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ABSTRACT 

Human exposure to aflatoxins in foods is of great concern. The aim of this work was to use 

predictive mycology as a strategy to mitigate the aflatoxin burden in pistachio nuts postharvest. 

The probability of growth and aflatoxin B1 (AFB1) production of aflatoxigenic Aspergillus flavus, 

isolated from pistachio nuts, under static and non-isothermal conditions was studied. Four 

theoretical temperature scenarios, including temperature levels observed in pistachio nuts 

during shipping and storage, were used. Two types of inoculum were included: a cocktail of 25 

A. flavus isolates and a single isolate inoculum. Initial water activity was adjusted to 0.87. 

Logistic models, with temperature and time as explanatory variables, were fitted to the 

probability of growth and AFB1 production under a constant temperature. Subsequently, they 

were used to predict probabilities under non-isothermal scenarios, with levels of concordance 

from 90 to 100% in most of the cases. Furthermore, the presence of AFB1 in pistachio nuts could 

be correctly predicted in 70-81 % of the cases from a growth model developed in pistachio nuts, 

and in 67-81% of the cases from an AFB1 model developed in pistachio agar. The information 

obtained in the present work could be used by producers and processors to predict the time for 

AFB1 production by A. flavus on pistachio nuts during transport and storage. 
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1. Introduction 

 Predictive models may provide important data about the probability of mycotoxin 

contamination of foods during shipping and storage, and enable manufacturers to reduce the 

amount of tests and ensure the quality and safety of products and establish an adequate shelf-

life. It is known that sampling and analysis of mycotoxins in nuts is not always an efficient 

control measure, due to the heterogeneous distribution of mycotoxins, in particular aflatoxins 

(AFs)(García-Cela et al., 2013).  

Fungal colonization and /or mycotoxin production are generally influenced by a variety of 

factors such as water activity (aw), temperature (T), substrate or pH. However, it has been 

demonstrated that water availability is the most important environmental factor affecting 

germination and growth of moulds (Holmquist et al., 1983). Most of food commodities prone to 

mycotoxin presence rely on low aw for their safe postharvest life, thus studies in such 

commodities are required including low water availability levels. Moreover, most of the studies 

in predictive mycology focus on the effect of environmental factors, on fungal growth and 

mycotoxins production under static conditions. But in fact, the environmental conditions during 

the food chain change, especially storage temperature can fluctuate. Then it is important to take 

into account these fluctuations during the developing and validation of models, otherwise their 

applicability is compromised. Unfortunately very little information on the modelling of fungal 

germination and growth or mycotoxins production under fluctuating conditions is available 

(Dantigny and Nanguy, 2009; Gougouli and Koutsoumanis, 2012, 2010; Kalai et al., 2014; Peleg 

and Normand, 2013). On the other hand, prediction of bacterial growth under non-isothermal 

conditions has been studied during the past decade, where it has been demonstrated that the 

instantaneous specific growth rate adapts to the changing temperature practically immediately, 

except in extreme cases, when the temperature change is abrupt and close to the boundary of 

growth (Bovill et al., 2000). 

Detection of fungal growth does not imply necessarily the presence of mycotoxins, as not all the 

strains of a mycotoxigenic species are able to produce mycotoxins and, in addition, the 

conditions favorable to growth may not be conducive to mycotoxin production. Moreover, 

growth is a parameter which presents less intraspecific variability, and its kinetics are more 

known, than those of mycotoxin production (Garcia et al., 2009). It is important that the models 



Chapter V 

144 
 

developed to predict how the microorganism will behave under certain conditions account for 

the behavior of a wide range of strains to account for the intraspecific variability. Besides, the 

use of cocktails of strains to forecast the behavior of a species has been proposed by some 

authors (Hocking and Miscamble, 1995; Patriarca et al., 2001; Romero et al., 2007; García et al., 

2014). As working with a bunch of strains is time consuming and costly, the use of a mixed 

inoculum with a variety of the strains to develop the experiment has been studied. Using a 

mixed inoculum, no significant differences between the growth rates of the mean of the single 

strains and the growth rate of cocktail inoculum were found, however a delay in the time to 

growth was observed for the mean of the single inocula, a difference which is even more 

evident when the environment conditions of the experiment are suboptimal (Baert et al., 2007; 

Garcia et al., 2011, 2012, 2014; Romero et al., 2010). Four strains of Aspergillus carbonarius 

differed in maximum ochratoxin A yield, and the toxin accumulation by the mixed inoculum 

showed intermediate levels (Romero et al., 2010). 

 

Pistachio nut (Pistacia vera L.) is one of the most popular tree nuts in the world, and is subjected 

to infection by a variety of microorganisms that can cause foodborne illness, spoilage or toxic 

effect on human (Al-Moghazy et al., 2014). Within these microorganisms, Aspergillus flavus and 

Aspergillus parasiticus, weak opportunistic plant pathogenic fungi (Mojtahedi et al., 1979), are 

the most relevant species. Both species can produce AFs, secondary metabolites produced by 

various strains (Georgiadou et al., 2012). AFs are the most important mycotoxins (World Health 

Organization (WHO) 1998), and the aflatoxin B1 (AFB1) is listed as a carcinogen of group I by the 

International Agency for Research of Cancer (IARC, 1993), and due to their hepatocarcinogenic 

potential, AFs are highly regulated (EC Regulation 165/2010). The maximum limits for AFB1 are 

12 μg/kg for pistachios to be subjected to sorting, or other physical treatment, before human 

consumption or use as an ingredient in foodstuffs, and 8 μg/kg for pistachios intended for direct 

human consumption or use as an ingredient in foodstuffs. According to the RASFF (EU Rapid 

Alert System for Food and Feed) in 2013 there have been 341 notifications related with AFs. 

From the food safety point of view, only mycotoxins entail a hazard, while yeast and moulds 

themselves may cause food spoilage but are not harmful to humans.  
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Nut infections may occur along all the food chain, but are more common to occur during 

preharvest; nevertheless it might occur in the subsequent steps (storage, manufacturing, 

transport and packaging), if minimum preventive measures are not established. During 

postharvest, fungal growth should not occur if the freshly harvested nuts are dried as soon as 

possible to 6% of moisture content and then cool stored. However, shipping of nuts is not 

always carried out under cool conditions, as this is economically costly. It is noticeable that the 

temperature fluctuations during transport and retail storage can affect the quality and food 

safety. High temperature and humidity within the bulk of pistachio nuts during transport and 

storage can provide good conditions for fungal growth and mycotoxin production. In this way, it 

is important to have a good control of the temperatures and humidity during transport and do 

not allow the pistachio bulk to reach a temperature which jeopardizes the safety of the product. 

For this reason it is advisable to install vent pipes in solid-sided trailers or transport them in 

vented pallet bins (Thompson et al., 1997). Moreover, air flow induced by transport or by fans 

can be used for cooling (Brusewitz, 1973; Kader et al., 1978). 

 

For many years, AFs have been reported in pistachios (Abdulkadar et al., 2000; Ariño et al., 

2009; Cheraghali et al., 2007; Dini et al., 2013; Fernane et al., 2010a, 2010b), and many batches 

have to be rejected (Bui-Klimke et al., 2014).Developing a model capable of predicting the 

presence of AFs in pistachio nuts may be highly suitable for the pistachio production and trade. 

