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ABSTRACT 16 

In this work, we evaluated whether the prior interaction of the antagonist Pseudomonas 17 

graminis strain CPA-7 and Listeria monocytogenes and Salmonella enterica subsp. 18 

enterica ser. Enteritidis on fresh-cut pear has an effect on the capacity of these 19 

pathogens to colonize human epithelial cells (Caco- 2 cell line) which is crucial in 20 

establishing infection. After 7 days of co-incubation with the antagonist at 10 °C, L. 21 

monocytogenes and S. enterica growth was reduced by 5.5 and 3.1 log10, respectively. 22 

CPA-7 attenuated the adherence of S. enterica to Caco-2 cells (by 0.8 log10) regardless 23 

of the pre-adaptation on the fruit. Conversely, adhesiveness of L. monocytogenes was 24 
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not influenced by the interaction with the antagonist but it was reduced by 0.5 log10 25 

after incubation in the food matrix. The combination of the interaction pathogen-26 

antagonist-food matrix and the pre-adaptation period was associated to a significant 27 

reduction of the relative invasiveness of both pathogens, by 1.3 log10 in the case of L. 28 

monocytogenes and to an undetectable level (below 5 CFU/g) for S. enterica. 29 

Increased relative adherence (by 0.6 log10) of CPA-7 to the monolayers positively 30 

correlated to the increase of multiplicity of infection of the antagonist with respect to 31 

Caco-2 cells. However, for the same level of inoculum, its internalization was only 32 

detected after seven days of pre-adaptation in the fruit (pH 4.5 - 5.0). Final populations 33 

of CPA-7 after gastrointestinal passage were reduced by 2 log10 more after the pre-34 

incubation on the fruit than on inoculation day. Simulated digestion did not influence its 35 

adhesion index, but it reduced its invasiveness to an undetectable level, regardless of 36 

the habituation period on the fruit. 37 

1. Introduction  38 

Pseudomonas graminis strain CPA-7 is a Gram-negative bacteria with antagonistic 39 

effect on Listeria monocytogenes, Salmonella enterica subsp. enterica and Escherichia 40 

coli O157:H7 on fresh-cut apples, peaches, pears and melons ( Abadias et al., 2014; 41 

Alegre et al., 2013a, b). Our work group has been working on elucidating the 42 

mechanisms through which this strain controls populations of foodborne pathogens. 43 

Although a number of in vitro and in vivo experiments related to the production of 44 

antibiotics, biosurfactants and exo-proteases were performed, its mode of action could 45 

not be elucidated (Collazo et al., 2017). Hence the impairment of pathogenesis-related 46 

characteristics of foodborne pathogens was explored as another putative mechanism 47 

for antagonism.  48 

To cause gastrointestinal infections, foodborne pathogenic bacteria must adhere to the 49 

epithelium, activating the release of enzymes and toxins that lead to the initiation of 50 

necrotic processes into the target cells facilitating the invasion process (Jankowska et 51 
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al., 2008; Tamburro et al., 2015). Among foodborne pathogens, Salmonella spp. and 52 

Listeria spp. are typical intracellular pathogens, capable of surviving and actively 53 

replicating inside epithelial cells (Götz and Goebelt, 2010).  54 

Reduction of the colonization capacities of foodborne pathogens by interfering with 55 

their attachment to the human intestinal epithelium or by altering their pathways to 56 

penetrate into the enterocytes could be an effective mechanism to antagonize them 57 

which has been explored for probiotic bacteria (Feng et al., 2015; Tamburro et al., 58 

2015). Anti-adherent abilities of probiotics can be mediated by the production of 59 

inhibitory substances and by exclusive competition because of their capacity to survive 60 

in low pH conditions, auto-aggregate or co-aggregate with pathogens and adhere to 61 

the human gastrointestinal tract (Pan et al., 2008; Vuotto et al., 2014). In such a way, 62 

Lactobacillus acidophilus, L. casei and L. rhamnosus were shown to actively reduce 63 

the adhesion of S. enterica and L. monocytogenes to human adenocarcinoma cell lines 64 

to less than 50% (Dutra et al., 2016; Tabasco et al., 2014). The ability of non-65 

acidolactic probiotic bacteria such as Clostridium butyricum CB2 and Enterococcus 66 

mundtii ST4SA to impair foodborne pathogens adherence to intestinal epithelial cells 67 

have also been studied (Botes et al., 2008; Pan et al., 2008). However, to the best of 68 

knowledge, no information in the body of literature was found concerning the putative 69 

effect of non-probiotic antagonists, such as the one tested in the present study, on the 70 

behavior of the pathogens inhabiting contaminated food once they come into contact 71 

with the human gastrointestinal tract.  72 

A great part of the studies that have focused on this matter have been carried out using 73 

Caco-2 cells, a human colon adenocarcinoma cell line, that reproduce morphological 74 

and functional properties of human intestinal epithelium. They differentiate in a similar 75 

manner to normal small intestinal cells, expressing characteristics of immature or 76 

mature enterocytes with functional brush border microvilli and apical hydrolases 77 

