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ABSTRACT

The presence of emulsifiers facilitates the formation of nanoemulsions and helps on 

their stabilisation. At the same time, behaviour of nanoemulsions along the 

gastrointestinal tract mainly depend on their composition, affecting the bioaccessibility 

of the encapsulated compound. The goal of this work was to study how β-carotene-

enriched nanoemulsions prepared with different emulsifiers (Tween 20, lecithin, sodium 

caseinate, sucrose palmitate) and concentrations (2-8%) would affect their stability 

(particle size and zeta potential) during an in vitro gastrointestinal tract (GIT). The lipid 

digestibility, as well as the β-carotene bioaccessibility of nanoemulsions, was also 

determined. Nanoemulsions stabilised with Tween 20, lecithin and sodium caseinate did 

not present any variation in particle size under stomach conditions. After intestinal GIT 

phase, all nanoemulsions experienced physical changes, either increasing or reducing 

their particle size depending on the nature and concentration of emulsifier used. The 

zeta potential of all nanoemulsions was maintained negative throughout the GIT, being 

less negative after the stomach GIT phase (between -24.2 and -1.4 mV). Lecithin-

stabilised nanoemulsions presented the highest number of free fatty acids when 

emulsifier concentration increased from 2 to 8%. In this sense, nanoemulsions 

containing 8% of lecithin exhibited the highest β-carotene bioaccessibility (23.5%), 

suggesting that lecithin can enhance lipid digestion and bioaccessibility of β-carotene 

encapsulated within nanoemulsions. This work elucidates the importance of not only 

the emulsifier nature but also the concentration used when designing nanoemulsions as 

delivery systems of lipophilic compounds.
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1. INTRODUCTION

Fortifying foods and beverages with lipophilic compounds is a challenge that the food 

industry is facing in order to develop functional foods and satisfy consumers’ demand 

for healthier products. Lipophilic compounds, such as carotenoids, play biological 

functions in our body and provide multiple health benefits 1. However, the majority of 

food matrices are mainly composed of water, which makes the incorporation of these 

compounds difficult because of its low water solubility. In addition, external factors such 

as exposition to light and high temperatures can contribute to lipophilic compounds 

degradation during food manufacturing and storage 2,3. Nanoemulsions can be used to 

encapsulate lipophilic compounds, which would not only make the incorporation of 

these compounds within aqueous environments possible but would also prevent and/or 

delay their degradation as well as maintain their functionality and bioactivity. Adding 

emulsifiers to nanoemulsions helps on their formation and stabilisation as they are 

surface-active compounds adsorbed at the oil-water interface of the droplets. According 

to the structure and properties of each emulsifier, they will act and deposit at the 

interface of the droplets differently, thereby defining the properties of nanoemulsions. 

At the same time, susceptibility of nanoemulsions to undergo physical and chemical 

changes when they are subjected to an in vitro gastrointestinal tract (GIT) are related to 

the properties of the emulsifier covering the droplets. During the in vitro GIT, the pH of 

the different digestion phases, digestive fluids and enzymes added are responsible for 

the constant changes suffered at the interface of droplets. These changes can affect the 

physicochemical stability of nanoemulsions, promoting or preventing destabilisation 

processes, such as flocculation or coalescence. During the last years, some studies have 

investigated the stability of nanoemulsions along the GIT and the processes taking place 
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within it 4–9. Besides that, few studies have focused their investigation on how the 

emulsifier concentration can affect the free fatty acids release during the GIT intestinal 

phase 10–12. To the best of our knowledge, only one study has determined the digestive 

stability of β-carotene-enriched nanoemulsions containing different concentrations of a 

particular emulsifier (L-α-phosphatidylcholine) 13. Conducting studies using emulsifiers 

with different structures (biosurfactants, phospholipids, biopolymers, colloidal 

particles), properties (low and high mass), and from various sources (synthetic and 

natural) to understand in which way the composition of nanoemulsions influence on the 

lipid digestion processes, would provide knowledge to design effective nanoemulsions 

as targeted delivery systems for lipophilic compounds. 

