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Abstract 16 

Questions: How do thermal migration distance and extreme cold events affect seedling emergence 17 

and survival in assisted migration schemes in the Sub-Mediterranean context? What role does plant 18 

provenance play? Can biotic interactions such as nurse effect of the overstory and shrub layer buffer 19 

the negative responses to plant translocation? Are any of these effects species-specific? 20 

Location: Three pinewoods in the Catalan Pre-Pyrenees, northeastern Iberian Peninsula. 21 

Methods: We used a replicated field trial to test the early-years establishment of two contrasted 22 

provenances of four Quercus species (Q. coccifera, Q. ilex, Q. faginea and Q. pubescens) that were 23 
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sown and planted along gradients of elevation and understory microsite conditions in sub-24 

Mediterranean pinewoods. Seedling responses to translocation were evaluated through seedling 25 

emergence, seedling survival, and re-sprouting after dieback events according to seedling 26 

provenance, thermal migration distance, extreme cold events and microenvironment. 27 

Results: The study reports high success of both the planting (with an overall 76.3% of initial 3-year 28 

survival) and sowing (with an overall 50% of seedling emergence) experiments. The results show 29 

that: i) the thermal migration distance and the occurrence of extreme cold events have strong effects 30 

on the responses of the translocated species (particularly the evergreen oaks); ii) the forest overstory 31 

plays an important role in attenuating the negative effects of thermal migration distance on seedling 32 

survival; and iii) these responses are species-specific. The evergreen Quercus species showed more 33 

evidence of high ecotypic differentiation in terms of cold tolerance, enabling local provenances to 34 

respond better to translocation. In contrast, marcescent species, showed high phenotypic plasticity 35 

that led to a better overall establishment success. 36 

Conclusion: The implementation of assisted migration is a feasible option to increase the diversity 37 

and resilience of the sub-Mediterranean pinewoods. Assisted migration programs should manage 38 

risks by thoroughly considering thermal migration distances and the occurrence of extreme cold 39 

events when selecting species and seed sources, since Mediterranean tree species show different 40 

strategies regarding adaptation to cold. Program managers should also consider the advantage of 41 

planting/sowing under relatively closed canopy to buffer some of the negative responses associated 42 

with translocation. 43 

Keywords: Climate change; Forest management; Diversification; Pinus; Quercus; Germination; 44 

Survival; Resprouting; Local adaptation; Phenotypic plasticity. 45 

Running head: Diversifying sub-Mediterranean pinewoods with oaks46 
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Introduction 47 

Across the northern shore of the Mediterranean Basin, generalized depopulation in rural areas over 48 

the second half of the twentieth century has led to the abandonment of once cultivated areas and 49 

pastures, and thus to a strong decrease in human interventions on forests (Vicente-Serrano et al. 50 

2004; Lasanta-Martinez et al. 2005; Chauchard et al. 2007). These land use changes together with 51 

extensive reforestation programs have triggered extended encroachment and densification processes 52 

in forests, mainly pinewoods (Améztegui et al. 2010; Navarro & Pereira 2012). More recently, the 53 

activity of seed dispersers like jays or mice (Gómez 2003), and the increasing cover of facilitating 54 

shrubs in the understory of pine forests ―favored by the sharp decrease in livestock grazing pressure 55 

― are enabling a gradual entry of late-successional broadleaved species in their understory (Gracia 56 

et al. 2007; Martin-Alcon et al. 2012), propitiating natural processes of tree-species diversification 57 

(Gómez 2003; Gómez-Aparicio et al. 2005; Navarro-González et al. 2013; Martín-Alcón et al. 58 

2015b). An increase in tree species diversity is generally thought to enhance the forest resilience to 59 

environmental changes, including variations in disturbance regimes (e.g. Campbell et al. 2009; 60 

Thompson et al. 2009; Puettmann 2011). In the particular case of the sub-Mediterranean pine forests, 61 

the presence of resprouting species such as oaks in the understory of forests dominated by non-62 

resprouting and non-serotinous pines such as black pine (Pinus nigra Arn. ssp. salzmannii) or Scots 63 

pine (Pinus sylvestris L.) is essential for rapid vegetation recovery after the occurrence of forest fires 64 