(Gaillard et al., 1996). After confluence (5 to 6 days of culture), the process of 78 

polarization of Caco-2 cells involves the whole monolayer while differentiation takes 79 
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another ten days to complete (Gaillard et al., 1996). Polarization and differentiation of 80 

this cell line has been shown to influence the invasion process of Listeria spp. and 81 

Salmonella spp. because surface molecules such as the receptors that mediate their 82 

internalization express themselves asymmetrically (Boumart et al., 2014; Jankowska et 83 

al., 2008).  84 

The aim of this research was to study the effect of the interaction between the 85 

antagonist P. graminis CPA-7 and the enteropathogenic bacteria L. monocytogenes 86 

and S. enterica subsp. enterica in a food matrix on the ability of these microorganisms 87 

to adhere and to invade differentiated colorectal human adenocarcinoma cells Caco-2. 88 

For this, the antagonist and each pathogen were pre-incubated aerobically for seven 89 

days on fresh-cut pear upon abused refrigerated conditions (10 ºC). Additionally, 90 

survival of CPA-7 during static simulated gastrointestinal digestion and its subsequent 91 

adhesion to and invasion into Caco-2 cells was evaluated. 92 

2. Materials and methods. 93 

2.1 Fruit 94 

Pears (Pyrus communis L cv. ‘Conference’) were obtained from local packing-houses 95 

(Lleida, Spain). Prior to the experimental studies, they were washed in running tap 96 

water, disinfected with 700 mL/L ethanol and air-dried at room temperature. Pears 97 

were peeled and cut into eight wedges using a slicer/corer or into plugs (cylinders of 98 

1.2 cm diameter, 1 cm thickness) using a cork borer. Quality parameters: pH, soluble 99 

solids, firmness, texture and titratable acidity were initially determined as described 100 

elsewhere (Colas-Meda et al., 2017). 101 

2.2 Bacterial strains and culture conditions 102 

The strain P. graminis CPA-7 (Alegre et al., 2013b) was used as antagonist. Five 103 

different strains of S. enterica subsp. enterica [(ex. Kauffmann and Edwards) Le Minor 104 

and Popoff]: ATCC BAA-707, ATCC BAA-709, ATCC BAA-710, ATCC BAA-711 and 105 
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CECT 4300 belonging to serovars Agona, Michigan, Montevideo, Gaminara and 106 

Enteritidis , respectively, were used. Five strains of L. monocytogenes [(Murray et al. 107 

1926) Pirie 1940]: CECT 4031, CECT 933, CECT 940, CECT 4032 and Lm 230/3, 108 

(Abadias et al., 2008) belonging to serotypes 1a, 3a, 4d, 4b and 1/2a, respectively, 109 

were tested.  110 

Strains of S. enterica and L. monocytogenes were grown individually as described by 111 

Abadias et al. (2014) in order to obtain concentrated suspensions. CPA-7 was grown in 112 

tryptone soy broth, TSB and a concentrated suspension was obtained following the 113 

above mentioned procedure. Concentrations were checked by plating appropriate ten-114 

fold dilutions in saline peptone (8.5 g/L NaCl and 1 g/L peptone) onto Xylose Lysine 115 

Deoxycholate Agar, XLD-agar for S. enterica, onto Palcam Agar Base with selective 116 

supplement, for L. monocytogenes and onto tryptone soy agar, TSA for CPA-7. S. 117 

enterica and L. monocytogenes plates were incubated at 37 °C for 24 and 48 h, 118 

respectively, and CPA-7 was grown at 30 °C for 48 h. All synthetic culture media were 119 

purchased from Biokar Diagnostics, Beauveais, France. 120 

2.3 Caco-2 cells culture conditions 121 

Human intestinal Caco-2 cells (ECACC 86012202) were grown in 24-wells cell culture 122 

polystyrene plates (Falcon, USA) in Dulbecco’s Modified Eagle Medium (DMEM 1X, 123 

Gibco, Waltham, MA, USA) supplemented with 200 mL/L inactivated fetal bovine 124 

serum (Gibco, BRL) and 10 mL/L non-essential aminoacids solution as described by 125 

Jankowska et al. (2008). Plates were maintained at 37 °C in a humidified incubator at 126 

5% CO2. For the experiments, cells were seeded at 5 x 104 cells per well and grown 127 

until differentiation (12-13 days), refreshing the culture medium every two days. 128 

Penicillin (20.000 U/mL) and streptomycin (20 mg/mL) were added to the culture 129 

medium except for 24 h prior to virulence assays. Antibiotics and aminoacids were 130 

purchased from Sigma-Aldrich, St Louis, USA.  131 
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2.4 Selection of pathogenic strains 132 

General experimental design is shown in figure 1. Preliminary trials were performed in 133 

order to select one strain of S. enterica subsp. enterica and one strain of L. 134 

monocytogenes out of five strains from different serovars of each species from our 135 

laboratory collection. Susceptibility of each strain to be effectively controlled by CPA-7 136 

on pear plugs at 10 °C and high virulence, evaluated by their ability to adhere and 137 

invade Caco-2 cells were used as selective criteria.  138 

For the antagonist effectiveness test, bacterial suspensions with 105 CFU/mL of each 139 

pathogenic strain inoculated alone or in combination with the antagonist, this latter 140 

inoculated at 107 CFU/mL, were prepared with deionized water. In the same way, a 141 