Therefore the general objective of the present research was to develop a predictive model to 

assess the effect of temperature on the growth rate/aflatoxin production of A. flavus under non-

isothermal conditions, taking into account the intra- species variability. Predictive models in 

food microbiology can be splitted, according to their aim, into two main categories: kinetic and 

probability models. In the present study we will focus on probabilistic models, which determine 

whether or not growth or toxin production can occur or exceed a certain level under specific 

conditions (Lindblad et al. 2004; Marín et al. 2012). Given the above, the specific objectives of 

the present study were to: i) study the role of temperature on the growth of A. flavus; ii) model 

the probability of growth/AF production of A. flavus under non-isothermal conditions; iii) 

investigate the effect of the growth medium (pistachio agar and pistachio nuts) on such models; 

iv) compare the probability of growth and AF production of a single and a mixed inoculum of A. 
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flavus; v) validate the derived models on AFB1 data generated directly in pistachio nuts under 

non-isothermal conditions.  

 

2. Materials and methods 

2.1. Selection of aflatoxigenic isolates 

We used twenty-five A. flavus isolates in the cocktail taking into account the studies developed 

by García et al. (2012).  All of them were isolated from Iranian pistachio nuts purchased from a 

wholesaler in Lleida, Catalonia, Spain. Briefly, samples of pistachio were plated on DRBC, and the 

isolated colonies  were identified according to the taxonomical descriptions of Pitt and Hocking 

(2009). Twenty-five of the isolates found to produce AFs in coconut agar medium (CAM), were 

selected for the trials conducted in the present study. 

 

2.2. Experimental design 

A full factorial design was developed, where factors involved were: temperature, medium and 

inoculum. The inoculum factor included two levels: single inoculum of isolate TA-3.267 (taken at 

random from the 25) and mixed inoculum of 25 isolates. Regarding medium, the whole 

experiment was carried out in both pistachio agar and pistachio nuts (preparation described 

later). Regarding temperature, nine profiles were tested: five static temperatures (15, 17.5, 20, 

22.5 and 25 °C), plus four different scenarios of dynamic temperature levels (upward shift (US), 

downward shift (DS), upward ramp (UR) and downward ramp (DR) (Fig. 2, dotted lines). These 

temperature levels were chosen based on the levels which may be encountered during shipping 

of pistachios at room temperature. Both the static and changing temperatures were kept for a 

42 days period. aw was initially adjusted to 0.87, corresponding to about 15% moisture content, 

this value was chosen to simulate a postharvest product which was not safely dried, although 

still it was far from the optimal for fungal growth. The experiments were carried out with a 

minimum of ten replicates per treatment. 

 

 

2.3. Preparation of media 

Pistachio extract Agar (3%) (PEA): Pistachio extract was prepared by boiling 60g of ground 

pistachio in 1L distilled water for 30 min. After that, the extract was filtered and the amount of 
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evaporated water re-added. This concentrated extract was diluted to 3% by addition of 

water+glycerol for a final aw of 0.87. 20g of agar were added per L of medium and it was 

autoclaved and poured into 90 mm sterile Petri dishes under aseptic conditions. A total of 12 

plates per condition and type of inoculum (9x2x12, a total of 216 plates) were prepared. 

Pistachio nuts:  Iranian shelled pistachios were purchased from a wholesaler in Lleida, Catalonia, 

Spain. An initial analysis showed that AFB1 concentration was under the LOD. Pistachios were 

autoclaved (15 minutes at 121°C) in 1-L bottles filled with 300 g of pistachios. Once sterilized, 

the aw was adjusted to 0.87, by aseptically adding 1mL/10g of distilled water (Marín et al., 2008) 

to the pistachios. The bottles were cooled down to approximately 4 °C for 48 h with periodic 

hand-shaking during this period. After that, pistachios were placed in Petri dishes (55 mm 

diameter; 10g in each Petri dish) under aseptic conditions. A total of 10 plates per condition and 

type of inoculum (9x2x10, a total of 180 plates) were prepared. 

aw values in PEA and pistachio nuts were determined using an Aqualab CX2T (Decagon Devices, 

Pullman, WA, USA). 

 

2.4. Preparation of spore suspensions, inoculation and incubation 

The 25 aflatoxigenic isolates were grown on potato dextrose agar (PDA) medium at 30 °C for 7 

days, to enable significant sporulation, and  spores were collected by scraping the colony with a 

sterile spatula and then suspended in sterile distilled water containing Tween 80 (0.1% v/v). 

After counting the spores on a Thoma chamber, the spore suspensions were adjusted to 104 

spores/mL. Two types of inocula were prepared: a cocktail inoculum with all 25 isolates at a final 

concentration of 104 spores/mL and a single inoculum of isolate 3.267, at the same 

concentration.  

5 µL of the spore suspensions were point-inoculated on the center of each Petri-dish, on both 

PEA and pistachio nuts, under aseptic conditions, having then about 50 spores in each Petri 

plate. PEA and pistachio Petri-dishes were placed separately in sets of temperature inside plastic 

containers together with beakers containing distilled water in order to avoid media dehydration 

and allow moisture absorption from the environment. The containers were kept in computer 

controlled incubators (Memmert ICP-600, United Kingdom) set at the conditions designed for 

this study (see experimental design) for 42 days. 
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PEA and nuts Petri dishes were daily checked for visible growth, using a binocular magnifier 

(ZEISS, Stemi DV4) for easy viewing in the case of pistachios nuts. 

For AF analysis, a preliminary trial was performed in order to determine which range of colony 

diameters were going to be analysed in order to save time and costs. This preliminary 

experiment was carried out with strain 3.267  in pistachio nuts following the same methodology 

as described above but at 3 constant temperature levels (15, 22 and 30 °C). In this case 

pistachios were at 0.92 aw. From this experiment a relationship between colony diameter and AF 

presence was established (see section 3.1) and used to take the decision on the Petri plates that 

would undergo AF analysis in each particular day in both PEA and pistachio nuts. Consequently, 

once positive growth had been recorded, 10/12 existing Petri plates per treatment were taken 

from incubation at different time points, always when colonies were in the range 4-20 mm 

diameter (see section 3.1). While a significant number of PEA plates were analysed, only a few 

(57) colonies grown on pistachio were analysed, which were used for validation purposes 

(section 2.7).  

 

2.5. Detection and quantification of AFs by HPLC 

Extraction of the AFs from the agar was carried out by removing a 5-mm agar plug from the 

centre of each colony. Plugs were weighed and introduced into 3-mL vials. Methanol (1 mL) was 

added, and the vials were shaken for 5 s (Autovortex SA6, Surrey, UK). After being left stationary 

for 60 min, the extracts were shaken again, filtered (MillexR SLHV 013NK, Millipore, Bedford, 

MA, USA) and dried in a nitrogen stream. 

For pistachio nuts, the moldy ones were weighed and ground. Each ground sample was 

extracted (1+4 w/v) with 60% acetonitrile in water by blending for 20 min. Extracts were filtered 

and the filtrate was diluted 1:24 in phosphate-buffered saline (PBS) pH 7.4. Diluted extracts 

were passed through immunoaffinity columns (Easi-extract Aflatoxin immunoaffinity columns, 

R-Biopharm Rhône) at a flow rate of 2–3mL/min. Later, the columns were washed with 20 mL of 

PBS at a flow rate of 5 mL/min. Desorption was carried out with 3 mL of methanol slowly passed 

through the column and the eluate was finally dried in a nitrogen stream.  

