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Abstract 

In this study an inorganic mixture based on bischofite (industrial by-product), was developed and 
characterized for its application as a phase change material for low temperature thermal energy 
storage (TES). The most appropriate composition was established as 40 wt.% bischofite and 60 
wt.% Mg(NO3)2·6H2O. Thermo-physical properties were defined and compared with those of the 
mixture with synthetic MgCl2·6H2O. The heat of fusion and melting temperature were measured 
as 62.0 °C and 132.5 kJ·kg-1 for the mixture with MgCl2·6H2O, and 58.2 °C and 116.9 kJ·kg-1 
for the mixture with bischofite. The specific heat capacity values, cycling and thermal stability 
for both mixtures were also determined. For the mixture with MgCl2·6H2O, the density of the 
solid and liquid states was of 1517 kg·m-3 (ambient temperature) and 1515 kg·m-3 (at 60-70 °C), 
respectively. For the mixture with bischofite, density of solid and liquid states was of 1525 kg·m-

3 (ambient temperature) and 1535 kg·m-3 (at 60-70 °C), respectively. Both mixtures show 
supercooling of about 23.4 °C and 34.1 °C for the mixture with bischofite and MgCl2·6H2O, 
respectively. In addition, it was shown that supercooling may be reduced by increasing the 
quantity of material tested. Thereby, it was established that an inorganic mixture based on 
bischofite is a promising PCM for low temperature TES applications. 

Keywords: phase change material; thermal energy storage; waste or by-products; salt hydrates 
mixture. 

Nomenclature 

Tf melting temperature, °C 

Tc crystallization temperature, °C 

∆Hf latent heat of fusion, kJ·kg-1 

∆Hc latent heat of crystallization, kJ·kg-1 

Cp specific heat capacity, J·g-1·K-1 



1. Introduction

Efficient and economical heat storage is the key to balance energy supply and demand. Amongst 
the various heat storage techniques, latent heat storage stands out because of the capacity to 
provide high energy storage density and to store heat at a relatively constant temperature. This 
why a lot of attention has been paid recently to phase change materials (PCMs), due to their wide 
range of potential application in different fields of latent heat storage.  

One of the methods to expand the possible uses of the particular PCM is its mixing with other 
materials and the formation of eutectic mixtures with the melting temperatures different from 
those of the pure substances. Moreover, eutectics have sharp melting point similar to pure 
substance and their volumetric storage density is above organic compounds [1]. The mixture 
with composition close to eutectic, selected and investigated in our study has the melting 
temperature about 60 °C. For this value, one of the most studied applications of PCMs to date is 
in thermal storage tanks for hot water, where the desired operation temperature is around 55-
60 °C [2-5]. Moreover, in this temperature range phase change materials are already being used 
for thermal control of Li-ion batteries [6-8], air conditioning [9], transportation of food [10], 
temperature sensitive pharmaceuticals, chemicals, etc. [11].  

For a PCM to be implemented on the industrial scale, a number of technical and economic 
requirements must be performed: firstly, a PCM must have a low cost USD/kWht and secondly, 
it should be readily available. One of the trends in lowering the costs of PCM is to use waste, 
recycled materials, household and industrial wastes, or some low cost by-products [12]. In this 
sense, the mining industry of northern Chile produces tons of by-products and wastes 
accumulated with very low cost and no practical applications. In non-metallic mining, these by-
products usually appear in brine processing. In one of the cases of brine processing to obtain 
Li2CO3 and KCl, in the last evaporation step bischofite precipitates [13]. The annual amount of 
the bischofite obtained is dependent on the production quantity of potassium and lithium 
compounds. In 2013 this amount was estimated about 100,000 t with the price of about 40 
US$/ton [14]. This inorganic material currently doesn’t have a reasonable application and 
basically just being stockpiled in waste dumps. It was shown in several investigations that 
bischofite is a good candidate to be used as latent heat storage material. Its main benefit is 
extremely low cost [12-16]. Bischofite is a hydrated salt composed by MgCl2·6H2O (≥ 95wt. %) 
with some impurities. Its melting temperature is about 112 °C. That is why, to develop 
applications of this by-product as a PCM at lower temperatures, the mixture with magnesium 
nitrate hexahydrate Mg(NO3)2·6H2O was selected. 