(Puerta-Piñero et al. 2011; Martín-Alcón et al. 2015a).  65 

 Natural tree-species diversification processes are still far from widespread at landscape and 66 

regional scales, due to limiting factors such as seed dispersal constraints (Zamora et al. 2010; 67 

González-Moreno et al. 2011), unfavorable stand structures ―i.e. over-stocked pine plantations 68 

(Navarro-González et al. 2013; Martín-Alcón et al. 2015b)― or harsh microsite conditions (Gomez-69 

Aparicio et al. 2009). To cope with such limitations and accelerate the natural process, forest 70 
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managers are increasingly looking at assisted diversification measures based on planting or sowing 71 

late-successional species (Gomez-Aparicio et al. 2009; Palacios et al. 2009; González-Rodríguez et 72 

al. 2011; Prévosto et al. 2011). 73 

 The climatic conditions to which Mediterranean tree populations have been locally adapted 74 

are expected to change dramatically in response to rapid ongoing global warming (Benito-Garzón et 75 

al. 2008; Keenan et al. 2011). In this context, assisted migration practices can be considered as a way 76 

to help implement diversification actions in particularly vulnerable areas (Kreyling et al. 2011; 77 

Frascaria-Lacoste & Fernández-Manjarrés 2012; Pedlar et al. 2012; Benito-Garzón et al. 2013; 78 

Leverkus et al. 2015). Assisted migration―also known as assisted colonization, or population 79 

translocation― is the intentional movement of focal units (i.e. ecotypes, species, taxa, functional 80 

types or life forms) to recipient localities where these focal units are currently absent and cannot be 81 

expected to colonize by natural means within a short timeframe (i.e. years or decades; Kreyling et al. 82 

2011). In forestry, assisted migration is generally focused on keystone tree species moved within, or 83 

modestly beyond, a species’ current range (Kreyling et al. 2011; Frascaria-Lacoste & Fernández-84 

Manjarrés 2012; Pedlar et al. 2012). The assertion that populations growing under warmer conditions 85 

can be safely translocated to colder regions still needs to be further explored, since they may 86 

maladapt to extreme cold events in those localities, which would result in significant economic loss 87 

(Benito-Garzón et al. 2013). Common garden and field experiments are the most powerful tools for 88 

testing population translocations (Matyas 1996), but these type of field experiments remain scarce, at 89 

least in the Mediterranean context. 90 

 Here, we present the findings of the initial 3-year monitoring period on a long-term field 91 

experiment in which we sowed acorns and planted seedlings from two contrasted provenances along 92 

gradients of elevation and microsite conditions (canopy openness and herbaceous and shrub cover). 93 

The study included the four most widespread Quercus species in the calcareous mountains of the 94 
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Eastern Iberian Peninsula (Q. coccifera L., Q. ilex L., Q. faginea Lam. and Q. pubescens Wild.), 95 

which were planted and sown in the understory of sub-Mediterranean pinewoods. Our general 96 

objectives were to gain deeper insight into the main factors driving the success of assisted migration 97 

practices, and to assess how some of the species most suitable for diversifying sub-Mediterranean 98 

pinewoods will respond to translocation-induced changes in climate conditions. Previous studies on 99 

the ecophysiologic responses of these species to extreme climatic events have observed broad inter- 100 

and intraspecific differences in phenotypic plasticity and local adaptation capacity (Martínez-Ferri et 101 

al. 2001; Gimeno et al. 2008; Andivia et al. 2011; Arend et al. 2011; Wellstein & Cianfaglione 102 

2014). We expected to find that: (i) climate, and particularly minimum temperatures, would play a 103 

determinant role in seedling emergence and mortality in the first few years, especially at high 104 

elevations; (ii) extreme cold events (if any) would accentuate seedling mortality; (iii) plant 105 

provenance would strongly affect emergence and survival, with warmer provenances performing 106 

worse, especially at high elevations; (iv) biotic interactions, through the protection provided by the 107 

overstory and/or shrub cover, could partially buffer the signs of maladaptation to local conditions, 108 

especially those species and provenances established further from their current climatic range, and 109 

(v) responses to translocation distance and extreme cold events, as well as the effects of plant 110 

provenance and biotic interactions would be species-specific. 111 

Materials and Methods 112 

Study area 113 

The experiment was conducted at three pinewoods of natural origin located in the Catalan Pre-114 