CPA-7 control treatment was included. Pear plugs were dip-inoculated at a ratio of 1:2 142 

(pear weight: volume of bacterial suspension) for 2 min in agitation in an orbital 143 

tabletop shaker and subsequently drained and air-dried. Samples were analyzed just 144 

after inoculation and after six days of incubation in sterile glass tubes at 10 °C, allowing 145 

air exchange. Bacterial populations were evaluated in triplicated by plate count. For 146 

this, 1 g of sample was homogenized in 9 mL of buffered peptone water (BPW, Oxoid 147 

LTD, UK) at 7 strokes/s during 2 min in a Bagmixer 100 (Minimix, Interscience, Saint 148 

Nom, France). 149 

For virulence screening, each strain was inoculated individually in DMEM medium to 150 

achieve a final concentration of 105 CFU/mL. Afterwards, two rows of 24-well plates 151 

containing post-confluent differentiated Caco-2 cells were inoculated with 500 µL of 152 

each treatment. The plates were incubated for 1 h in a humidified incubator at 37 °C 153 

and 5% CO2. Non-adhered bacterial cells were removed by two washes with 154 

phosphate buffered saline (PBS, 0.137 mol/L NaCl, 0.0027 mol/L KCl, 0.01 mol/L 155 

Na2HPO4, 0.0018 mol/L KH2PO4, pH 7.4) and Caco-2 cells from six wells/replicate were 156 

lysed with cold 1 mL/L Triton X-100 (Sigma, UK) and collected in sterile glass analysis 157 

tubes. The other six wells were incubated for 2 h in the same conditions with DMEM 158 
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supplemented with Gentamicin (150 µg/mL) to kill extracellular bacteria. Viable 159 

adhered and internalized cells were estimated by plate count, as previously described.  160 

2.5 Antagonist-pathogen interaction on fresh-cut pear. 161 

Prior to in vitro virulence assays, the selected strains L. monocytogenes CECT 4032 162 

and S. enterica subsp. enterica CECT 4300 were submitted to the interaction with 163 

CPA-7 in separate trials which included three treatments that were prepared using 164 

deionized water: i) CECT 4032 or CECT 4300 control, ii) CPA-7 + CECT 4032 or 165 

CECT 4300 and iii) CPA-7 control. In all cases, concentrations of the pathogens (107 166 

CFU/mL) and the antagonist (109 CFU/mL) were two log10 above the amount used in 167 

the selection phase, in order to detect bacterial cells at the end of the invasion process, 168 

considering the expected population reduction due to antagonism. Pear slices were 169 

dip-inoculated in each treatment at a ratio of 1:2 (pear weight: volume of bacterial 170 

suspension) as previously described. Samples were examined on the day of 171 

inoculation and after 7 days of incubation at 10 °C in 500 mL lidded-polyethylene trays, 172 

not hermetically closed to allow air exchange. Populations of S. enterica, L. 173 

monocytogenes and CPA-7 were determined at each sampling time following the same 174 

procedure explained in section 2.2. For this, 10 g of pear of each sample was 175 

previously homogenized in 90 mL BPW within a 400 mL sterile full-page filter bag 176 

(Bagpage, Interscience, Saint Nom, France) in a Masticator (IUL, Barcelona, Spain) set 177 

at 4.2 strokes/s for 90 s. The experiments were performed two independent times for 178 

each pathogen including three replicates per treatment and sampling time. Each of 179 

these replicates was analyzed in duplicate in the subsequent adhesion and invasion 180 

assays. 181 

2.6 Adhesion to and invasion into Caco-2 cells  182 

Fifty milliliters of each pear homogenate were collected at each sampling time, 183 

individually centrifuged at 15777 × g for 20 min at 4 °C in a Sorvall Legen XTR 184 

centrifuge (Thermo Scientific, USA) and re-suspended in 13 mL of DMEM medium to 185 
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be used as inocula for the adhesion and invasion assays. Afterwards, 1 mL of bacterial 186 

suspension per replicate per treatment was added to each of 12 wells containing 2 x 187 

106 differentiated Caco-2 cells/well. Multiplicity of infection (MOI) was set at 0.1:1 188 

(bacteria: Caco-2 cells) for both pathogens and at 1:1 for the antagonist control on the 189 

initial day of the experiments. The plates were incubated and analyzed following the 190 

same experimental scheme that is described in section 2.4. Inoculated, adhered and 191 

internalized bacteria were estimated by plate count as previously described.  192 

Concomitantly, the viability of CPA-7 in the conditions assayed (37 °C in humid 193 

atmosphere with 5% CO2), was assessed. For this, 1 mL of the CPA-7 suspension in 194 

DMEM, as mentioned above, was added in triplicate to six wells of a 24-wells plate and 195 

analyzed by plate count after 1, 2 and 3 h as described in section 2.2.  196 

The impact of MOI in S. enterica and L. monocytogenes adhesion and invasion was 197 

evaluated using bacterial suspensions in DMEM medium of concentrations ranging 198 

from 102 to 107 CFU/mL. Then, 1 mL of each suspension was inoculated in triplicate on 199 