 

All extracts were resuspended with 0.5 mL of methanol + water (50+50 v/v) and a volume of 

100µL was injected in the HPLC system (Waters, Milford, MA, USA). The presence of AFs was 



 

detected and quantified by HPLC with fluorescence detection (

474), using a C18 column (5 µm Waters Spherisorb, 4

(water: acetonitrile: methanol, 70: 17:

were detected in the chromatograms

AFB1 was present but AFB2 was 

common in food, was taken into account.

AFB1, based on a signal-

 

2.6. Model fitting  

A logistic model was used to model the probability of growth and AFB1 production of 

a function of time under static conditions, using R statistical software (R Development Core 

Team, www.R-project.org

growth was calculated as P

time was modelled. Thus t

biological and/or conceptual assumption.

The percentage of plates 

plates. For each condition, data of P

Where logit(P) represents ln[P/(1

growth initiation or AFB1 production

time of incubation (d) and b

The goodness of fit of the models w

between observed and predicted values with a cut off of 0.5 

 

For the non-isothermal prediction, the approach of  

particular, they estimated the probability of the end of lag time for 

methodology could be applied here. Briefly, an R algorithm was built that for each time point in 
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detected and quantified by HPLC with fluorescence detection (Ȟexc 330 nm; 

474), using a C18 column (5 µm Waters Spherisorb, 4.6 x 250 mm ODS2). The mobile phase 

methanol, 70: 17: 17) was pumped at 1.2 mL/min

were detected in the chromatograms, the former in much higher amount, and

but AFB2 was not detected. Thus, for the present study only AFB1, the most 

common in food, was taken into account. The detection limit of the analysis was 0.1 ng/g

-to- noise ratio of 3:1.  

A logistic model was used to model the probability of growth and AFB1 production of 

a function of time under static conditions, using R statistical software (R Development Core 

project.org, v 2.14.1), with the glm function. The percentage of plates with 

growth was calculated as PG=plates with growth/total plates. For each condition, data of P

Thus the models developed in the present study 

biological and/or conceptual assumption. 

The percentage of plates with AFB1 was calculated as PAF=plates with detected AFB1

plates. For each condition, data of PAF over time was modelled. 

 

) represents ln[P/(1-P)], ln is the natural logarithm, PG or P

initiation or AFB1 production (in the range of 0–1), T is the temperature 

and bi are the coefficients to be estimated. 

The goodness of fit of the models was determined through the calculated %concordance 

between observed and predicted values with a cut off of 0.5 probability.

isothermal prediction, the approach of  Koseki and Nonaka 

they estimated the probability of the end of lag time for Bacillus cereus

methodology could be applied here. Briefly, an R algorithm was built that for each time point in 

330 nm; Ȟem 460 nm) (Waters 

250 mm ODS2). The mobile phase 

17) was pumped at 1.2 mL/min. Both AFB1 and AFB2 

, the former in much higher amount, and in some cases 

study only AFB1, the most 

the analysis was 0.1 ng/g of 

A logistic model was used to model the probability of growth and AFB1 production of A.flavus as 

a function of time under static conditions, using R statistical software (R Development Core 

, v 2.14.1), with the glm function. The percentage of plates with 

ates with growth/total plates. For each condition, data of PG over 

he models developed in the present study are not based on any 

 

with detected AFB1/total 

 

or PAF is the probability of 

), T is the temperature (°C), t is the 

as determined through the calculated %concordance 

probability. 

Koseki and Nonaka (2012) was used; in 

Bacillus cereus, but the same 

methodology could be applied here. Briefly, an R algorithm was built that for each time point in 
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the variable temperature profiles it took the estimation for the previously built logistic model 

using the constant temperature profiles, taking as initial assumption that the previous 

temperature levels in the profile did not affect the prediction at a certain time point. This simple 

data-driven empirical modeling procedure using logistic regression offers the possibility of 

considering the intermediate lag time as a change in the probability of the end of lag time 

(Koseki and Nonaka, 2012). 

The goodness of prediction under non-isothermal conditions was also determined through the 

calculated % concordance between observed and predicted values with a cut off of 0.5 

probability. 

Finally, we worked on the assumption that no degradation of AFB1 took place. 

 

2.7. Validation 

Growth models in PEA and pistachios and AFB1 model in PEA were validated on AFB1 data 

obtained from the pistachio experiment. The aim was to assess the goodness of prediction of 

AFB1 production probability in pistachio nuts of the 3 different models. For validation, colonies 

of size 5-20mm of diameter grown in pistachios were taken at different times from incubation 

an analysed for AFB1 presence; these colonies should be in the boundary of AFB1 

presence/absence. The results were compared with the predicted probability through growth 

models in agar and nuts, and AFB1 model in agar. 

 

3. Results  

3.1. Assessing the colony sizes leading to AFB1 presence 

The preliminary study on the relationship between colony diameter and AFB1 production for 

strain 3.267 in pistachio nuts at 15, 22 and 30 °C and 0.92 aw revealed that colonies with mean 

diameter smaller than 4 mm did not contain AFB1, while colonies with diameters over 12 mm 

always contained AFB1 regardless of the temperature level (Table 1, supplementary material). 

However, colonies between 4 and 12 mm of diameter presented different results. Consequently, 

for the present study, to save laboratory work and expenses, it was decided to specifically 

analyze colonies in the range 4-20 mm, assuming that smaller colonies do not contain 

detectable levels of toxin, while bigger colonies were always scored as positive for AFB1 

presence in section 3.6. 
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3.2. Modelling of A. flavus growth probability in pistachio agar under static temperature 

conditions 

No growth was observed at 15 °C in any case after 42 days, thus the models were built without 

this temperature level.  

 

Table 1. Coefficients ± standard errors for models developed at constant temperature levels. 

 Growth model in PEA AFB1 model in PEA Growth model in nuts 

Inoculum type Single Cocktail Single Cocktail Single Cocktail 

b0 -1214.1±255.8 -552.6±69.5 -

60.9±4.8 

-61.2±4.9 -

14.6±0.8 

-40.0±6.1 

B1 94.8±20.1 43.5±5.5 2.3±0.2 2.3±0.2 0.5±0.0 2.9±0.6 

B2 -1.9±0.4 -0.9±0.1 ns ns ns -0.1±0.0 

B3 4.1±0.8 1.7±0.2 0.5±0.0 0.5±0.0 0.1±0.0 0.2±0.0 

Residual 

deviance 

47.5 127.0 331.9 331.5 1121.3 1036.2 

Null deviance 2002.7 2104.5 1992.9 1999.2 1790.5 1839.1 

ns, not significant at p=0.05 

3.2.1. Single isolate of A. flavus 

All factors included in the probability model were significant (T, T2, t, p<0.01, Table 1), with 

99.6% concordance between observed and predicted values with a cut off of 0.5. The model 

shows an increasing delay in growth initiation with decreasing temperature, from about 5 days 

at 24-26 °C to about 34 days at 17 °C, although the increase in probability was similarly sharp at 

17-24 °C (Fig. 1a, supplementary material). No growth was predicted before 40 days at 16 °C. 