Pyrenees (NE Iberian Peninsula), a mountain range extending from East to West, south from the 115 

main Pyrenean range (Fig. 1). The three forests are located on northern slopes of the same valley but 116 

set 10-15 km apart from each other, in mountains dominated by limestone and calcareous soils, 117 

covering an altitudinal gradient from around 900 to 1,700 m asl. In the area, this gradient includes 118 
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the transition from sub-Mediterranean to upper montane bioclimatic territories, and involves the 119 

Pinus nigra–P. sylvestris transition zone, with P. nigra clearly dominating the overstory up to 1,100 120 

m and P. sylvestris dominating from 1,400 m upwards. Although forests in the area are clearly 121 

dominated by pines, some individuals or small groups of broadleaved tree species (Quercus, Acer, 122 

Sorbus or Prunus) can be found sparsely distributed along the slopes, more frequently at low 123 

elevations. The main understory species is common box (Buxus sempervirens L.), but other species 124 

of genera Juniperus, Cotoneaster, Crataegus or Arctostaphylos are also frequent (Burriel et al. 125 

2004). 126 

 127 

Figure 1. Location of (a) the study area in northeastern Iberian Peninsula and approximate zonation 128 

of local provenance (LP) of the vegetative material of all 4 species (Q. coccifera, Q. ilex, Q. faginea 129 

and Q. pubescens), warmer provenance of Q. ilex and Q. faginea (WP1), and of Q. pubescens 130 

(WP2); and (b) the study area spanning the three forests hosting the experiment.  131 

Species characteristics 132 

We selected four resprouting Quercus species, each of which is widely distributed in the western 133 

Mediterranean Basin and part of the ongoing process of tree-species diversification in Mediterranean 134 

pine forests (Navarro-González et al. 2013; Vayreda et al. 2013; Martín-Alcón et al. 2015b). Q. 135 
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coccifera L. and Q. ilex L. are common evergreen sclerophyllous oaks in Mediterranean areas of the 136 

Iberian Peninsula, whereas Q. faginea Lam. and Q. pubescens Wild. are semi-deciduous 137 

(marcescent) oaks commonly growing in sub-Mediterranean locations. All four species can be found 138 

growing naturally in the study sites, with the exception of Q. coccifera, which is nevertheless 139 

common in the southern slopes of the same mountains. The four species can be ranked on drought 140 

tolerance as Qc >Qi >Qf >Qp (see ranges of Thornthwaite precipitation effectiveness index in their 141 

distribution areas in Table 1), and in the opposite order for cold tolerance (Table 1). All the species 142 

are considered intolerant to intermediate-tolerant to shade (Niinemets & Valladares 2006), although 143 

they are favored by moderate to high shading during the seedling establishment phase (Broncano et 144 

al. 1998; Retana et al. 1999; Lookingbill & Zavala 2000; Quero et al. 2006; Gómez-Aparicio et al. 145 

2008; Caldeira et al. 2014).   146 

 For three of the four species studied (Q. ilex, Q. faginea and Q. pubescens), we selected 147 

vegetative material (seeds and plants) from two provenance regions (i.e. genetically different; Alía et 148 

al. 2005): (i) a local provenance, which corresponds to the study area (central Catalan Pre-Pyrenees); 149 

and (ii) a provenance which corresponds to warmer sites, located in the mountainous area extending 150 

from the South Iberian range to the Mediterranean coast in the case of Q. ilex and Q. faginea and in 151 

the Catalan Pre-Coastal range in the case of Q. pubescens (Fig. 1; see a more accurate delimitation of 152 

each provenance region in Appendix S1). In the case of Q. coccifera, for which our study sites were 153 

in all cases located beyond its ecological range, only the local provenance was tested. In order to get 154 

a proper idea of the suitability of the study locations for each of the species and provenances, we 155 

compared the main climatic characteristics of the experimental sites to the mean climatic 156 

characteristics of their current range (Table 1; see further explanation about the climatic 157 

characterization in Appendix S2). All the experimental sites satisfy the water requirements of the 158 

study species, but their thermal conditions are in the coldest limit of their requirements for all the 159 

provenances tested, or even below these ranges in some cases (Table 1). 160 
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Experimental design 161 