Therefore, the goal of this study was to determine how different emulsifiers (Tween 20, 

lecithin, sodium caseinate, sucrose palmitate) and concentrations (2-8%) would impact 

on the stability (particle size and zeta potential) of nanoemulsions as they passed 

through a simulated in vitro GIT. The lipid digestibility and bioaccessibility of β-carotene-

enriched nanoemulsions was also evaluated.

2. MATERIAL AND METHODS

2.1. Materials 

Tween 20, pepsin from porcine gastric, pancreatin from porcine pancreatin, sodium 

phosphate monobasic and β-carotene were from Sigma Aldrich. Lecithin and sucrose 

palmitate were obtained from Alfa Aesar. Sodium caseinate, magnesium chloride 

hexahydrate, potassium phosphate monobasic were from Acros Organics. Hydrochloric 

acid (HCl) and sodium chlorure (NaCl) were from Poch S.A. Bile, sodium azide, calcium 

chloride dehydrate, and chloroform were obtained from Fisher. Sodium hydroxide 
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(0.25N) and potassium chloride were from Panreac. Corn oil (Koipe Asua) was purchased 

from a local market. Milli-Q water was used to prepare all nanoemulsions. 

2.2. Methods

2.2.1. Preparation of nanoemulsions

Primary oil-in-water emulsions were prepared by mixing 4% (w/w) of the lipid phase 

(corn oil enriched with 0.5% of β-carotene) with 96% (w/w) of the aqueous phase 

containing the emulsifier (Tween 20, lecithin, sodium caseinate, sucrose palmitate) at 

different concentrations (2%, 4% and 8% w/w). Both phases were mixed with an 

ultraturrax (Janke & Kunkel, Staufen, Germany) at 9.500 rpm for 2 minutes. Once the 

primary oil-in-water emulsion was formed, it was passed until 5 times through a 

microfluidizer (Microfluidics M-110P) equipped with a 75 µm ceramic interaction 

chamber (F20Y) at a pressure of 30,000 psi during all the treatment. Apparent viscosity 

of nanoemulsions using a viscometer (SV-10, A&D Company,Tokyo, Japan) vibrating at 

30 Hz was determined (Table 1).

It should be noted that some of the nanoemulsions prepared in this study contain high 

amounts of emulsifier (8%) that could limit further commercial applications of these 

systems. 

2.2.2. In vitro digestion

Nanoemulsions were subjected to a simulated in vitro gastrointestinal tract (GIT) 

digestion, which takes into account a stomach and an intestinal phase. This procedure 

was adapted from an standardised method 14. For the stomach phase, each 

nanoemulsion was mixed with simulated gastric fluids (SGF) containing pepsin (2000 
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U/mL in the final mixture), CaCl2(H20) (0.3M), milli-Q water and HCl (1M), and were 

incubated (Incubator OPAQ, OVAN, Barcelona, Spain) during 2h at 37ºC with a 

continuous agitation (100 rpm). Following that, the sample from the stomach phase was 

placed in a water bath (37 ºC) to simulate the intestinal phase using a pH-stat (Metrohm 

USA Inc., Riverview, FL, USA), and simulated intestinal fluids (SIF) (0.150 M NaCl and 0.01 

M CaCl2), bile extract (54 mg/mL) and pancreatin (75 mg/mL) were added to the sample. 

During the intesintal phase, conversion of triacylglycerols and diacylglycerols from the 

oil present in nanoemulsions into free fatty acids (FFA) is produced due to the lipase 

action. The release of these FFA was the cause of the pH reduction of the samples, which 

was mainted at a pH of 7 by adding NaOH (0.25 M) during 2h. The total volume of NaOH 

spent to keep pH at 7 during the intestinal phase was used to calculate the lipid 

digestibility of nanoemulsions thereby obtaining the total FFA release, using equation 1.