 

3.2.2 Cocktail inoculum 

Similarly, when working with the 25 strains-based cocktail inoculum, all factors were significant 

(T, T2, t, p<0.01, Table1), with 98.8% concordance between observed and predicted values with 



 

a cut off of 0.5. Looking at the coef

significantly different at p=0.05. This second model showed slightly shorter delays in growth, 

mainly at the higher temperature levels, however, 

(P=1) was similar, leading to probability curves with slightly smaller slopes. This may be due to 

the presence in the inoculum of faster growing isolates than our single one. No growth was 

predicted before 40 days at 16 °C (Fig. 1b, supplementary material).

Figure 1. Observed growth probability of 

non-isothermal conditions (o) and predicted values (

 

3.3. Modelling of A. flavus

 

Probability of growth was calculated for non

at isothermal conditions, assuming no past accumulated temperature effect, as assumed in 

Koseki and Nonaka (2012) for 

(US and UR), the model predicted growth 3

experiments (data not shown). This suggests that a memory effect occurred. 

the R algorithm was modified and, instead of using the point prediction for the actual 
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a cut off of 0.5. Looking at the coefficients of both models (single and mixed inocula), they were 

significantly different at p=0.05. This second model showed slightly shorter delays in growth, 

mainly at the higher temperature levels, however, the time at which all plates exhibited growth 

, leading to probability curves with slightly smaller slopes. This may be due to 

the presence in the inoculum of faster growing isolates than our single one. No growth was 

predicted before 40 days at 16 °C (Fig. 1b, supplementary material). 

 

Observed growth probability of A. flavus TA-3.267 in pistachio extract agar (PEA) under 

isothermal conditions (o) and predicted values (-). a) DS; b) DR; c) US; d) UR

flavus growth probability in pistachio agar under non

Probability of growth was calculated for non-isothermal profiles based on modeled probabilities 

at isothermal conditions, assuming no past accumulated temperature effect, as assumed in 

Koseki and Nonaka (2012) for B. cereus lag time. However, for increasing temperature profiles 

(US and UR), the model predicted growth 3-5 days before it was observed in non

experiments (data not shown). This suggests that a memory effect occurred. 

was modified and, instead of using the point prediction for the actual 

ficients of both models (single and mixed inocula), they were 

significantly different at p=0.05. This second model showed slightly shorter delays in growth, 

the time at which all plates exhibited growth 

, leading to probability curves with slightly smaller slopes. This may be due to 

the presence in the inoculum of faster growing isolates than our single one. No growth was 

 

3.267 in pistachio extract agar (PEA) under 

). a) DS; b) DR; c) US; d) UR 

under non-isothermal conditions 

isothermal profiles based on modeled probabilities 

at isothermal conditions, assuming no past accumulated temperature effect, as assumed in 

lag time. However, for increasing temperature profiles 

5 days before it was observed in non-isothermal 

experiments (data not shown). This suggests that a memory effect occurred. As an alternative, 

was modified and, instead of using the point prediction for the actual 
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temperature in the variable temperature profile, the mean temperature in the preceding 10 

days was used for the prediction.  On the other hand, under decreasing temperature profiles, 

decreasing probabilities were estimated over time as a result of decreasing temperatures and 

consequent no-growth prediction. To overcome this issue, and in order to obtain a model 

suitable to be applied to real situations, we forced the R algorithm to maintain the predicted 

value over time at the higher probability value reached. Taking this modification into account, 

the percentage of concordance was 100% for DS and UR profiles, and 98% for DR and US profiles 

(Fig.1).  Interestingly, when the change of temperature was slow and held constant, the 

initiation of growth occurred sharply, in a range of 1-2 days, as it was with a sudden change in 

temperature. 

 

Very similar results were observed for a cocktail inoculum. Although the observed values were 

slightly different, the initiation of growth occurred in the same days under non-isothermal 

conditions, and lasted for the same periods of time, thus the levels of concordance with the 

predicted values through the model developed under isothermal conditions were almost the 

same (100, 95, 98 and 98% for DS, DR, US and UR, respectively) (Fig.2).  

 

3.4. Modelling of A. flavus growth probability in pistachio nuts under static temperature 

conditions 

3.4.1. Single isolate of A. flavus 

The logistic regression applied to binary data obtained in pistachio nuts showed that T and t 

were significant, but not T2, thus this term was omitted from the model (Table 1). The resulting 

model showed 81% concordance between observed and predicted data with a cut off level of 

0.5. The concordance is clearly lower than in agar as a result of a much more heterogeneous 

growth in pistachio nuts, and lower repeatability. When comparing this model for isolate 3.267 

with that in agar, a higher variability in the initiation of growth was observed, evidenced by the 

smaller slopes in the Figure 2a (supplementary material), and by the fact that probability of 1 

was rarely reached. On the other hand the fitted model overestimated the probability of growth 

during the first days, as growth was not observed till 6th, 9th and 18th day at 25, 22.5 and 20 °C, 

while the model estimated probabilities of growth of 0.05-0.15 before these days. 

 



 

3.4.2. Cocktail inoculum 

When a cocktail inoculum was used, all factors

concordance of 83%. When comparing the confidence intervals of the estimated coefficients for 

the two inocula, it was clear that both models were different, thus the inclusion of more strains 

in the inoculum led to a different overall behavior. In this case higher slopes in the probability 

curves were observed compared to the single inoculum (Fig.2b, supplementary material), with 

higher probabilities of growth from the beginning, suggesting that some faster 

the 25 might led the behavior of the combined inoculum. 

Fig.ure 2. Observed growth probability of 

(PEA) under non-isothermal conditions (o) and predicted values (
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When a cocktail inoculum was used, all factors were significant (Table 1), with a percentage of 

concordance of 83%. When comparing the confidence intervals of the estimated coefficients for 

the two inocula, it was clear that both models were different, thus the inclusion of more strains 

m led to a different overall behavior. In this case higher slopes in the probability 

curves were observed compared to the single inoculum (Fig.2b, supplementary material), with 

higher probabilities of growth from the beginning, suggesting that some faster 

the 25 might led the behavior of the combined inoculum.  

Observed growth probability of A. flavus mixed inoculum in pistachio extract agar 

isothermal conditions (o) and predicted values (-). a) DS; b) DR; c) US; 
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curves were observed compared to the single inoculum (Fig.2b, supplementary material), with 

higher probabilities of growth from the beginning, suggesting that some faster isolates among 
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occurred both under constant and variable temperature profiles, except at 15 °C (Fig. 3). 

Previous studies used the same experimental design but placing glycerol

beakers instead of water; thus in the present work the conditions were less favorable to 

dehydration. However, the low initial aw value chosen here, 0.87 aw, evidenced the limitations of 

ental set up to maintain the aw value at low levels. According to the sorption curve 

of pistachio nuts published in Marin et al. (2008), while a decrease in moisture content from 50 

to 18% involves a decrease in aw from 0.99 to 0.90 aw, a loss of moisture 

(from 18 to 10%) implies a decrease of aw from 0.90 to 0.80. Thus the shape of the sorption 

curve determines the higher degree of dehydration, due to warm incubation temperature, when 

is under 0.90 aw.  

 values during incubation of the different treatments in pistachio nuts.

