in [35],      in 

[36],     in [38],    
in [5] 

     

infrared radiation from atmosphere 

under clear sky conditions 

(     ) 

7, 35, 37, 45 

     in [5],    in 

[9,10,33],R in 

[11,14,15],    in 

[18],    in [29], 

       
  in [27],     

in [19], F in [31],    

in [35],     in [36], 

     in [39] 

   

effective outgoing infrared 

radiation under clear-sky 

conditions (     ) 

34, 43 R in [33] 

s 

ratio between the measured solar 

irradiance to the clear-sky 

irradiance (-) 

41  

  
absorbed solar radiation per unit 

area (     ) (see [115]) 
52  

        

estimated average seasonal 

performance factor of electrically 

driven heat pumps (-) 

  

t time of the day (hour) 18  

t’ 
approximate hour of sunrise in 

solar time (hour) 
24  

           
and b 

empirical parameters (see [46]) (-) 48  

   ambient dry bulb temperature (K). 
3, 7, 8, 9, 10, 11, 

12, 23, 30, 31, 32, 

33, 40, 41, 42, 52 

T in 

[5,11,14,15,31,38,39,

43],    in [18],    in 

[19,20,27,29,30] 

             
corrected ambient dry bulb 

temperature (K) 
23  

     cloud temperature of layer “i” (K) 37    in [35] 

    dew point temperature (ºC) 
15, 16, 21, 22, 23, 

27, 28 
   in [25] 

   surface temperature (K) 49, 50  

   
temperature of the fluid at the 

desired point (normally the outlet 

fluid temperature) (K) (see [115]) 

52  



    
inlet fluid temperature (K) (see 

[115]) 
52  

     effective sky temperature (K) 2, 40, 45    in [37] 

 ,   

empirical parameters with different 

values depending on the different 

cloud types (-) (see [36]) 

39  

   

collector overall heat loss 

coefficient (         ) (see 

[115]) 

52  

  
distance between parallel tubes (m) 

(see [115]) 
52 W in [115] 

W 
fractional area of sky covered by 

clouds (-) 
34, 35, 36, 38, 39 

     in [34,35], N in 

[22], n in [24],    in 

[36] 

  tubes length (m) (see [115]) 52  

Z altitude above sea level (km) 14  

          
empirical coefficients, to be 

defined in the original paper (-) 
4, 5, 45  

  
parameter to take into account 

humidity (see [42]) 
43, 44  

  
factor depending on the cloud base 

temperature (-) (see [24]) 
38  

     effective sky emissivity (-) 
3, 35, 36, 38, 39, 

41, 42, 47, 48 
  in [22,24,38] 

       
effective sky emissivity under clear 

sky conditions (-) 

4, 5, 6, 7, 8, 9, 12, 

14, 15, 16, 17, 19, 

21, 22, 25, 26, 27, 

28, 29, 30, 31, 32, 

33, 35, 36, 38, 39, 

48 

   in [7,20,29],   in 

[22,24],      in 

[8,28],   in [5,23,25], 

    in [19],    in 

[38],    in [45],   in 

[46] 

             

and         

effective sky emissivity for the 

wavelength rage showed, under 

clear sky conditions (-) 

10, 11 
           and         

in [20] 

         emissivity of cloud layer “i” (-) 37    in [35],    in [24] 

            
equivalent sky emissivity with 

entirely cloudy sky 
36 A in [22] 

  zenith angle (rad) 43, 45, 46, 47, 48 z in [5,42,43] 

  wavelength (  ) 46, 47, 48  

  

parameter to take into account 

humidity and ambient temperature 

(see [30]) (      ) 

31  

  
Stefan-Boltzmann’s constant: 

                       
2, 3, 33, 37, 45  

  reflectivity (-) 49, 50   in [45] 

  
parameter to take into account 

humidity and ambient temperature 
32  



(see [31]) 

   
transmittance of the atmosphere in 

the infrared window (-) 
37  
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