The literature review indicates that it is possible to obtain a number of mixtures 
MgCl2·6H2O/Mg(NO3)2·6H2O with various fusion temperatures and heat of fusion, some of 
which are reported as eutectic, and have potential to be used as PCMs  [17-23]. Available 
literature data related to the mixture of MgCl2·6H2O and Mg(NO3)2·6H2O is summarized in the 
Table 1. 



Table 1. Literature data for mixtures of MgCl2·6H2O and Mg(NO3)2·6H2O studied as PCM. 

wt.% of MgCl2·6H2O Tf, °C ΔHf, kJ·kg-1 Reference 

7  78 152.4 [17]

10  64.4–93.2* 160.2 (after 80 cycles) [18] 

10 78 76** 

[17] 

15 around 70 no data 

20  62-72* 70** 

30  50-60* 87** 

40 50-60* 97** 

eutectic, 38.4 wt.% 58.3 no data [19] 

eutectic,  41.3 wt.% ( 47 
mol.%)  

59.1 no data  [20] 

eutectic, 41.6  wt.%  59.0 132.2 [21]  

 

eutectic, 47 wt.% 59.1 144 [22] 

eutectic, 49.3 wt.% 58.2 no data [23] 

*   useful temperature range for PCM 
** avalaible specific enthalpy 
 
Mixtures used in the present study were prepared with synthetic salts and then with bischofite to 
find out the possibility of using of bischofite instead of synthetic MgCl2·6H2O in the preparation 
of mixtures, which would significantly reduce the price of this PCM. 

One of the main problems of PCMs based on salt hydrates is that of supercooling. Many authors 
indicate that adding of nucleating and thickening agents can decrease the supercooling value [24-
26]. Recently, it has been shown that the increased volume of PCM used favors the nucleation 
process and also allows to reduce the supercooling [27]. In this study, the supercooling values 
obtained by DSC method were compared to those values, obtained by measurements using K-
type thermocouples with larger quantity of substance. 

Therefore, this paper presents the possibility of producing a low temperature PCM for 
applications where the operating temperature is 55-60 ºC. In addition, the main innovation of this 
study is the use of a by-product without any further processing, in a mixture to be used in 
thermal energy storage.   



2. Experimental part  

2.1. Materials 

Both magnesium chloride MgCl2·6H2O and magnesium nitrate hexahydrate Mg(NO3)2·6H2O 
were synthetic salts purchased from Merck (99.0 %). Industrial by-product bischofite used in this 
study, has the following composition summarized in the Table 2.  

Table 2. Chemical analysis results of bischofite*. 

Element Concentration [%] 

Lithium, Li 0.343 

Sodium, Na 0.938 

Potassium, K 0.740 

Calcium, Ca 0.010 

Magnesium, Mg 10.93 

Chloride, Cl 33.78 

Sulfate, SO4 2.10 

Boron, B 0.190 

Humidity, H2O 1.46 

* Crystallization water is not included    

 

2.2. Selection of mixture 

Based on data from Table 1, preliminary measurements of thermal behavior for MgCl2·6H2O/ 
Mg(NO3)2·6H2O mixtures were performed. The results indicated that the mixture of 40 wt.% of 
MgCl2·6H2O and 60 wt.% of Mg(NO3)2·6H2O is the most appropriate to be used, because it has 
the major wt.% of bischofite and its composition is close to eutectic as evidenced by the presence 
of a single peak on the melting curve and on the crystallization curve. Moreover, it has an 
adequate melting temperature (60.7 °C) and relatively high latent heat of fusion [17,19, 
20,21,26,28].  