We selected three altitudinal levels at each of the three forests studied: low (around 1,000 m asl), 162 

intermediate (around 1,250 m asl), and high (around 1,500 m asl). These levels represent a range of 163 

thermal migration distance for all the species, defined as the difference in thermal conditions 164 

between the current species’ distribution area and the recipient locality. Accordingly, the species the 165 

most displaced from its current distribution range was Q. coccifera (for which the difference in 166 

annual average mean daily temperature between its current range and the high altitudinal level of the 167 

experimental sites (ΔTmean) goes up to 5.8 ºC). Conversely, the least displaced species was the local 168 

provenance of Q. pubescens (for which ΔTmean in relation to the high altitudinal level of the 169 

experimental sites goes up to 2.6 ºC; Table 1). 170 

At each elevation, two 12 × 12 meter plots were established under contrasted conditions of 171 

canopy openness: one plot (canopy plot) was located under continuous pine overstory, and the other 172 

(gap plot) was placed under a small canopy gap (mostly originated by old cutting and occasionally 173 

by natural tree fell). The gap extent was equivalent to the area occupied by two to three adult trees 174 

(see further information about forest structural attributes in the experimental sites in Appendix S3).  175 

Table 1. Descriptive statistics (mean ± SD) for latitude, elevation and the main climatic attributes in 176 

the experimental sites and in the distribution area of each species in each of the provenance regions 177 

from which the vegetative material was collected (Appendix S1). 178 

  
Latitude 
 (°) 

Elevation  
(meters) 

Annual  
Precipitation  
(mm) 

Mean 
annual T 
(ºC) 

Mean  
maximum  
T (ºC) 

Mean  
minimum  
T (ºC) 

Thornthwaite  
PE Index 

Experimental sites (by elevation) 
High  42.2 ± 0.1 1526.1 ± 58.2 846.0 ± 23.1 7.3 ± 0.2 11.3 ± 0.0 4.0 ± 0.3 1.06 ± 0.03 
Intermediate  42.2 ± 0.1 1267.6 ± 50.0 838.0 ± 84.5 9.1 ± 0.2  13.6 ± 0.5 5.3 ± 0.1 0.93 ± 0.08 
Low  42.2 ± 0.1 969.0 ± 70.8 827.0 ± 29.5 10.9 ± 0.2 16.0 ± 1.0 6.5 ± 0.1 0.82 ± 0.06 
Species Provenance region 
Q. coccifera Local 41.6 ± 0.4 610.5 ± 119.9 643.9 ± 92.5 13.1 ± 1.3 18.1 ± 0.9 5.9 ± 1.0 0.58 ± 0.13 
Q. ilex Local 42.1 ± 0.2 699.2 ± 114.7 697.6 ± 117.2 11.1 ± 1.1 16.9 ± 1.1 4.5 ± 1.3 0.69 ± 0.13 
Q. ilex  Warmer 40.5 ± 0.2 615.3 ± 121.0 615.3 ± 121 12.1 ± 0.9 17.6 ± 1.1 6.6 ± 0.9 0.60 ± 0.12 
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Q. faginea  Local 42.1 ± 0.1 719.1 ± 110.8 719.1 ± 110.8 10.9 ± 1.3 17.2 ± 1.3 4.4 ± 1.4 0.70 ± 0.13 
Q. faginea Warmer 40.6 ± 0.1 640.0 ± 97.9 640.0 ± 97.9 11.9 ± 0.9 17.1 ± 1.0  6.6 ± 0.9 0.64 ± 0.09 
Q. pubescens Local 42.2 ± 0.2 894.8 ± 114.1 794.8 ± 114.1 9.9 ± 1.1 16.2 ± 1.1 3.4 ± 1.2 0.80 ± 0.13 
Q. pubescens Warmer 42.0 ± 0.2 848.1 ± 115.0 848.1 ± 115.0 11.5 ± 1.5 18.1 ± 1.3 6.9 ± 1.7 0.84 ± 0.13 