Caco-2 plates and adhered and internalized cells were estimated following the 200 

procedure previously described. All experiments were performed twice. 201 

2.7 Survival and colonization abilities of CPA-7 in a simulated gastrointestinal tract 202 

Additionally, to assess the possibility for competition between CPA-7 and the evaluated 203 

pathogens once in contact with the intestinal epithelium in a more realistic scenario, its 204 

survival under in vitro static gastrointestinal passage and the subsequent adhesion to 205 

and invasion into Caco-2 cells was tested. For this, pear wedges were inoculated as 206 

previously described and then submitted to simulated digestion at initial time or after 207 

seven days of storage at 10 °C in air. Gastrointestinal digestion protocol was adapted 208 

from that described by Zudaire et al. (2017) based on the standardized method of 209 

Minekus et al. (2014). Briefly, 5 g of inoculated pear wedges was placed into a sterile 210 

filter plastic bag (BagPage 80 mL, Interscience BagSystem, Saint Nom, France) with 211 
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3.5 mL of synthetic salival fluid tempered at 37 °C. The mixture was then homogenized 212 

7 strokes/s during 2 min in a Bagmixer 100 (Minimix, Interscience, Saint Nom, France). 213 

Then, 1.5 mL of salivary enzymatic solution was added to the sample and incubated 214 

statically at 37 °C for 5 min. Afterwards, the sample was mixed with 7.5 mL of synthetic 215 

gastric fluid and 2.4 mL of gastric enzymatic solution, adjusted to pH 3 with 1 mol/L 216 

NaOH and incubated statically for 2 h at 37 °C. Then, 11 mL of synthetic intestinal fluid 217 

and 9 mL of intestinal enzymatic solution was added to each sample and incubated 218 

statically at 37 °C for 2 h. After every phase, pH was measured and 1 mL of each 219 

sample was used to estimate CPA-7 populations by plate count as previously 220 

described. All enzymes were purchased from Sigma-Aldrich, St Louis, USA.  221 

Subsequently, adhesiveness and invasiveness of CPA-7 before and after habituation 222 

on pear wedges followed by in vitro gastrointestinal simulation was tested in the same 223 

experimental conditions as previously described and following the same scheme. For 224 

this, resulting cells from the gastrointestinal passage were harvested by centrifugation 225 

at 15777 × g for 20 min at 4 °C, were diluted in 1 mL of DMEM medium at a 226 

concentration of 106 CFU/g fruit and used as the inoculum that was added to the Caco-227 

2 plates. Adhered and internalized cells were estimated by plate count on TSA as 228 

previously described. These assays were performed in triplicate, two independent 229 

times. 230 

2.8 Expression of results and statistical analysis 231 

Microbiological data was calculated as colony forming units per milliliter (CFU/mL) and 232 

transformed to log10 CFU/g fruit. The adhesion and invasion efficiencies of each 233 

pathogen were expressed as logarithmic reductions calculated as follows: log10 N1/N0; 234 

where N1 refers to the bacterial count per gram of fruit at the end of the adhesion or 235 

invasion step and N0 refers to the initial bacterial count per gram of fruit inoculated onto 236 

the Caco-2 cells. Survival capacity of CPA-7 after each phase of gastrointestinal 237 

simulation was calculated as logarithmic reductions: log10 N1/N0, where N1 is the 238 
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bacterial count per gram of fruit at the end of the analyzed digestion phase and N0 is 239 

the initial count per gram of fruit. All data were tested for agreement to normal 240 

distribution and homoscedasticity. The significance of the differences between factors 241 

were determined by one-way analysis of variance (ANOVA) (P < 0.05) and separated 242 

by using Tukey’s test. All statistical analyses were performed using Statistical software 243 

JMP (version 8.0.1 SAS Institute Inc., NC, USA). 244 

3. Results and discussion 245 

3.1 Selection of pathogenic strains 246 

Initial screening of the pathogenic strains of L. monocytogenes and S. enterica usually 247 

used in our laboratory was carried out to select one strain of each species for the 248 

subsequent evaluation of the effect of pathogen-antagonist interaction on pathogen´s 249 

virulence. In biological control assays, the initial populations of CPA-7 on the fruit were 250 

around 6.3 log10 CFU/g fruit which represents at least 2 log10 above each pathogen’s 251 

population. Populations of L. monocytogenes strains were initially 3.9 log10 CFU/g fruit. 252 

After six days of incubation at 10 °C strains CECT 4032, CECT 940 and Lm 230/3 were 253 

reduced by more than 3 log10 when co-inoculated with the antagonist with respect to 254 

the control (Fig. 2A). Compared to the mentioned strains, CECT 4031 was significantly 255 

less inhibited (reduction by 2.6 log10) while no inhibitory effect was observed on strain 256 

CECT 933. On the other hand, initial populations of S. enterica isolates on fruit plugs 257 

were around 4.1 log10 CFU/g fruit. As observed at day six, strains BAA-711 and CECT 258 

4300 were the most susceptible to biological control (reduced by more than 4 log10) 259 

(Fig. 2A).  260 

Regarding their virulence, L. monocytogenes CECT 4032, CECT 933, CECT 940 and 261 