.flavus growth probability in pistachio nuts under non

The same assumptions than for non-isothermal predictions in agar were 

single inoculum, under ascending temperature profiles a good prediction was observed (93% 

and 100% concordance for US and UR, respectively) (Fig. 4). For descending temperature 

profiles, the predicted probabilities of growth were always under 0.2, while observed values for 

occurred both under constant and variable temperature profiles, except at 15 °C (Fig. 3). 

mental design but placing glycerol-water solutions in the 

beakers instead of water; thus in the present work the conditions were less favorable to 

, evidenced the limitations of 

value at low levels. According to the sorption curve 

of pistachio nuts published in Marin et al. (2008), while a decrease in moisture content from 50 

, a loss of moisture content as small as 8% 

from 0.90 to 0.80. Thus the shape of the sorption 

curve determines the higher degree of dehydration, due to warm incubation temperature, when 

 

values during incubation of the different treatments in pistachio nuts. 

nuts under non-isothermal conditions 

isothermal predictions in agar were applied here. For the 

temperature profiles a good prediction was observed (93% 

and 100% concordance for US and UR, respectively) (Fig. 4). For descending temperature 
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continuously decreasing temperature were always under 0.3 (100% concordance). However, in 

the step descending profile, the observed probability reached values over 0.5 after 35 days, 
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continuously decreasing temperature were always under 0.3 (100% concordance). However, in 

the step descending profile, the observed probability reached values over 0.5 after 35 days, 

leading to a decreased concordance level (81%). 

Observed growth probability of A. flavus TA-3.267 in pistachio nuts under non

isothermal conditions (o) and predicted values (-). a) DS; b) DR; c) US; d) UR.

For the cocktail inoculum, the concordance was similar, 98 and 100% fo

and 98% for the US profile, while the prediction at the step descending profile failed because 

low probability was predicted while 0.8 probability was attained in the observed data (Fig. 5). In 

both inoculum types a lower slope of the probability curve was observed under increasing

temperature levels when the increase was slow.  

continuously decreasing temperature were always under 0.3 (100% concordance). However, in 

the step descending profile, the observed probability reached values over 0.5 after 35 days, 
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descending profile failed because 
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Observed growth probability of A. flavus mixed inoculum in pistachio nuts under non

isothermal conditions (o) and predicted values (-). a) DS; b) DR; c) US; d) UR.

When comparing with non-isothermal agar data, it was observed that the initiation of growth 

occurred at a similar time point; however, in pistachio nuts a longer time was taken for a 

significant amount of plates to show growth and, most of the times the probability did not reach 

1. Consequently, the predicted probability lines showed smaller slopes in pistachio nuts. If the 

agar models were used to predict growth in pistachio nuts, either at isothermal or non

isothermal regimes, the predictions would fail in the long term, due to overestimation of 

 

mixed inoculum in pistachio nuts under non-

) DR; c) US; d) UR. 

isothermal agar data, it was observed that the initiation of growth 

occurred at a similar time point; however, in pistachio nuts a longer time was taken for a 

most of the times the probability did not reach 

1. Consequently, the predicted probability lines showed smaller slopes in pistachio nuts. If the 

agar models were used to predict growth in pistachio nuts, either at isothermal or non-

predictions would fail in the long term, due to overestimation of 
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3.6. Modelling of A. flavus AFB1 production probability in pistachio agar under static 

temperature conditions 

3.6.1. Single isolate of A. flavus 

The squared term for temperature was not significant according to the logistic regression model 

(Table 1). The logistic model for prediction of toxin accumulation showed that less than 0.2 

probability of AFB1 production would be expected at <18 °C for 40 days. While AFB1 production 

was probably overestimated in the first days at 26 °C, it would start as early as about 2 days at 

24 °C, with probability over 0.5 at this temperature before 15 days. The probability curves at the 

different temperatures were quite parallel, suggesting that although the initiation of production 

was delayed by decreasing temperatures, the shift from 0 to 1 probability occurred in about 20 

days, regardless of the temperature level (Fig. 3, supplementary material). In this case the 

concordance between observed and predicted values was of 98.6%; the discrepancies occurred 

at 22.5 and 25 °C during the 4-6 days around the transition from non-production to production. 

 

3.6.2. Cocktail inoculum 

For the cocktail inoculum, T2 was neither significant (Table 1) and a 95.6% concordance between 

observed and predicted values was obtained. The non-concordant values occurred at 22.5 and 

25 °C during the days around the transition from 0% production to 100% production. The 

predicted probabilities were very similar to those for the single inoculum, and looking at the 

confidence intervals of the coefficients of both models, they were not significantly different (Fig. 

3, supplementary material).  

 

3.7. Modelling of A.flavus AFB1 production probability in pistachio agar under non-isothermal 

conditions 

AFB1 production under decreasing temperature profiles was only detected in a reduced number 

of plates in the first days. After that, growth of colonies stopped and so did the toxin production, 

thus no additional AFB1 positive plates were recorded. In these profiles, the AFB1 positive cases 

were delayed compared to growth-positive ones, and the attained probability was lower. For 

the step increase profile, no positive plate was detected till day 23, but in the 26th day 

probability of 1 was reached; by contrast, the shift from 0 to 1 probability of growth occurred 

after 18-19 days. Finally, different situations were observed in the continuously increasing 



 

profile, where AFB1 was not detected with the single inoculum, but with the cocktail inoculu

reached probability 1 after 29 days; however, the growth profiles were similar in both cases: the 

shift occurred between 19

one (Fig. 3, supplementary material).

 

Figure. 6. Observed AFB1 production probability of 

(PEA) under non-isothermal conditions (o) and predicted values (
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profile, where AFB1 was not detected with the single inoculum, but with the cocktail inoculu

reached probability 1 after 29 days; however, the growth profiles were similar in both cases: the 

shift occurred between 19-23 days in the cocktail inoculum and from 21

one (Fig. 3, supplementary material).  

Observed AFB1 production probability of A. flavus TA-3.267 in pistachio extract agar 

isothermal conditions (o) and predicted values (-). a) DS; b) DR; c) US; d) UR.

profile, where AFB1 was not detected with the single inoculum, but with the cocktail inoculum 

reached probability 1 after 29 days; however, the growth profiles were similar in both cases: the 

23 days in the cocktail inoculum and from 21-22 days in the single 

 

3.267 in pistachio extract agar 

). a) DS; b) DR; c) US; d) UR. 



 

Figure. 7. Observed AFB1 production probability of 

agar (PEA) under non-isothermal conditions (o) and predicted values (

UR.  

 

In this case, the same assumption made for the growth models, as well as the ‘memory’ 

correction were used. Without such correcti

decreasing temperature profiles was predicted, which suggests that the metabolic adaptation to 

toxin accumulation occurred in the preceding days under suitable temperatures. On the other 

hand, in the increasing temperature profiles the prediction of toxin production was in much 

earlier days that in fact occurred, suggesting in this case a delay in cells predisposition to 

secondary metabolism due to lower past temperature levels. 

Once the correction was inclu

prediction under decreasing temperature profiles, while an improvement was observed under 

increasing temperatures (Fig. 6 and 7), in particular at the step increase for which the level of 

concordance increased from 76 to 95%, using the single inoculum. Using the modified algorithm 
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Observed AFB1 production probability of A. flavus mixed inocul

isothermal conditions (o) and predicted values (-

In this case, the same assumption made for the growth models, as well as the ‘memory’ 

correction were used. Without such correction, estimated probability lower than observed in 

decreasing temperature profiles was predicted, which suggests that the metabolic adaptation to 

toxin accumulation occurred in the preceding days under suitable temperatures. On the other 

ing temperature profiles the prediction of toxin production was in much 

earlier days that in fact occurred, suggesting in this case a delay in cells predisposition to 

secondary metabolism due to lower past temperature levels.  