(Equation 1) FFA (%) =
VNaOH × CNaOH × Moil

2 ×  moil
× 100

Where VNaOH is NaOH volume (L) used to compensate the FFAs during the digestion, 

CNaOH is NaOH molarity (0.25 mol/L), Moil is corn oil molecular weight (800 g/mol), moil is 

corn oil total weight present in the nanoemulsions (g).

In order to obtain accurate results, aqueous phases containing the emulsifiers were also 

subjected to the simulated in vitro GIT. The FFA obtained were took away from the 

results initially obtained of the corresponding nanoemulsion. 

2.2.3. Determination of physicochemical properties
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The physicochemical properties of nanoemulsions before and during the different 

phases of the simulated in vitro GIT (stomach and intestine) were determined in terms 

of particle size and zeta potential. 

2.2.3.1. Particle size  

Particle size was carried out with a Mastersizer 3000 (Malvern Instruments Ltd, 

Worcestershire, UK). Nanoemulsions were added in the form of drops to the dispersion 

unit, which contained distillate water. To disperse the droplets and deliver them until 

the optical unit, a constant stirring (1700 rpm) was applied to the liquid. As the sample 

passes through the measurement area, there is a light that illuminates the droplets. As 

a result, the detectors measure the intensity of the light scattered by the droplets. 

Results were reported as the surface area mean diameter (d32) in micrometres (µm). The 

refractive index was fixed at 1.473 for the corn oil (dispersed phase) and 1.333 for the 

water (continuous phase). 

2.2.3.2. Optical microscopy

Images of nanoemulsions were observed using an optical microscope (Olympus BX41, 

Olympus America Inc., Melville, NY, USA) with a 100x objective lens. A drop of each 

sample was placed on a slide and covered with a cover slip. Finally, images were taken 

with a digital camera (Olympus DP74) and processed with the software CellSens 

(Olympus).

2.2.3.3. Zeta potential

The zeta potential was determined using a Zetasizer (Malvern Instruments Ltd 

Worcerstershire, UK). Previously to the measurement, nanoemulsions were diluted 1/10 

within milli-Q water, simulated gastric fluids or simulated intestinal fluids, depending on 
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the digestion phase analysed. Samples were equilibrated inside the equipment during 

60 seconds.

2.2.4. Determination of β-carotene bioaccessibility 

The fraction obtained after the intestinal phase was centrifuged (AVANTI J-25, Beckman 

Instruments Inc., Fullerton, CA, USA) at 4000 rpm for 40 minutes at 4ºC 15. The upper 

part of the centrifuged liquid was collected and considered the micelle fraction, in which 

the mixed micelles formed during the in vitro digestion containing the solubilised β-

carotene were present. In some samples, a layer of oil could be observed on top of the 

liquid, which was dismissed since it was non-digested during the in vitro digestion. The 

concentration of β-carotene in nanoemulsions and in micelle fraction was determined 

using a previously reported method 16. The absorbance was measured 

spectrophotometrically (CECIL CE 2021; Cecil Instruments Ltd., Cambridge, UK) at 450 

nm, using chloroform as a blank. Lastly, the β-carotene bioaccessibility was calculated 

using equation 2.

(Equation 2) Bioaccessibility (%) =
Cmicelle

Cinitial
× 100

Where Cmicelle and Cinitial are the β-carotene concentration of the micelle fraction and the 

initial nanoemulsions, respectively.

2.2.5. Statistical analysis

The analysis of variance (ANOVA) was conducted using a Statgraphics Plus v.5.1 

Windows package (Statistical Graphics Co., Rockville, Md, USA). In vitro digestions were 
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performed in duplicate for each nanoemulsion prepared. Particle size and zeta potential 

were analysed in triplicate for each nanoemulsion and the data was reported as the 

mean with standard deviation. The least significant difference (LSD) test was carried to 

determine significant differences (p ≤ 0.05) among nanoemulsions containing different 

emulsifiers and concentrations at a 5% significance level. 