Therefore, mixture of 40 wt.% of MgCl2·6H2O and 60 wt.% of Mg(NO3)2·6H2O was initially 
analyzed with synthetic salts and then with bischofite, replacing the synthetic MgCl2·6H2O. 
Thus, a novel PCM with the composition of 40 wt.% bischofite and 60 wt.% Mg(NO3)2·6H2O is 
proposed in this study. 

 

 



 

2.3. Sample preparation 

Initially, all salts samples were dried at 40 °C for 12 hours and then were placed in a desiccator, 
because of their strong hygroscopic properties. Then salts were grinded in a pounder and blended 
in the desired proportion (40-60 wt.%). The prepared mixtures were melted, well mixed and then 
crystallized again to ensure the composition homogeneity throughout the volume.  

 

2.4. Thermal properties 

Measurements of melting temperature, heat of fusion, specific heat capacity, thermogravimetric 
analysis and analysis of cycling stability were conducted. 

A DSC Netzsch 204 Phoenix F1 with N2 atmosphere (flow rate of 20 mL·min-1) was used to 
measure the phase change temperature and the latent heat of fusion/crystallization, with the 
sample mass of about 10 mg. The measurements were performed in a range from 20 °C to 130 
°C in sealed aluminum crucibles of 40 μL capacity. Moreover, the DSC method was used to 
determine the cycling stability of the samples between −15 °C and 130 °C, subjecting them to 50 
freezing-melting cycles with a rate of 10 K/min. 

Specific heat analysis was performed in the range from 20 °C to 130 °C with sapphire as a 
reference material. Sealed aluminum crucibles of 40 μL capacity were used. For each sample 
there have been carried out three measurements: with an empty crucible to obtain a baseline, 
with a reference material and with the hydrated salt mixtures.  

In addition to the DSC method, measurements with PCE type-K temperature sensors (accuracy 
±(0.4% + 1°C)) were performed to reveal the thermal performance of chosen mixtures with the 
larger amount of substance (about 7-8 g). The scheme of experiments is presented in Fig. 1. 
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3. Results 

3.1. Thermal properties 

The results of the determination of melting/crystallization temperature and heat of 
fusion/crystallization, and also the variation of these parameters during the fifty cycles are 
summarized in Table 3.  

Table 3. Measurement data of latent heat of fusion/crystallization, melting/crystallization temperatures 
and supercooling for both mixtures.  

Sample Cycle # Tf [°C] 
ΔHf 

[kJ·kg-1] 
Tc [°C] 

ΔHc 

[kJ·kg-1] 
Supercooling 

[°C] 

40 wt.% MgCl2·6H2O+ 

60 wt.% 
Mg(NO3)2·6H2O 

10 62.0 132.3 25.1 119.1 36.9 

20 62.0 133.5 32.4 122.5 29.6 

30 62.0 132.2 27.4 120.8 34.6 

40 62.0 133.2 31.3 122.8 30.7 

50 62.0 132.7 38.5 127.3 23.5 

average of 50 
cycles (± std 
deviation) 

62.0±0.05 132.5±0.7 27.9±4.0 120.8±2.4 34.1±4.0 

40 wt.% bischofite+ 

60 wt.% 
Mg(NO3)2·6H2O 

10 58.1 116.7 32.3 106.4 25.8 

20 58.2 116.8 33.5 107.4 24.7 

30 58.2 115.3 35.3 107.4 22.9 

40 58.2 117.6 39.9 108.5 18.3 

50 58.2 115.1 38.1 107.2 20.1 

average of 50 
cycles (± std 
deviation) 

58.2±0.05 116.9±1.0 34.7±2.3 106.9±0.7 23.4±2.3 

 

Fig. 2 shows examples of DSC curves for the 10th cycle for the eutectic mixture 40 wt.% 
MgCl2·6H2O + 60 wt.% Mg(NO3)2·6H2O and the same mixture but with bischofite, replacing 
MgCl2·6H2O. DSC analysis (Table 3 and Fig. 2) indicates that the heat of fusion and the melting 
temperature of the mixture with bischofite are slightly lower than those of the mixture with 
MgCl2·6H2O. Moreover, peak of fusion/cristalization on the DSC curve of bischofite is wider 



than that of MgCl2·6H2O indicating the presence of impurities. In case of mixture with bischofite 
the supercooling decreases by 10.7 °C, which may also be justified by the presence of various 
impurities in the mineral which act as additional nucleation centers (see Table 2). Both mixtures 
have shown good cycling stability during 50 melting-crystallization cycles. 