Once the correction was included in the algorithm, there was not a clear improvement for the 

prediction under decreasing temperature profiles, while an improvement was observed under 

increasing temperatures (Fig. 6 and 7), in particular at the step increase for which the level of 

ordance increased from 76 to 95%, using the single inoculum. Using the modified algorithm 

 

mixed inoculum in pistachio extract 
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In this case, the same assumption made for the growth models, as well as the ‘memory’ 

on, estimated probability lower than observed in 

decreasing temperature profiles was predicted, which suggests that the metabolic adaptation to 

toxin accumulation occurred in the preceding days under suitable temperatures. On the other 

ing temperature profiles the prediction of toxin production was in much 

earlier days that in fact occurred, suggesting in this case a delay in cells predisposition to 

ded in the algorithm, there was not a clear improvement for the 

prediction under decreasing temperature profiles, while an improvement was observed under 

increasing temperatures (Fig. 6 and 7), in particular at the step increase for which the level of 

ordance increased from 76 to 95%, using the single inoculum. Using the modified algorithm 
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the levels of concordance for the cocktail inoculum were 100, 100, 92.9 and 90.5% for DS, DR, 

US, and UR, respectively, with a cut off of 0.5. 

 

Table 2. Observed detected AFB1 presence (>LOD) in pistachio nuts under different 

time/temperature conditions and predicted probability values through growth models in 

pistachio agar and nuts, and AFB1 model in agar under the same conditions. Experiments carried 

out using a single inoculum of A. flavus 3.267. 

Condition 
Mean 
colony 

diameter 

AFB1 
presence 
(>LOD) 

Predicted 
P from 
growth 

model in 
agar 

Predicted 
P from 
growth 

model in 
pistachio 

Predicted 
P from 
AFB1 

model in 
agar 

Predicted 
P from 
AFB1 

model in 
agar 

(cocktail) 

6d/DS 5.5 - 0.89 0.17 0.20 0.25 
6d/25 °C  5.5 - 1.00 0.19 0.29 0.35 
6d/25 °C 14 - 1.00 0.19 0.29 0.35 
6d/CD  5 - 0.99 0.13 0.06 0.07 
6d/DS  4.5 - 0.89 0.17 0.20 0.25 
6d/DS  5.5 - 0.89 0.17 0.20 0.25 
6d/DS  7 - 0.89 0.17 0.20 0.25 
7d/25 °C  6 - 1.00 0.21 0.40 0.47 
8d/22.5 °C  5 - 0.68 0.08 0.00 0.00 
13d/25 °C  11 - 1.00 0.37 0.93 0.94 
13d/22.5 °C  5.5 - 1.00 0.15 0.04 0.05 
18d/20 °C  5 - 0.99 0.09 0.00 0.00 
18d/UR  11.5 + 0.00 0.06 0.00 0.00 
21d/22.5 °C  6 + 1.00 0.33 0.70 0.73 
21d/US  8.5 - 1.00 0.15 0.02 0.02 
21d/US  5 - 1.00 0.15 0.02 0.02 
21d/US  9 - 1.00 0.15 0.02 0.02 
21d/US  12 - 1.00 0.15 0.02 0.02 
21d/UR  5.5 - 1.00 0.13 0.01 0.01 
21d/UR  8.5 - 1.00 0.13 0.01 0.01 
28d/US  15 + 1.00 0.81 1.00 1.00 
32d/25 °C  14 - 1.00 0.88 1.00 1.00 
33d/17.5 °C  7.5 - 1.00 0.17 0.01 0.01 
33d/20 °C  11 - 1.00 0.42 0.74 0.75 
33d/20 °C  17 + 1.00 0.42 0.74 0.75 
33d/US  20 + 1.00 0.89 1.00 1.00 
34d/UR  8 - 1.00 0.86 1.00 1.00 

Concordance 
observed/predicted 

  15% 81% 81% 81% 
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Table 3. Observed detected AFB1 presence (>LOD) in pistachio nuts under different 

time/temperature conditions and predicted probability values through growth models in 

pistachio agar and nuts, and AFB1 model in agar under the same conditions. Experiments carried 

out using a single a mixed inoculum of 25 isolates. 

Condition 
Mean 
colony 

diameter 

AFB1 
presence 
(>LOD) 

Predicted P 
from growth 

model in 
agar 

Predicted P 
from growth 

model in 
pistachio 

Predicted P 
from AFB1 
model in 

agar 

4d/25 °C   5.5 - 0.29 0.25 0.17 
4d/DS 3.5 - 0.29 0.25 0.17 
4d/DS   7 - 0.29 0.25 0.17 
6d/25 °C   5 - 0.93 0.32 0.35 
6d/DS   7 - 0.70 0.28 0.25 
8d/DR   5 - 0.99 0.32 0.09 
9d/25 °C   10.5 - 1.00 0.42 0.70 
11d/DS   7.5 + 0.70 0.28 0.25 
13d/20 °C   6.5 - 0.00 0.13 0.00 
13d/20 °C   7 - 0.00 0.13 0.00 
13d/20 °C   5 - 0.00 0.13 0.00 
13d/22.5 °C   6.5 - 1.00 0.39 0.05 
13d/22.5 °C   7.7 - 1.00 0.39 0.05 
13d/25 °C   6 - 1.00 0.58 0.94 
13d/25 °C   10 - 1.00 0.58 0.94 
15d/22.5 °C   5 - 1.00 0.46 0.12 
18d/22.5 °C   10 - 1.00 0.58 0.38 
18d/25 °C   12 - 1.00 0.75 0.99 
19d/US   10.5 - 0.00 0.11 0.00 
19d/US   5 - 0.00 0.11 0.00 
21d/US   12 - 1.00 0.82 0.02 
21d/US   15.5 - 1.00 0.41 0.02 
21d/UR   8 - 1.00 0.41 0.01 
22d/US   17 + 1.00 0.34 0.02 
28d/UR   14 + 1.00 0.59 0.98 
28d/UR   14.5 - 1.00 0.86 0.98 
33d/20 °C   13.5 - 1.00 0.86 0.75 
33d/25 °C   20.5 + 1.00 0.77 1.00 
33d/US   17 - 1.00 0.97 1.00 
34d/UR   5.5 - 1.00 0.97 1.00 

Concordance 
observed/predicted 

  40% 70% 67% 
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3.8. Validation of the obtained models for prediction of AFB1 data obtained from pistachio nuts 

 

The results showed that the prediction of growth in pistachio agar differed from the detected 

toxin, which were only concordant in 15/40% of the cases for single and mixed inoculum, 

respectively (mostly, false positives) (Tables 2 and 3). Moreover, comparing the conditions in 

which toxin was detected in nuts with those in which probability of growth in nuts was over 

0.50, there was a 81 and 70% of concordant cases in the single and cocktail inoculum, 

respectively (although both false negatives and false positives were observed, in the mixed 

inoculum most of them were false positives, in concordance with a narrower set of conditions 

allowing AFB1 production than growth). Finally, the concordance between probabilities 

predicted for AFB1 presence in pistachio agar and observations in pistachio nuts was of 81 and 

67%, for single and cocktail inoculum, respectively. Thus the development of models for 

prediction of AFB1 presence in nuts could be based on either AFB1 experiments on agar or 

growth experiments in pistachio nuts. Still, the prediction was not accurate; however, even in 

the event of development of models from AFB1 data in situ in pistachio nuts the accuracy would 

not probably be higher. This is illustrated by the fact that, for example, the observed data in UR 

in the single inoculum where toxin was detected after 18 days but not after 21 and 34 days; 

when checking the colony diameters they were 11.5, 5.5/8.5 and 8 mm in the colonies analysed 

at the 18th, 21st and 34th days. This suggests that colony diameters in pistachio nuts are quite 

variable, and a good correlation with time may not be possible. As a result, the prediction of 

AFB1 along time may also be inaccurate. As an alternative, both time and colony sizes could be 

included as model terms. 