3. RESULTS AND DISCUSSION

3.1. Stability of nanoemulsions during in vitro digestion

Particle size. Increasing the emulsifier concentration from 2% to 8% resulted in a 

significant reduction in particle size of Tween 20- (from 0.35 to 0.30 µm), lecithin- (from 

0.36 to 0.25 µm) and sodium caseinate- (from 0.62 to 0.47 µm) stabilised nanoemulsions 

(Figure 1A, 1B and 1C). In general, evidence of tiny droplets formation when using these 

three emulsifiers could be observed in microscope images. However, nanoemulsions 

stabilised at high concentrations of sodium caseinate showed some droplet aggregation 

(Figure 2). Thus, low mass emulsifiers such as Tween 20 and lecithin, were more 

effective at producing small sizes than sodium caseinate, which is known to be a high 

mass emulsifier with a complex and large molecular structure. In addition, low mass 

emulsifiers have the ability to adsorb quickly at the droplets surface during the 

formation of nanoemulsions, preventing the re-coalescence 17. On the other hand, 

particle size of sucrose palmitate-stabilised nanoemulsions remarkably raised from 0.29 

to 4.73 µm when increasing emulsifier concentration from 2% to 8% (Figure 1D). Results 

showed that adding to nanoemulsions 4% of sucrose palmitate was enough to cover all 

the surface of the formed droplets, assuming that a maximum number of tiny droplets 

were reached and that the particle size could not be reduced any further. Microscope 
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images confirmed that adding high concentrations (8%) could have led to non-absorbed 

molecules in the media, generating attractive forces between droplets and resulting in 

droplet-droplet interactions (depletion flocculation) (Figure 2).

After the stomach GIT phase, particle size of Tween 20- and lecithin-stabilised 

nanoemulsions remained unchanged irrespective of emulsifier concentration (Figure 1A 

and 1B). It is known that some non-ionic emulsifiers, such as Tween 20, are quite stable 

to droplet aggregation beyond low pH 19. In particular, its high stability under acidic 

conditions is attributed to the polyoxyethylene head group, which produces steric 

repulsion between droplets. Besides that, lecithin contains a mixture of phospholipids, 

being phosphatidylcholine its major component. The formation of lamellar structures at 

the oil-water interface in which two layers of phosphatidylcholine were deposited 20,21, 

might have provided stability to nanoemulsions against simulated gastric fluids (SGF) 

and to a drastic reduction of pH during stomach phase. Nanoemulsions stabilised with 

2% of sodium caseinate presented a sharp increase of particle size from 0.62 µm 

(undigested) to 3.74 µm (after stomach phase), while those stabilised with higher 

concentrations (4% and 8%) were more resistant under gastric conditions (Figure 1C). It 

is known that the emulsifying behaviour of sodium caseinate is associated to β-casein, 

which has 50 hydrophilic amino acid residues projected to the aqueous phase as tails 

(external layer) and 159 hydrophobic residues attached to the droplets surface forming 

trains (inner layer) 22. The layer thickness around the oil droplets is attributed to the high 

mass properties of the protein and to the steric stabilisation of β-casein, which is mainly 

provided by the phosphoserine residues present in the protein. However, 

phosphoserine residues can suffer conformational changes when calcium ions are 

present, thereby resulting in a reduction of the layer thickness covering the droplets and 
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stabilisation of nanoemulsions 23. In this study, the low stability of sodium caseinate-

stabilised nanoemulsions at 2% under acidic conditions, suggested the formation of a 

thinner layer around droplets compared to nanoemulsions containing a higher amount 

of sodium caseinate. The addition of gastric fluids together with the presence of pepsin, 

made the nanoemulsion stabilised with 2% of sodium caseinate more prone to 

underwent flocculation processes, as the hydrolysis of the sodium caseinate layer 

occurred. Microscope images confirmed that flocculated droplets were detected after 

stomach phase (Figure 3). On the contrary, particle size of sodium caseinate-stabilised 

nanoemulsions at 4 and 8% slightly changed after stomach phase, owing to the 

formation of a dense and thick layer around the droplets due to the β-casein deposition 

and the phosphoserine residues present. Sucrose palmitate-stabilised nanoemulsions 

presented a notable increase of particle size after stomach GIT (Figure 1D) phase and 

evidence of large particle aggregation could also be observed in microscope images 