 

Fig. 2. DSC curves of the mixtures 40 wt.% MgCl26H2O + 60 wt.% Mg(NO3)2·6H2O and 40 wt.% 
bischofite + 60 wt.% Mg(NO3)2·6H2O. Tenth heating and cooling cycle. 

 

Fig. 3 shows dependence of the specific heat on temperature. For solid samples, the specific heat 
shows a slight increase in a temperature range 298.15–318.15 K (25–45 °C), with values from 
1.0 to 2.3 J·g-1·K-1 for the mixture with MgCl2·6H2O and from 1.2 to 2.1 J·g-1·K-1 for the 
mixture with bischofite; therefore there are no big differences between both mixtures.  
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Table 5. Summary of Cp for hydrate salts and their mixtures used in this study. 

Sample 
Temperature 

range [K] (°C) 
State 

Cp 
[J·K-1·g-1] 

Ref. 

MgCl2·6H2O 

298.15 - 333.15 
(25 - 60) 

solid 2.1 to 1.95 [14] 

298.15 - 371.15 
(25 - 98) 

371.15 - 387.15 
(98 - 114) 

solid 
solid 

1.64 to 1.85 
1.82 to 1.93 

Calculated 
from [29] 

Mg(NO3)2·6H2O 
not given solid 1.92 [30] 

not given liquid 2.37 [30] 

bischofite 

298.15 - 333.15 
(25 - 60) 

solid 1.6 to 2.1 [14] 

388.15 - 398.15 
(115 - 125) 

liquid 1.71 to 3.01 [14] 

40 wt.%MgCl2·6H2O+ 
60 wt.% Mg(NO3)2 ·6H2O 

298.15 – 318.15 
(25 - 45) 

solid 1.0 to 2.3 
Present 
work 

348.15 – 398.15 
(75 - 125) 

liquid 2.0 to 2.8 
Present 
work 

40 wt.% bischofite+ 
60 wt.% Mg(NO3)2 ·6H2O 

298.15 – 318.15 
(25 - 45) 

solid 1.2 to 2.1 
Present 
work 

348.15 – 398.15 
(75 - 125) 

liquid 1.5 to 1.8 
Present 
work 

 

In addition to the DSC method, tests with K-type thermocouples were performed to reveal the 
thermal behavior of chosen mixtures. The results of these measurements are presented in Figure 

4. By DSC it was established that mixtures 40 wt.% MgCl26H2O + 60 wt.% Mg(NO3)26H2O, 

and 40 wt.% bischofite + 60 wt.% Mg(NO3)26H2O present supercooling of 34.1 °C and 23.4 °C 
(average of 50 cycles), respectively. Tests with K-type thermocouples indicate that supercooling 
reduces to 6 °C and 15 °C, respectively. Therefore, supercooling is lower when the amount of 
material tested increases [27].  
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Fig. 5. Thermal stability of mixtures with MgCl26H2O and  bischofite, where: Mixture 1 – 40 wt.% 

MgCl26H2O and 60 wt.% Mg(NO3)26H2O; Mixture 2 – 40 wt.% bischofite and 60 wt.% 

Mg(NO3)26H2O. 

3.2. Physical properties: density and viscosity 

The results of density and viscosity measurements are shown in the Table 6. Moreover, Table 7 
contains data of pure salts densities in solid and liquid state reported in literature. Comparing the 
Table 6 and 7 it can be concluded that density values obtained for the mixtures during this study 
show similarity with the data available in literature for pure salts [14]. 