Lm 230/3 and were the most adhesive to Caco-2 cells showing less reduction of 262 

adhered cells in respect of the initial inoculum (Fig. 2B). In the same way, CECT 4032 263 

was the most efficient in terms of invasion into epithelial cells. Among S. enterica 264 
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strains, BAA-707, BAA-710 and CECT 4300 had similar attachment efficiencies that 265 

were higher than the observed for the strains BAA-709 and BAA-711 (Fig. 2B). BAA-266 

707 and CECT 4300 were also the most invasive strains. According to the obtained 267 

results, L. monocytogenes CECT 4032 and S. enterica CECT 4300 isolates, which 268 

showed a combination of high virulence (adherence and invasion capacities) and 269 

marked susceptibility to CPA-7, were selected to investigate the antagonistic effect of 270 

the CPA-7 on their colonization properties.  271 

3.2 Antagonist-pathogen interaction on fresh-cut pear 272 

S. enterica CECT 4300 and L. monocytogenes CECT 4032 were submitted to 273 

interaction with CPA-7 on pear wedges during 7 days at 10 °C in air. We selected 10 274 

ºC as it has shown to be a chilling temperature which reproduces better real conditions 275 

on open refrigerated exhibitors where processed fruit and vegetable are usually stored 276 

in supermarkets. It is also a suitable refrigerated temperature for tracking changes in 277 

the populations of S. enterica and L. monocytogenes during biological control assays 278 

as it fits into the growth temperature range for both microorganisms (8 - 45 ºC and 0 - 279 

45 ºC, respectively) (Khaleque and Bari, 2015).  280 

At initial time, CPA-7 populations on the fruit were 7.5 log10 CFU/g fruit on average, 281 

which represents approximately 1.8 log10 above the populations of the pathogens (Fig. 282 

3). After seven days of co-incubation with CPA-7, S. enterica populations were reduced 283 

by 5.5 log10 while L. monocytogenes populations were reduced by 3.1 log10 with 284 

respect to the control. When compared altogether, control populations of both 285 

pathogens reached similar numbers after the evaluated incubation period but CPA-7 286 

showed significantly more effectiveness (P < 0.0001) at inhibiting the growth of S. 287 

enterica than of L. monocytogenes in co-inoculated samples. Similar storage conditions 288 

has been previously used in experiments that have shown the effectiveness of CPA-7 289 

at reducing the populations of cocktails of L. monocytogenes and S. enterica by 3 and 290 
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4 log10 respectively, on fresh-cut melon and apple (Abadias et al., 2014; Alegre et al., 291 

2013a).  292 

3.3 Adhesion to and invasion into Caco-2 cells 293 

We evaluated the effect of the antagonist-foodborne pathogen previous interaction in a 294 

food matrix on the virulence of the pathogens, focusing on adhesion to and invasion of 295 

human gastrointestinal epithelial cells because these are preliminary steps in infection. 296 

Interference with the adherence and invasion of pathogens into epithelial cells has 297 

previously shown to be an effective mechanism for antagonistic activity (Burkholder & 298 

Bhunia, 2010; Cells, Coconnier, Lie, Lorrot, & Servin, 2000).  299 

Fresh-cut pear homogenates resulting from samples inoculated individually with CPA-300 

7, S. enterica CECT 4300 and L. monocytogenes CECT 4032 or with a combination of 301 

each pathogen and the antagonist were obtained at initial day and after seven days of 302 

storage at 10 ºC and used as inocula for adhesion and invasion assays. The relative 303 

adhesion to Caco-2 cells of L. monocytogenes co-inoculated with CPA-7 was similar to 304 

that of the control (Fig. 4A) at both times of analysis. Adhesion of L. monocytogenes 305 

was significantly reduced (by 0.5 log10) (P < 0.001) after habituation on the fruit matrix 306 

regardless of the interaction with CPA-7. Similar storage conditions, period of 307 

incubation and fruit matrix that the used in the present study have previously shown to 308 

reduce the adhesion to Caco-2 cells of other strain of L. monocytogenes (Lm 230/3, 309 

serotype 1/2a) (Colas-Meda et al., 2017b). 310 

In contrast, the relative adherence of S. enterica was significantly reduced in presence 311 

of the antagonist (by 0.8 log10) compared to the control treatment regardless of the 312 

habituation in the fruit matrix (Fig. 4A). Similarly, the relative adhesiveness of the CPA-313 

7 control did not show to be influenced by the incubation period and it was similar to 314 

that of S. enterica. Reduction of adhesiveness of S. enterica in the presence of CPA-7, 315 

could be due to competition for sites on Caco-2 surfaces as CPA-7 cells were two 316 



13 
 

orders of magnitude more abundant than S. enterica cells and both microorganisms 317 

had a similar efficiency of adhesion which was lower to that of L. monocytogenes. 318 