(Figure 3). This enhancement might be related to the interaction between pepsin and 

sucrose esters and/or that the sucrose head would have been inverted, resulting into 

flocculation and/or coalescence of droplets due to the low pH (2.5) 24. In addition, Rao 

& McClements, (2011)25 studied the stability of sucrose monopalmitate nanoemulsions 

at different pH and reported that when the pH is below the pka of the carboxylic acid 

group from the palmitic acid (4.9), the acid loses its charge 26, being the droplets more 

prone to aggregate as attractive forces are more dominant than the repulsive ones. 

After the GIT intestinal phase and regardless of the emulsifier concentration used, 

nanoemulsions suffered a steep increase in their particle size, except for those stabilised 

with sucrose palmitate. In the latter case, flocculated droplets formed during the 

stomach phase due to the drastic change of pH could have been re-dispersed during the 
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intestinal phase 27. On the other hand, large values of particle size obtained for the rest 

of nanoemulsions could be attributed to various reasons. Firstly, partial or total 

displacement of emulsifier molecules from the droplet surfaces when free fatty acids 

were produced, together with their hydrolysis by intestinal enzymes, would have 

resulted in a single emulsifier molecule attached to the surface of more than one 

droplet, provoking aggregation phenomena (bridging flocculation)28. Secondly, 

deposition of free fatty acids at the oil droplets interface as well as the presence of 

partially digested lipid droplets could have led to coalescence processes. Finally, all type 

of particles such as mixed micelles, vesicles and insoluble calcium complexes are formed 

during the lipid digestion 29, which would have contributed on the particle size increase. 

Different particle size behaviour was observed in nanoemulsions stabilised with Tween 

20, lecithin and sodium caseinate after the GIT intestinal phase. Tween 20- and sodium 

caseinate-stabilised nanoemulsions presented a greater particle size as emulsifier 

concentration increased, reaching values of around 3.50 µm in all samples (Figure 1A 

and 1C). The high amount of emulsifier added initially, would have formed complex 

aggregates and/or particles with other digestion components, boosting even further 

destabilisation processes during the intestinal phase. An opposite trend was observed 

for lecithin-stabilised nanoemulsions, decreasing the particle size until 0.48 µm with the 

addition of 8% of lecithin (Figure 1B), which might be related to the triglycerides 

hydrolysis from lipid droplets.

Simultaneous and complex physicochemical processes occurring during lipid digestion 

such as interactions and associations between all the particles present in that moment 

and the formation of new species 30, could have influenced on the particle size of 

nanoemulsions. In this sense, microscope images of nanoemulsions after intestinal 
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phase showed the presence of two types of particles: some of them had an irregular 

shape and others were so small that could barely be observed in microscope images 

(Figure 3). When analysing particle size of nanoemulsions with light scattering technique 

(such as Mastersizer) and microscope images, complementary information could be 

obtained. Using both approaches is of great importance when determining 

nanoemulsions particle size characteristics. 

Zeta potential.  All nanoemulsions presented negative values of zeta potential 

irrespective of the emulsifier nature and concentration. The most negative values were 

exhibited by lecithin-stabilised nanoemulsions, with values around -80 mV.  The 

phosphate groups from the different types of phospholipids contained in the lecithin 

were the reason for the elevated negative charge 31. Even though Tween 20 and sucrose 

palmitate are non-ionic emulsifiers, the zeta potential of undigested nanoemulsions 

stabilised with both emulsifiers were negative, being around -24 mV and -49 mV, 

respectively and for all emulsifier concentrations (Figure 4A and 4D). One argument to 

explain these results would be the adsorption of OH- species from the aqueous phase to 

the interface of the oil droplets. Alternatively, cationic species of the oil 32, the presence 

of residual non-esterified fatty acids in the sucrose ester 33 or impurities (palmitic acid) 

34 in the case of sucrose palmitate, could have been the cause of the negative charges. 