Table 6. Summary of the densities in solid and liquid state (± std deviation). 

T [ºC] 
Density [kg·m-3] 

Phase 
40 wt.%MgCl26H2O+Mg(NO3)26H2O 40wt.%bischofite+Mg(NO3)26H2O 

ambient 1517 ± 0.037 1525 ± 0.087 Solid 

60 1518 ± 1.63·10-5 1535 ± 6.39·10-5 

Liq. 65 1515 ± 3.27·10-5 1532 ± 2.94·10-5 

70 1512 ± 1.41 ·10-5 1529 ± 3.30·10-6 
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Table 7. Summary of the densities of pure salts in solid and liquid state reported in the literature [14]. 

T [ºC] 
Density [kg·m-3] 

Phase 
bischofite MgCl26H2O 

20 - 1569 

Solid 

30 1686 - 

40 1598 - 

50 1513 - 

78 - 1442 

115 1481 - 

Liquid 120 - 1450 

128 - 1422 

Viscosity measurements were carried out with molten mixtures in the range from 60 °C to 
110 ºC with different torque speeds from 10 to 80 rpm (Fig. 6, 7). It can be seen, that viscosity 
decreases with increasing temperature and moreover there is practically no dependence of 
viscosity values on torque speed, which indicates that the PCM shows behavior close to 
Newtonian.  

 

Fig. 6. Dependence of the dynamic viscosity on torque speed for the mixture of 40 wt.% MgCl26H2O and 

60 wt.% Mg(NO3)26H2O. 
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Fig. 7. Dependence of the dynamic viscosity on torque speed for the mixture of 40 wt.% bischofite and 60 

wt.% Mg(NO3)26H2O. 

Therefore, 50 rpm velocity was chosen to represent viscocity dependence on temperature (tables 
8 and 9). 

Table 8. Viscosity values at different temperatures for the mixture of 40 wt.% MgCl26H2O and 60 wt.% 

Mg(NO3)26H2O (± std deviation). 

Viscosity [cP] Velocity [RPM] Shear strength [D/cm2] Temperature [°C] 

38.31 ± 0.05 

50.00 

24.72 60 

31.70 ± 0.06 20.46 65 

27.57 ± 0.06 17.79 70 

22.38 ± 0.09 14.44 80 

19.23 ± 0.10 12.41 90 

21.02 ± 0.10 13.56 100 

20.83 ± 0.16 13.44 110 
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Table 9. Viscosity values at different temperatures for the mixture of 40 wt.% MgCl26H2O and 60 wt.% 

Mg(NO3)26H2O (± std deviation). 

Viscosity [cP] Velocity [RPM] Shear strength [D/cm2] Temperature [°C] 

35.43 ± 0.04 

50.00 

22.87 60 

30.25 ± 0.05 19.52 65 

26.16 ± 0.03 16.88 70 

20.03 ± 0.04 12.93 80 

15.83 ± 0.04 10.21 90 

12.78 ± 0.03 8.25 100 

10.59 ± 0.09 6.83 110 

 

Results of the measurements of density and viscosity are summarized in Fig. 8. Viscosity values 
of the molten salt mixture with MgCl2·6H2O decrease from 38.31 to 20.83 mPa·s in a 
temperature range from 60 °C to 110 °C. For mixture with bischofite the values range from 
35.43 to 10.59 mPa·s in the same temperature range. 
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The density values obtained for the mixtures show similarity with the available literature data for 
pure salts. For the mixture with MgCl2·6H2O, the density of the solid and liquid state was of 
1517 kg·m-3 (ambient temperature) and 1515 kg·m-3 (at 60-70 °C), respectively. For the mixture 
with bischofite the density of the solid and liquid state was of 1525 kg·m-3 (ambient temperature) 
and 1535 kg·m-3 (at 60-70 °C), respectively. Finally, as most inorganic salt hydrates, the studied 
mixture presents supercooling.  
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