Regarding the capacity of invasion, no significant differences could be observed for any 319 

of the analyzed pathogens when exposed to CPA-7 compared to the control treatments 320 

on inoculation day (Fig. 4B). Nevertheless, after 7 days, the number of non-internalized 321 

cells of L. monocytogenes increased by 1.3 log10, thus the invasion efficiency of this 322 

strain was significantly reduced when co-inoculated with CPA-7 compared to the 323 

control. The combination of the incubation period and the interaction with the 324 

antagonist resulted in the reduction of invasion of S. enterica since no viable 325 

internalized cells could be detected after the incubation period for inocula with 326 

concentrations ranging from 3 to 6 log10 CFU g/ fruit. However, they could be detected 327 

in the control treatment using the inocula within the mentioned range of concentration 328 

(about 7 log10) after and before the preadaptation period. On the other hand, 329 

habituation on the fruit resulted in an increase of relative invasion of CPA-7 from an 330 

undetectable level (detection limit: 5 CFU/g) to about 2 log10 CFU/g for an inoculum of 331 

7.4 log10 CFU/g. 332 

Furthermore, in the present study, the pre-incubation period in the food matrix led to a 333 

variation of the population sizes of the pathogens, i.e. an increase of the control 334 

populations of S. enterica, L. monocytogenes and CPA-7 and a concomitant reduction 335 

of pathogen’s populations (by 3 and 4 log10 respectively) when co-inoculated with CPA-336 

7. Thus, the population dynamics of both pathogens was related to a variation of the 337 

multiplicity of infection (MOI) in the subsequent adhesion and invasion assays.  338 

Analysis of MOI using dilutions of each pathogens in DMEM medium showed that 339 

relative adhesion of S. enterica CECT 4300 was the same in a range of MOI of 340 

0.0001:1 to 0.01 but it increased at an MOI of 1:1 while for L. monocytogenes CECT 341 

4032 the adhesion increased in a different MOI range (0.001:1 < 10:1 < 0.1:1) (data not 342 
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shown). Increased relative adherence (by 0.6 log10) of CPA-7 to the monolayers 343 

positively correlated to the increase of multiplicity of infection of the antagonist with 344 

respect to Caco-2 cells (0.1:1 < 1:1 = 100:1).  345 

As for invasive capacities, we could not observe an effect of MOI on S. enterica 346 

internalized cells in a range of 0.0001:1 to 1:1 which correspond to the levels obtained 347 

after interaction with the antagonist. An increase of MOI from 0.001:1 to 0.1:1 shown to 348 

be associated to an increase of invasion of L. monocytogenes while it remained stable 349 

at higher levels (10:1). These results agree with previous reports regarding the 350 

adhesion and invasion capacities of S. typhymurium strain C52 to monolayers of 351 

intestine cells (Int-407), which varied between certain MOI ranges (0.1:1 = 1:1 < 100:1) 352 

(Kusters et al., 1993). MOIs have previously shown to influence the efficiencies of 353 

infection of both Salmonella spp. and Listeria spp. at different levels according to the 354 

strain and to the experimental conditions tested (Kushwaha & Muriana, 2010; Kusters, 355 

Mulders-Kremers, Van Doornik, & Van der Zeijst, 1993).  356 

When analyzing this factor along with the habituation in the food matrix, we observed 357 

that after seven days of incubation the relative adhesiveness of the analyzed 358 

pathogens when they were inoculated alone either remained stable or it was reduced, 359 

in the case of S. enterica and L. monocytogenes, respectively, even when their 360 

populations increased and consequently, the multiplicity of infection augmented. 361 

However, the combination of these two factors do not show to have an influence in the 362 

invasiveness of any of the analyzed pathogens.  363 

Mechanisms for adherence of antagonists have shown to be either nonspecific, which 364 

are mediated by electrostatic interactions and hydrophobic or steric forces; or specific, 365 

which involve the adhesin/receptor interaction and/or the secretion of extracellular 366 

proteinaceous adherence-promoting factors, as previously demonstrated in 367 

experiments performed with probiotics (Muñoz-Provencio et al., 2009; Neeser et al., 368 
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2000; Wang et al., 2014; Sribuathong et al., 2014). However, the antagonistic 369 

bacterium evaluated in the present study is not a probiotic. Although a number of 370 

experiments have been performed, we have not been able to demonstrate any 371 

production of antimicrobial metabolites in synthetic media or in fresh-cut fruit which 372 

could suggest a putative ability to exclude or displace foodborne pathogens in situ 373 

(Collazo et al., 2017). Furthermore, it was reported that it fails to grow at temperatures 374 

higher than 33 ºC on TSA plates (Alegre et al., 2013a). However, its viability in the 375 

conditions tested in the present study had not previously been assessed. We observed 376 

that CPA-7 was able to survive and maintain its populations in DMEM medium at 37 ºC 377 

in 5% CO2 in humidified atmosphere for at least 3 h (data not shown). We also 378 

demonstrated that it can adhere to Caco-2 cells with higher adherence capacity 379 

according to increasing MOIs 1:1 > 0.1:1 reaching a saturation point at 100:1. This 380 

would enable it for steric disruption or competition for adhesion in the conditions 381 

assayed in this study. These results agree with previous experiments performed with 382 

isolates of P. fluorescens of different origins: MF37 (crude milk isolate) and MFN1032 383 

(clinical isolate). These isolates had also been considered to be psychrotrophic and 384 

unable to grow at temperatures above 32 ºC, but showed to be able to survive and 385 

even adapt to growth at 37 ºC or above and subsequently adhere to and translocate 386 

across the cytoplasm to the basal membrane of differentiated intestinal epithelial cells 387 