The zeta potential values of sodium caseinate-stabilised nanoemulsions ranged 

between -40 and -48 mV, being slightly less negative as emulsifier concentration 

increased. Adding sodium caseinate to nanoemulsions might have decreased their pH 

until near the isoelectric point of caseinate (4.5). In this situation, there were a sufficient 

number of amino groups of caseinate positively charged that would have increased the 

zeta potential from -48 to -39 mV (Figure 4C). 
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The zeta potential of all nanoemulsions became less negative after the stomach phase 

with values between -24.2 and -1.5 mV regardless of the emulsifier nature and 

concentration. The simulated gastric fluids used in this work containing free ions and 

the acidic pH during the stomach phase, would have attenuated the charges of the 

nanoemulsion droplets (electrostatic screening effect) 18. It is interesting to mention 

that the negative zeta potential (-9.70 mV) obtained for sodium caseinate-stabilised 

nanoemulsions at 2%, confirmed that some of the sodium caseinate covering the 

droplets was partially displaced from the interface during the stomach GIT phase. 

Nanoemulsions with higher concentrations of sodium caseinate presented values of zeta 

potential slightly more negative (around -11.75 mV), suggesting that the interface of the 

droplets lightly changed. It should be noted that whether the pH of stomach phase (2.5) 

is below the isoelectric point of the proteins, a positive zeta potential is expected to be 

obtained. In this case, it was assumed that changes on the interface of the droplets 

consisting on the displacement of the sodium caseinate covering the droplets, and the 

absorption of negatively charged particles would have been the reason of negative 

values. Meanwhile, zeta potential of all nanoemulsions became slightly negative after 

being subjected to intestinal conditions, reaching values similar to those of undigested 

nanoemulsions. The production of different particles in the process of lipid digestion 

(undigested lipid droplets, vesicles or micelles), as well as the presence of digestion 

components (bile and pancreatin, calcium) 35, could have had an impact on the zeta 

potential of nanoemulsions after the intestinal phase (Figure 4). Simultaneous processes 

taking place during lipid digestion (enzyme hydrolysis, formation of new species, 

interactions between components, among others) result in a constant changing of the 

interfacial properties of nanoemulsion droplets, affecting on their electric charge. In 
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addition, the neutral pH during intestinal phase similar to undigested nanoemulsions 

might be another reason why similar values of zeta potential were obtained. 

3.2. Oil digestibility of nanoemulsions

Different free fatty acids profiles were observed depending on the emulsifier nature and 

concentration used to elaborate nanoemulsions. In general, there was a quick increase 

of the free fatty acids release during the first 10-15 min of the intestinal phase for all the 

nanoemulsions. Then, there was a period of time where the free fatty acids released 

remained constant until the end of the intestinal phase (Figure 5). Free fatty acids (FFA) 

are produced during the hydrolysis of the triacylglycerides from lipid droplets by the 

lipase present in the pancreatin. These FFA are considered to be surface-active 

components, which can be deposited and accumulated at the surface of the droplets as 

they are being produced 36,37. In this situation, new FFA are not generated because 

droplets interface is collapsed by the FFA already produced, inhibiting the deposition 

and action of the pancreatin at the interface of the droplets. As an exception, 

nanoemulsions stabilised with Tween 20 at concentrations ≥ 4%, presented an interval 

period at the beginning of the intestinal phase (40-60 minutes), where no free fatty acids 

were produced (Figure 5A). Presumably, it was the time needed for the bile to be placed 

on the surface of the droplets and displace the Tween 20. Other studies have also 

observed an interval period without production of free fatty acids for nanoemulsions 

stabilised with lower concentrations of Tween 20 (0.6% and 1%) 28,37. 