 179 

 Seven two-year-old seedlings of each combination of species × provenance were planted in 180 

each plot in October-November 2011, for a total sample size of 882 seedlings (126 per species and 181 

provenance). Seedlings were randomly distributed across each plot and planted at least one meter 182 

apart to avoid cross-interactions. The seedlings had been grown in nurseries located in the same 183 

region of provenance in which the seeds had been collected. Even though all plots were fenced off to 184 

prevent damages by wild or domestic animals, 29 seedlings (out of 882) had to be excluded from 185 

analyses due to damage by animals (probably small rodents).  186 

 One year after plant establishment, we selected 5 sowing points in each of the 18 plots (3 187 

forests × 3 elevations × 2 levels of canopy openness). Three acorns of each species × provenance 188 

combination were sown at 4 cm depth in each sowing point in November 2012. Acorns were 189 

collected the same autumn from trees growing in the same region of provenance from which the 190 

seedlings had been acquired. Non-viable acorns were eliminated by floating and visual screening 191 

prior to sowing. Each sowing point was covered with a 80 cm ×80 cm wire mesh (0.6 cm mesh size) 192 

to avoid predation. No signs of seed predation by small rodents (including voles) were observed 193 

throughout the study period, but one of the plots had to be discarded due to severe damage 194 

presumably caused by a mustelid.  195 

Monitoring 196 

For the plantation experiment, seedling mortality was regularly monitored throughout the duration of 197 

the experiment. With the aim of disentangling the main factors driving mortality for each species at 198 

each location, we divided the observed mortality into either winter mortality (registered after each 199 
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winter season) or summer mortality (registered after each summer season). The plots were frequently 200 

visited, and we only assigned mortality to a given period (summer or winter) when plants were found 201 

to be dead in the beginning of a period but had been recorded as healthy (absence of any symptoms 202 

of disease) at the end of the previous one. All seedlings determined as dead during one of the field 203 

campaigns were re-visited during the next growing season. Those seedlings that were able to 204 

resprout after the dieback event were then reclassified as alive for the analysis of mortality, and thus 205 

coded as ‘resprouted’. 206 

 Seedling emergence from the sowing experiment was inspected and registered at different 207 

dates: June 2013, October 2013, June 2014 and October 2014. Every new seedling recorded was 208 

identified and its health status was monitored during the next visits. We stopped monitoring seedling 209 

emergence after October 2014 since only two new emergences had been registered in that visit. At 210 

that point, all the individuals were unearthed in order to check whether they were independent 211 

seedlings or different stems of the same individual. Seedlings that were qualified as multi-stemmed 212 

were then re-considered as a single individual. Seedling emergence was determined as the number of 213 

emerged seedlings per plot (i.e. the sum of the 5 sowing points in each plot) during two growing 214 

seasons after the date of sowing.  215 

Characterization of the environment and micro-site explanatory variables 216 

We examined meteorological data in the area over the 3-year study period and compared it to the 217 

mean climatic data (see Appendix S2 for detailed explanation). It revealed the occurrence of some 218 

extreme climatic events over the three years of the study, and in particular an extraordinarily dry and 219 

cold period the first winter after planting (from December 2011 to February 2012; Fig. S2), which 220 

exposed the vegetation to a significant risk of frost damage (aggravated by the low water content in 221 

the soil). During the first summer there was another rather dry period that extended over three 222 

months (from June to August 2012), accompanied by slightly above-average maximum 223 
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temperatures. To characterize the microsite conditions of the planted seedlings, light availability and 224 

percentage of herbaceous and shrub cover were measured for each seedling (Table 2). Light ratio 225 

was calculated as the percentage of transmitted photosynthetic photon flux density (%PPFD) using 226 

two Li-190SA quantum sensors (Li-COR, NE) in paired mode (see Appendix S3). Percentage of 227 

herbaceous and shrub cover surrounding the seedlings was visually estimated to the nearest 5% using 228 

a 80 × 80 cm square centered on the plant.  229 

Table 2. Descriptive statistics (mean ± SD) of the microsite attributes measured at the seedling level 230 

grouped by altitudinal level and type of canopy openness (n=147). 231 

  Low elevation Intermediate elev. High elev. 
Plot-level attributes Canopy Gap Canopy Gap Canopy Gap 
Herbaceous cover (%) 37.9 ± 26 38.8 ± 22.1 39.9 ± 25.6 52.6 ± 27.3 36.9 ± 23.3 43.1 ± 22.7 
Shrub cover (%) 11.6 ± 7.7 20.8 ± 15.9 31.5 ± 25.6 16.6 ± 12.9 22.1 ± 18.1 20.9 ± 14.9 
Light ratio (%PPFD) 17.9 ± 2.4 36.4 ± 7.2 19.6 ± 5.5 36.8 ± 10.3 13.3 ± 2.2 28.8 ± 6.9 