(Caco-2/TC7) (Madi et al., 2010). Antagonistic strains of Lactobacillus (L. plantarum 388 

PD110 and L. cellobiosus RE 33) have also shown increasing adherence ability at 389 

inocula ranging from 106 to a saturation point of 2 x 108 CFU/mL (MOI 1:1 and 1:100, 390 

respectively) when bacterial clusters disrupted adhesion (Sribuathong et al., 2014).  391 

The combined effect of cell-to-cell contact, food matrix microenvironment and storage 392 

conditions could have led to the modulation of the production or the functionality of the 393 

molecules involved in adhesion, invasion and multiplication of the pathogens evaluated 394 

in the intestinal epithelium. Several reports have stated the role of environmental 395 
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factors such as growth temperatures, osmotic stress, pH, anaerobiosis, and cell-to-cell 396 

signaling prior to infection, in the regulation of virulence genes of intracellular 397 

foodborne pathogens (Ivy, Chan, Bowen, Boor, & Wiedmann, 2010; Pricope-Ciolacu, 398 

Nicolau, Wagner, & Rychli, 2013; Zilelidou et al., 2015). For instance, cell-to-cell 399 

contact between several combinations of L. monocytogenes strains (e.g. Scott A 400 

serovar 4b and PL25 serovar 1/2b) co-cultured in a nutrient-rich broth resembling a 401 

food matrix, has previously been associated to an inhibitory effect in their growth as 402 

well as in their capacity to invade and multiply within Caco-2 cells (Zilelidou et al., 403 

2015). 404 

Molecular and physiological basis of virulence reduction have been associated to 405 

changes in expression of stress-response genes such as sigB as well as of virulence 406 

genes (plcA, iap, and hly) in L. monocytogenes of different serovars, during habituation 407 

in different food matrices at refrigerated temperatures (4 ºC and 12 ºC) (Rantsiou et al., 408 

2012). Down-regulation of genes involved in the invasion process (including actA, hly, 409 

inlA, and plcA) leading to differential protein expression, has also resulted in reduced 410 

invasiveness in antagonist-pathogen interactions (L. monocytogenes CMCC54001 and 411 

Bifidobacterium longum NCC2705) (Tan et al., 2012).  412 

3.4 Survival and colonization abilities of CPA-7 in a simulated gastrointestinal tract  413 

In view of the positive results obtained in the adhesion and invasion assays, the 414 

abilities of CPA to survive simulated human gastrointestinal passage and to 415 

subsequently colonize the intestinal epithelium were evaluated. On the first day of the 416 

experiments, the populations of CPA-7 inoculated onto ‘Conference’ pear wedges 417 

remained unaltered after the oral phase but they were drastically reduced after the 418 

gastric phase (by 6.5 log10) (Fig. 5). However, a significant population increase (by 2.7 419 

log10) was recorded after the intestinal phase. At this sampling point, CPA-7 was able 420 

to survive in acidic conditions, bile salts and corporal temperature of the host, but its 421 

populations were drastically reduced after the gastric phase, concomitantly with the 422 



17 
 

reduction in pH from 6.4 to 2.0. Then, they recovered during the intestinal phase in 423 

correlation to the rise of pH to 7.5. 424 

After seven days of incubation in the fruit matrix CPA-7 initial populations were 1.8 425 

log10 above the recorded at inoculation day. Although, this number was reduced by 0.7 426 

log10 during the oral phase. At this sampling time, the means of the pH measured after 427 

the oral, gastric and intestinal phases were 6.0, 2.9 and 8.2, respectively. 428 

Concomitantly with this pH variation, populations dropped significantly (by 6.0 log10) 429 

during the gastric phase. However, they remained stable during the intestinal phase 430 

showing that even after habituation in the food matrix, surviving cells were unable to 431 

grow during the subsequent phase. Regardless of the pre-incubation period, 432 

populations reached similar numbers at the end of the gastrointestinal passage, 433 

although logarithmic reduction after digestion with respect of the initial population was 2 434 

log10 higher after seven days on the fruit than at inoculation day. In spite of the low 435 

number of viable cells after gastrointestinal passage, the adhesion capacity of CPA-7 436 

was the same regardless of the stress experienced during digestion, suggesting that 437 

the cells that reach the intestinal epithelium could stablish competition for adhesion 438 

sites. In previous experiments no viable cells of this antagonist could be detected after 439 

simulated gastric digestion but assayed conditions (pH 2; 2 mmol/L HCl, 0.3 g/L 440 

pepsin) and food matrix (fresh-cut ‘Golden delicious’ apple) differed from the evaluated 441 

in the present work (Alegre et al., 2013b).  442 

We expected the population size of L. monocytogenes to remain invariable after the 443 

whole gastrointestinal passage and evaluated directly its ability to attach and to 444 

penetrate intestinal cells, based on the observations in a similar model of static 445 

gastrointestinal simulation, where bacterial counts of the strain CECT 4032 inoculated 446 

on fresh-cut ‘Conference’ pear were maintained at the end of gastrointestinal passage, 447 

after seven days of storage at 10 ºC (Iglesias et al., 2017). Similarly, populations of L. 448 

monocytogenes strain 230/3 inoculated on ‘Conference’ pear did not change along the 449 
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passage through a simulated static gastrointestinal tract after 6 days of storage at 10 450 