Despite observing different behaviours during the lipid digestion among nanoemulsions 

and independently of the large values of particle size observed for certain 

nanoemulsions after stomach phase (section 3.1), no significant differences in the total 
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amount of free fatty acids were observed at the end of the intestinal GIT phase. Particle 

size of nanoemulsions entering within the intestinal phase is supposed to be an 

important factor that influences on the digestibility of nanoemulsions 16. However, our 

results suggested that the great particle size of these nanoemulsions before entering 

the intestine was due to droplet flocculation, meaning that weak bonds linked the 

droplets together. As nanoemulsions were exposed to intestinal conditions, these bonds 

were broken down resulting in a re-dispersion of the droplets which could have 

facilitated the digestion of lipids. 

It is interesting to remark that nanoemulsions stabilised with 8% of lecithin presented a 

higher lipid digestibility (100%) compared with those nanoemulsions stabilised with 

lower concentrations (around 73% of lipid digestibility). In this sense, Yang Decker, Xiao, 

& McClements (2015)38 suggested that the addition of phospholipids in the simulated 

intestinal fluids (36 mg) increased the final extent of lipid digestion, since phospholipids 

may facilitate the ability of lipase to interact with the emulsified triglycerides.

3.3. Bioaccessibility of β-carotene-enriched nanoemulsions

Based on the obtained results, not only the emulsifier nature but also their 

concentration present within nanoemulsions had an impact on β-carotene 

bioaccessibility (Figure 6). For Tween 20-stabilised nanoemulsions, β-carotene 

bioaccessibility was around 16%, without significant differences regardless of the 

emulsifier concentration. On the contrary, for sodium caseinate-stabilised and sucrose 

palmitate-stabilised nanoemulsions, the β-carotene bioaccessibility significantly 

decreased when high concentrations of emulsifier (8%) were added. Considering that 

the quantity of free fatty acids released during the lipid digestion was similar among 

Page 16 of 31Food & Function

Fo
od

&
Fu

nc
tio

n
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 0
8 

Ja
nu

ar
y 

20
19

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

t d
e 

L
le

id
a 

on
 1

/9
/2

01
9 

9:
27

:4
7 

A
M

. 

View Article Online
DOI: 10.1039/C8FO02069H

http://dx.doi.org/10.1039/c8fo02069h


nanoemulsions prepared with these emulsifiers, different hypothesis were suggested in 

order to explain this tendency. Firstly, not all the free fatty acids produced might have 

participated in the formation of mixed micelles, since some interactions with the 

digestion products may have occurred. Secondly, mixed micelles formed during the 

digestion may not have incorporated and solubilised the β-carotene, assuming that if β-

carotene is not present within the mixed micelles, is not considered absorbable. Thirdly, 

interactions between the β-carotene itself and/or mixed micelles containing β-carotene 

with the emulsifier could have occurred. Indeed, it is known that proteins can form 

complexes with carotenoids through hydrophobic interactions 39, as well as promote 

aggregation and precipitation of mixed micelles 5.  Lecithin-stabilised nanoemulsions 

presented a greater β-carotene bioaccessibility as emulsifier concentration increased, 

raising from 9.9% to 23.5%. These results agreed upon the lipid digestibility results 

(section 3.2): the high number of free fatty acids produced for nanoemulsions with 8% 

of lecithin could lead to the formation of a large number of mixed micelles, enhancing 

not only the lipid digestibility but also β-carotene bioaccessibility. Mixed micelles are 

comprised of bile salts, phospholipids from the bile and pancreatic juices as well as  lipid 

digestion products from the action of lipases, such as free fatty acids 40,41. Thus, lecithin, 

a nontoxic emulsifier generally recognized as safe (GRAS) that predominantly contains 

phospholipids, could have contributed to these particles formation as well as increase 

their solubilisation capacity 38,42. 