Data analyses 232 

Seedling emergence was analyzed using a log-linear mixed-effects Poisson model, with counts of 233 

emerged seedlings per plot (from 0 to 15) as the response variable. GLMMs parameters were 234 

estimated using Maximum-likelihood (ML) with Gauss-Hermite quadrature approximation (Pinheiro 235 

& Chao 2006). We fitted one model for each of the four species, and elevation (at three levels), 236 

canopy openness (two levels) and provenance (two levels) were included as fixed effects in the 237 

model, whereas forest was considered a random factor. Selection of variables for inclusion in the 238 

final models was based on Akaike’s information criterion (AIC), with lower AIC values indicating 239 

stronger empirical support for a model (Bolker et al. 2009). Once the best model was obtained, it was 240 

compared against the null model (containing only random intercept and fixed intercept) using the 241 

likelihood ratio (LR) test. 242 
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 The effect of elevation, canopy openness and region of provenance on survival of planted 243 

seedlings was assessed with survival function curves based on Kaplan-Meier estimates, and the 244 

Mantel-Cox log-rank test was used to determine the significance of the differences between factor 245 

levels. To test the effect of both categorical and continuous covariates on seedling survival, we used 246 

a mixed-effects Cox model (Therneau & Grambsch 2000), which is a modification of the commonly 247 

used Cox’s Proportional Hazards (coxPH) model (Cox, 1972) that allows for inclusion of random 248 

effects. Summer and winter mortality were segregated as response variables, so we fitted a mixed-249 

effects Cox model for each response variable and species. Elevation and provenance were introduced 250 

as fixed factors, and the three variables measured at microsite level (herbaceous cover, shrubs cover, 251 

and light availability) and initial seedling size were introduced as fixed covariates. Plot and forest 252 

were considered random factors. For the Cox model, the variables for inclusion in the final models 253 

were selected by comparing the full model against reduced models in terms of the log-likelihood 254 

(Loglik) value, with higher Loglik values indicating a better-fitting model (Huelsenbeck & Crandall 255 

1997). The hazard ratio (HR) was computed for each significant predictor variable. For categorical 256 

variables, HR represents the quotient of the hazard functions for each of the factor levels compared 257 

to a reference level. For continuous variables, HR indicates the expected change in the risk of 258 

mortality with a one-unit increase in the explanatory variable.  259 

 Finally, to assess seedling resprouting after dieback, logistic mixed-effects models were fitted 260 

for each species using the ML method with Laplace approximation in the same model structure (i.e. 261 

candidate predictors and random factors) as in the mixed-effects Cox models. We created a response 262 

variable named ‘resprouted’ that takes value of ‘1’ for seedlings that were able to resprout and 263 

survived, and ‘0’ otherwise. The inclusion of variables in the logistic mixed-effects models was 264 

based on the AIC, and comparison of nested null and best models was assessed using the LR test. All 265 

analyses were performed using R 3.1.1 software (R Development Core Team 2014) and the ‘lme4’ v. 266 
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1.1-7 (Bates 2010), ‘survival’ v. 2.38–1 (Therneau & Lumley 2011)and ‘coxme’ v.2.2–4 (Therneau 267 

2012) packages for R. 268 

Results 269 

Seedling emergence 270 

The emergence of oak seedlings occurred during the first two growing seasons. A total of 69 Q. 271 

coccifera, 249 Q. ilex, 267 Q. faginea and 305 Q. pubescens seedlings emerged during this period, 272 

representing 27%, 49%, 52% and 60% of the sown acorns, respectively. Q. coccifera presented the 273 

most delayed emergence, with 43.5% occurring during the second growing season compared to 274 

around 23% for the other species. For all species, lag to emergence was related to altitudinal level, 275 

with plots at high elevations showing the most delayed emergence (40.8% during the second 276 

growing period) compared to intermediate (25.6%) and low elevation plots (16.6%). We found no 277 

significant differences in emergence date between the two levels of canopy openness or between 278 

seed provenances. For all species except Q. pubescens, emergence was significantly lower at plots 279 

located at highest elevation but did not differ between low and intermediate plots (Table 3). Seed 280 

provenance only affected seedling emergence for Q. ilex, with the warmer provenance presenting 281 

lower emergence rates across altitudinal levels. No significant differences in emergence were found 282 

between canopy and gap plots. 283 

Table 3. Results of the log-linear mixed-effects Poisson models of seedling emergence. Significant 284 

fixed terms in the best model for each of the sown species are shown, along with the AIC of both the 285 

best model (AICBest, containing all the fixed terms that produced a significant effect) and the null 286 

model (AICNull, containing only the intercept), and the significance of the LR test realized for model 287 

comparison. Elevation level is: H = High. Provenance level is: W= Warmer. 288 

Species Best model terms (Fixed) Estimate SE Sig. AICBest AICNull P (>Chisq) 