Moreover, looking at the prediction of the observed toxin production by the single inoculum in 

nuts, using the model for AFB1 production developed in agar with the cocktail inoculum, the 

level of concordance was the same (81%) as when the model was developed for the single 

inoculum. This suggests that the cocktail inoculum would represent the behavior of this 

particular single isolate. 
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4. Discussion 

According to the Transport Information Service of the Federation of the German Insurance 

Association (2014), the travel temperature of 0 °C is the ideal temperature for achieving the 

longest possible storage life, but higher travel temperatures (5-25 °C) are feasible (depending 

upon the duration of the voyage), so this product need not necessarily be carried as chilled 

goods, as long as ventilated containers are used. This German Federation recommends initial 

moisture content (mc) of 4-6% for safe travel, however, in the present work mc was initially 

adjusted to a somewhat risky value of 13% mc, equivalent to 0.87 aw, which would allow A. 

flavus development but far away from its optimum. Focusing just in this single low aw level, led 

as to realize that, while the classical methodological approach of initially adjusting aw values and 

consider them constant for the whole duration of experiments was good for the agar 

experiments, it was not for nut ones where although water beakers were included in the closed 

containers, aw decreased with time at temperature regimes >15 °C. Unfortunately, this decrease 

in aw does not probably occur during real bulk transport, although constant aw values are neither 

expected. As fluctuations in the aw levels are expected as a result of temperature fluctuations, 

for further development of models it would be important to characterize the aw variation as a 

function of temperature in bulk pistachio nuts. Previous models have been published on A. 

flavus growth, mostly kinetic models, including in general aw levels in the range 0.80-0.99, where 

data were produced in agar media, except for some works in maize (Samapundo et al., 2007; 

Yue et al., 2013) and rice (Mousa et al., 2013, 2011)), and the minimum aw for growth has been 

reported  around 0.82.  Similarly, minimum aw for AF production has been reported at 0.82-0.86 

in rice (Mousa et al., 2013, 2011). AF production has been rarely included in such models, due to 

the complexity and cost of building primary models. There are no additional existing works on 

the single effect of temperature at a constant aw level. 

 

4.1. Model building under isothermal conditions 

Our results on growth probabilities were concordant in general with other studies performed on 

mycelial growth of A. flavus (Astoreca et al., 2012; Marín et al., 2012; Moghadam and 

Hokmabadi, 2010; Mousa et al., 2013).  Probabilistic models reporting mould growth or 

mycotoxin production are scarce, both under constant and dynamic conditions. In 2001, the first 

one was published, using the logistic regression to develop predictive model to predict the 
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probability of growth of Aspergillus niger and Penicillium spinulosum in response to different 

factors (Battey et al., 2001). Subsequently, other authors applied them to A. flavus (Astoreca et 

al., 2012; Marín et al., 2009), but none included dynamic conditions. An observation made from 

our data is that due to the symmetrical shape of the logistic model, when conditions are less 

conducive to growth, and thus the slope of the probability curve is smaller, there is an 

overestimation of the probability of growth during the earlier days of incubation, as in those 

days no growth was observed, but the predicted probability did not overtake a 0.20 value. 

 

4.2. Impact of single/mixed inocula in models 

The work was designed to predict the behavior of A. flavus in a representative manner through 

the use of a cocktail inoculum including 25 isolates. Additionally, a single inoculum with an 

isolate taken at random was included in order to have an additional repetition of the 

temperature experiment and, at the same time to get some confirmation of the conclusions in 

Garcia et al. (2014). Certainly, the results showed an earlier initiation of growth in the mixed 

inoculum, although both inocula reached probability 1 in the same time period in agar, while in 

nuts the single inoculum showed delayed probability curves from the beginning to the end of 

the incubation period. Thus the growth probability models were significantly different for the 

two inocula but, interestingly, there was no significant difference among the AFB1 probability 

models. This point must be highlighted as this could imply that although the impact of 

intraspecific differences is known to be much higher in the level of AF produced than on growth, 

the T boundary for toxin production may be more repeatable along individual strains. No 

previous knowledge exists regarding this point. On the other hand, the observed growth/AFB1 

production probabilities for both inocula under non-isothermal conditions were very similar. 

 

4.3. Predicting A. flavus growth and AFB1 production under non-isothermal conditions 

Many studies have been carried out under fluctuating temperature for bacterial pathogens. 

Gompertz, logistic and Baranyi models have been used considering that under non-isothermal 

conditions the momentary growth rate is the isothermal growth rate at the momentary 

temperature at a time that corresponds to its instantaneous population size (Corradini and 

Peleg, 2005). As a result, besides temperature, the parameters become also a function of time. 

Consequently, the integral in the growth equation cannot be solved analytically, but numerically 
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(Runge-Kutta 4th order method) to produce the growth curve. Instead of integrating 

conventional models continuously, in the case of alternating constant temperatures, the models 

can be applied piecemeal (Koutsoumanis, 2001). It is assumed that the bacterial growth rate 

instantaneously takes the corresponding value for the changing temperature levels. While the 

past history of the population since its introduction in the growth medium was considered 

irrelevant by Corradini and Peleg (2005), Juneja et al. (2009) working with Clostridium 

perfringens required the inclusion of a ‘memory parameter’ in their standard model for 

acceptable predictions in cooked ground chicken.  In our case, when the models were applied 

piecemeal to the non-isothermal situation, delayed predicted values were observed under 

decreasing temperature profiles, while earlier growth was predicted under increasing 

temperature profiles. The issue was solved by assigning to each temperature level in the non-

isothermal profiles the mean of that temperature and those in the 9 preceding days. Memory 

effect was much more important for toxin production, suggesting that it requires more complex 

metabolic adaptation than growth does. 

 

Four different hypothetic temperature profiles were proposed as a starting point for this 

research, including increasing and decreasing temperature situations, and shift and ramp 

temperature variations.  In fact, it is traditional procedure in process engineering to use shifts or 

ramps to identify model parameters such as induced dead, or lag times of first order processes. 

Temperatures in the range 15-25 °C were included, which may be consistent with the levels that 

may occur during unrefrigerated shipping for an extended period of time. The final aim is to 

provide a tool which, for any fluctuating temperature profile derived from a temperature data 

logger located in a silo, storage room or container, provides a prediction on the risk probability. 

The results showed a good agreement between the observed values and the predicted ones 

based on the isothermal model (93-100%), with the exception of the DS profile in the model 

developed in pistachio nuts for which low probability of growth was predicted, while growth in 

fact occurred. As this occurred in nuts but not in agar, one possible reason could be that at the 

initial temperature in the profile, a clear dehydration would be expected, and then little increase 

in probability is expected in the long term from the isothermal model. However, under the 

variable profile, the temperature shifted to 15 °C in the 5th day, preventing partially from 
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dehydration (Fig. 5), and allowing for a further increase in probability in the spores that probably 

germinated during the 5 days at 25 °C (note that no growth was observed at isothermal 15 °C).  