ºC in air (Colas-Meda et al., 2017a).  451 

4. Conclusions 452 
The data presented herein show that the interaction of the antagonist with both of the 453 

analyzed pathogens during the pre-incubation period was associated to the reduction 454 

of their virulence features. Invasiveness of S. enterica subsp. enterica ser. Enteritidis 455 

CECT 4300 and L. monocytogenes CECT 4032 to Caco-2 cells were reduced after 456 

seven days of co-incubation with P. graminis CPA-7 on fresh-cut pear at 10 ºC. This 457 

could be due to a combined effect of several processes, i) cell-contact-dependent 458 

competition established in the food matrix which could modulate the expression of 459 

genes involved in adhesion and invasion leading to the impairment by the antagonist of 460 

the pathogen’s virulence traits associated with host colonization; ii) physical 461 

competition for adhesion to the epithelial membranes which is linked to the proportion 462 

of antagonist-pathogen cells and; to some extent, to the multiplicity of infection.  463 

Further investigation should be carried out to determine the effect of the CPA-7 in the 464 

regulation of specific virulence-related genes of L. monocytogenes and S. enterica 465 

during co-incubation at different temperatures and storage conditions. To the best of 466 

our knowledge, this is the first study on the influence of the interaction of a non-467 

probiotic antagonistic bacterium on fresh-cut fruit in the colonization abilities of human 468 

enteropathogenic bacteria. 469 
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 605 

Figure 1. Schematic experimental design of biological control and adhesion/invasion assays. 606 

 607 
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Figure 2. Preliminary screening including several strains of L. monocytogenes and S. 615 

enterica subsp. enterica. (A) Inhibition of growth of L. monocytogenes (□) and S. enterica 616 

(■) when co-inoculated with P. graminis (CPA-7) on pear plugs after 6 d of aerobic 617 

incubation at 10 °C. (B) Non-adhered L. monocytogenes cells (□) and S. enterica cells (■) 618 

and non-internalized L. monocytogenes cells (   ) and S. enterica cells (   ) when 619 

inoculated individually in DMEM 1×medium onto Caco-2 cells. Columns represent the 620 

means of log10 (N1/N0), where (A) N1 is the bacterial count of the pathogen-CPA-7 co-621 

inoculated treatment at day six and N0 is the bacterial count of the pathogen control 622 

treatment at this sampling point, (B) N1 is the bacterial count after the adhesion or the 623 

invasion step and N0 is the bacterial count of the inoculum added to the Caco-2 624 
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monolayer. Each experiment was performed twice including three replicates per each 625 

strain. Error bars represent standard errors of the mean. 626 

 627 

  628 
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 629 

Figure 3. Populations of Pseudomonas graminis strain CPA-7 control (  ), L. 630 

monocytogenes CECT 4032 (Lm) control (   ), Lm co-inoculated with CPA-7 (   ), S. 631 

enterica subsp. enterica CECT 4300 (Sal) control (   ) and Sal co-inoculated with CPA-7   632 

(   ) in pear wedges at initial time and after seven days at 10 °C in air. Values above 633 

columns are the means bacterial counts transformed to log10 CFU per gram of fresh 634 

weight of fruit (FW) of three replicates from two independent assays per each pathogen. 635 

Error bars represent the standard errors of the means. Different letters above columns 636 

indicate significant differences among treatments analyzed separately by sampling time 637 

(P < 0.0001) according to analysis of variances (ANOVA) and Tukey’s test.  638 
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Figure 4. (A) Non—adhered and (B) non— internalized bacteria into Caco-2 cells after the 
invasion step performed at initial time and after seven days of aerobic incubation on pear slices 
at 10 °C. Columns represent (   ) P. graminis CPA-7, (   ) L. monocytogenes CECT 4032 
control, (   ) CECT 4032 co-inoculated with CPA-7, (  ) S. enterica subsp. enterica CECT 4300 
control and (  ) CECT 4300 co-inoculated with CPA-7. Results are represented as means of 
logarithmic reductions of viable counts of internalized cells (N1) per gram of fresh fruit in relation 
to the inoculum added to Caco-2 cells monolayers (N0), from two independent trials per each 
microorganism. Error bars represent standard error of the mean (n = 12). ND, below detection 
limit of 5 CFU/g fruit. Asterisks indicate means which are significantly different compared by 
analysis of variance (ANOVA) and separated by Tukey’s test (P < 0.05). 
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 642 

 Fig. 5.  Pseudomonas graminis strain CPA-7 population dynamics during in vitro static 643 

gastrointestinal simulation at inoculation day (continuous line) and after seven days 644 

(dotted line) of storage on fresh-cut ‘Conference’ pear at 10 °C in air. Symbols 645 

represent means and error bars represent standard errors of the mean (n = 6). 646 

Asterisks represent significant differences among different phases at each sampling 647 

time according to analysis of variances ANOVA and Tukey’s test (P < 0.0001). 648 
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