4. CONCLUSIONS

Results obtained in this work indicated that β-carotene-enriched nanoemulsions 

presented different initial physicochemical properties and behaviours along the GIT 
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owing to the emulsifier nature and concentration. Despite this fact, nanoemulsions 

presented similar lipid digestibility results, with the exception to those elaborated with 

lecithin at 8%. In turn, these latter nanoemulsions showed the highest β-carotene 

bioaccessibility after being digested through an in vitro GIT. This work revealed that 

using lecithin could be a good option when designing nanoemulsions as delivery systems 

of lipophilic compounds. Further investigation with in vivo studies (animal and human) 

are required to elucidate the importance of nanoemulsions composition relationship 

with digestive processes and bioaccessibility of encapsulated compounds.
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Table 1. Viscosity of nanoemulsions stabilised with different emulsifiers.

Emulsifier Concentration (w/w) Apparent 
viscosity (m·pas)

2% 1.12 ± 0.01
4% 1.31 ± 0.02

Tween 20

8% 1.57 ± 0.02

2% 1.11 ± 0.01
4% 1.38 ± 0.03

Lecithin

8% 2.24 ± 0.02

2% 1.73 ± 0.01
4% 2.97 ± 0.05

Sodium 
caseinate

8% 7.53 ± 0.30

2% 1.71 ± 0.01
4% 2.56 ± 0.02

Sucrose 
palmitate

8% 7.86 ± 0.20
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Figure 1. Particle size (µm) of β-carotene enriched nanoemulsions stabilised with Tween 

20 (A), Lecithin (B), Sodium Caseinate (C), or Sucrose palmitate (D) at different 

concentrations (2%, 4% and 8%) initially and during in vitro digestion phases (stomach, 

intestine). Different capital letters indicate significant differences (p<0.05) of 

nanoemulsions during the digestion phases, while different lowercase letters indicate 

significant differences (p<0.05) between nanoemulsions within the same digestion 

phase.
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Figure 2. Images of β-carotene enriched nanoemulsions stabilised with different emulsifiers 

(T20: Tween 20; LT: lecithin; SC: sodium caseinate; SPT: sucrose palmitate) at two concentrations 

(2% and 8%). Scales bar are 10µm long.
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Figure 3. Representative microscope images of β-carotene enriched nanoemulsions stabilised 

with different emulsifiers (T20: Tween 20; LT: lecithin; SC: sodium caseinate; SPT: sucrose 

palmitate) at 2% along the different phases (stomach and intestine) of the in vitro 

gastrointestinal tract (GIT). Scales bar are 10µm long.
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Figure 4. Changes in zeta-potential (mV) of β-carotene enriched nanoemulsions 

stabilised with Tween 20 (A), Lecithin (B), Sodium Caseinate (C), or Sucrose palmitate (D) 

at different concentrations (2%, 4% and 8%) initially and during in vitro digestion phases 

(stomach, intestine). Different capital letters indicate significant differences (p<0.05) of 

nanoemulsions during the digestion phases, while different lowercase letters indicate 

significant differences (p<0.05) between nanoemulsions within the same digestion 

phase.
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Figure 5. Influence of emulsifier nature (Tween 20 (A), Lecithin (B), Sodium Caseinate 

(C), Sucrose palmitate (D)) and concentration (2%, 4% and 8%) on the free fatty acids 

(FFA) release from β-carotene-enriched nanoemulsions during the intestinal phase.
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Figure 6. Influence of emulsifier nature (T20: Tween 20; LT: lecithin; SC: sodium 

caseinate; SPT: sucrose palmitate) and concentration (2%, 4% and 8%) on the 

bioaccessibility of β-carotene enriched nanoemulsions. Different capital letters indicate 

significant differences (p<0.05) of β-carotene bioaccessibilty taking into account the 

same emulsifier at different concentrations, while different lowercase letters indicate 

significant differences (p<0.05) between nanoemulsions containing different emulsifier 

type but at the same concentration.
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This study reveals the importance of the emulsifier nature and concentration used to elaborate 
nanoemulsions as targeted delivery systems for β-carotene.

In vitro digestion

β-carotene 
enriched 

nanoemulsion
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