On the other hand, the slopes of the probability curves observed with abrupt temperature 

changes were slightly higher than those observed when the temperature changes were smooth. 

Moreover, in the real situations smooth temperature changes, where prediction performance 

seems to be better, are expected rather than abrupt ones from growth to no growth conditions. 

 

Pioneer studies on modeling germination and growth of P. expansum and A. niger under 

fluctuating temperature conditions have been recently published by Gougouli et al (2010, 2012). 

The assumptions were: a temperature shift does not result in an additional lag, after a shift the 

germination and growth rates adapt instantaneously to the new temperature. Although a 

memory factor was not applied in any case, the germination function was recalculated taking 

into account the remaining %germination to reach 100%, thus a new germination rate was 

calculated which took into account the preceding situation. Probability of growth, as modeled in 

our study, is affected by germination kinetics and reflects mainly the end of the germination 

step at the population level, as once the %germination in a population of spores approaches 

100%, the first signs of hyphal growth become visible. 

Gougouli et al. (2010) indicated that during storage at a temperature below the minimum 

temperature for growth no lag time was consumed. This point was confirmed in our work in the 

US profile when memory effect was not taken into account, where even the observed initiation 

of growth was delayed compared to the predicted one. Once memory correction was applied 

such delay disappeared, confirming Gougouli et al. (2010) hypothesis: instead of consuming lag 

time, the time under no-growth conditions delayed the initiation of growth once conditions 

conducive for growth were achieved. 

 

4.4. The impact of the media and variables used for data generation in model validation 

Generating data from agar experiments can be much easier and cheaper, and also growth 

measurements are less costly than AF analysis. It can be inferred that as soon as fungal growth 

becomes visible there is some probability of finding mycotoxins in the foodstuff. In fact, from 

our preliminary experiment it was shown that colonies as small as 5 mm of diameter may 

contain <LOD-20.5 μg/kg of AFB1 depending on the condition. The European Union has 
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determined the maximum residue limit of AFB1 to be 8 μg/kg in pistachios (EC Regulation 165/ 

2010), thus there is not much room to allow for fungal growth till risky AF levels are reached.  

 

Rather to generate data for model building in pistachio nuts, two alternatives were envisaged: 

the first one, generating AF data in pistachio agar medium, the second, generating growth data 

in nuts (instead of AF data, much simple) and then assume that the conditions which prevent 

growth also prevent toxin accumulation. The first option should lead to a narrower set of 

conditions. Looking at tables 2 and 3, however, similar agreement was observed in both cases. 

The agreement with the model developed for AFB1 data in agar confirms that, similarly to what 

reported in Marin et al. (2012), the boundaries for growth and AF production are similar, 

although this point contrasts with the general agreement that toxin production conditions are 

narrower than those for growth. The difference might be the long duration of our experiments, 

leading to accounting for delayed toxin production. In this case, no deviations are expected 

derived from methodological issues, as the decreased aw levels occurred in both cases as both 

data were obtained from the same experiment in pistachio nuts. When using AFB1 data in agar 

to predict AFB1 probability in nuts, the non-concordant values were, in general, due to 

overestimated probability, thus the model was fail-safe. Such overestimation can be tentatively 

attributed to the different aw levels in both cases; while the initial level was the same, in 

pistachio nuts it decreased over time, but not in agar. 



 

Figure. 8. Percentage of AFB1 positive 

3.267; b) cocktail inoculum

 

From the 57 single AFB1 data obtained for validation in pistachio nuts, it was clearly observed 

that, although there was a rough relationship between toxin presence and colony size, the 

relationship between time and toxin was weak (Fig. 1

conditions long time periods were required to attain significant colony sizes, likely to 

accumulate AFB1. For this reason, after 25 days, there were still a number of small size colonies 

which were AFB1-negative (more th

factors, including in mycotoxin models a parameter related to colony size would help. Mixed

growth associated models have been recently applied to mycotoxin production 

al., 2012; Garcia et al., 2013; Medina et al., 2007)

developed a model for patulin accumulation including colony surface of 

of the model.  
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Percentage of AFB1 positive A. flavus colonies as affected by colony size. a) Isolate TA

cktail inoculum. 

From the 57 single AFB1 data obtained for validation in pistachio nuts, it was clearly observed 

that, although there was a rough relationship between toxin presence and colony size, the 

relationship between time and toxin was weak (Fig. 11), as depending on the temperature 

conditions long time periods were required to attain significant colony sizes, likely to 

accumulate AFB1. For this reason, after 25 days, there were still a number of small size colonies 

negative (more than 33%). This suggests that, besides time and environmental 

factors, including in mycotoxin models a parameter related to colony size would help. Mixed

growth associated models have been recently applied to mycotoxin production 

al., 2012; Garcia et al., 2013; Medina et al., 2007).  Similarly, Baert et al. 

developed a model for patulin accumulation including colony surface of 

 

colonies as affected by colony size. a) Isolate TA-

From the 57 single AFB1 data obtained for validation in pistachio nuts, it was clearly observed 

that, although there was a rough relationship between toxin presence and colony size, the 

1), as depending on the temperature 

conditions long time periods were required to attain significant colony sizes, likely to 

accumulate AFB1. For this reason, after 25 days, there were still a number of small size colonies 

an 33%). This suggests that, besides time and environmental 

factors, including in mycotoxin models a parameter related to colony size would help. Mixed-

growth associated models have been recently applied to mycotoxin production (Abdel-hadi et 

Similarly, Baert et al. (2007) previously 

developed a model for patulin accumulation including colony surface of P. expansum as a term 
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4.5 Conclusions 

In this work we have generated an R-script that for any temperature profile in an spreadsheet 

file or text file that is loaded, produces the probability plot for AFB1 along the given time period 

(also numerically). Obviously, at this moment it can only be applied to lots with initial aw of 0.87, 

which is unrealistic, if they are correctly dried, and no condensation due to changes in 

temperature occur. On the other hand, the use of a cocktail inoculum for data generation seems 

sound. There is a need to refine it, in particular, solving the variable aw issue; the objective may 

not be predicting probabilities at a constant level of aw, but taking into account its fluctuation 

along time as a function of the initial aw itself and of temperature variation that may occur in 

bulk pistachios. 

 

The application of this tool would allow support decision, at storage level, on the timing for 

ventilation or use of stored raw materials, or even on the final use given to them. At the 

transport level, it would enable to decide whether refrigerated transport is required or not, 

depending on the international routes, as well as complement (or substitute) the control 

analyses at the destination ports. It is well known that sampling plans for control of 

heterogeneously distributed contaminants, such as mycotoxins, are costly and the results 

obtained are not always totally reliable (García-Cela et al., 2013), thus a prediction based on 

data loggers inserted in the containers would give an additional information on the safety of the 

shipping operation (assuming that there is no unacceptable contamination from origin).  

 

Finally, two assumptions are implicit in our approach: the presence of aflatoxigenic strains in 

stored/transported batches (this is highly expectable, thus the prediction should not be much 

affected), and the absence of insects and other pests which may interact with AF producers (if 

this is the case the predictions may be compromised). 
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