Q. coccifera Intercept 1.598 0.231 0.002 29.207 42.978 <0.001 
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 Elevation=H -1.420 0.448 0.007    
Q. ilex Intercept 1.877 0.144 <0.001 57.713 71.118 <0.001 
 Elevation=H -0.466 0.173 0.007    

 Provenance=W -0.402 0.130 0.002    

Q. faginea Intercept 2.480 0.127 <0.001 35.626 39.271 0.022 
 Elevation=H -0.405 0.146 0.07    
Q. pubescens Intercept 2.101 0.060 <0.001 - 41.100 - 

Seedling survival 289 

Seasonal patterns and altitudinal effects 290 

Overall survival rate of planted seedlings after three growing seasons was significantly higher (P < 291 

0.001) for marcescent species (Q. faginea and Q. pubescens, both showing 82.7% survival) than for 292 

evergreen oaks (Q. coccifera and Q. ilex, with 63.2% and 69.9% survival, respectively). 293 

Furthermore, these two groups showed different seasonal patterns of mortality: mortality for 294 

evergreen oaks occurred mostly during winter (93% and 90%, respectively), especially the first 295 

winter (80% and 73%), and mortality was significantly higher at the highest plots (P < 0.001 for both 296 

species). On the other hand, mortality for marcescent oaks concentrated on the first two years after 297 

plantation, but was evenly distributed over seasons, and with much lower effect of elevation on 298 

survival. 299 

 When splitting the data into winter and summer mortality, mixed-effects Cox models showed 300 

that winter mortality rates were significantly higher at the highest altitudinal level compared to the 301 

lowest level for all four species (Table 4). This effect was stronger in the case of Q. pubescens (HR = 302 

9.328) and Q. coccifera (HR = 8.070), followed by Q. ilex (HR = 5.75), and was weaker, but still 303 

significant, for Q. faginea (HR = 3.806). The high HR value in Q. pubescens was due to the almost 304 

null winter mortality occurred in the lowest altitudinal level (Fig. 2). For Q. ilex, significantly higher 305 

winter mortality rates were also found in the intermediate altitudinal level (HR = 2.273) compared to 306 
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the lower level. Both local and warmer provenances of Q. ilex were negatively affected by elevation, 307 

although the effect was more pronounced for the warmer-provenance seedlings (see Kaplan-Meier 308 

curves for the interaction between elevation and provenance in Fig. 2). In fact, the significantly 309 

higher mortality rates of the warmer-provenance Q. ilex compared to local provenance (HR = 2.408) 310 

were fundamentally linked to the winter mortality events (Table 4).  311 

 Canopy openness and biotic interactions 312 

In the case of Q. coccifera, the negative effect of elevation on seedling survival was accentuated 313 

under gap conditions. The Cox models for this species revealed a significant effect of plant exposure 314 

(as light ratio at each seedling location, %PPFD) for both winter (HR = 1.033) and summer (HR = 315 

1.165) mortality events. In the case of Q. pubescens, the Kaplan-Meier curves for factor interactions 316 

(Fig. 2) revealed that the negative effect of elevation was almost exclusively linked to warmer-317 

provenance seedlings planted under canopy gap conditions. Canopy openness was found to 318 

significantly affect seedling mortality for the two marcescent species, both of which showed 319 

significantly higher mortality rates under gap conditions (P = 0.016 for Q. faginea, and P = 0.013 for 320 

Q. pubescens). Looking at the interaction between elevation and canopy openness, we found that the 321 

significant reduction of Q. faginea mortality rates under continuous canopy occurred only in the 322 

lower and intermediate altitudinal levels, but not in the higher level. A similar effect was found by 323 

the summer mortality Cox model for Q. pubescens, which showed higher ratio of summer mortality 324 

of Q. pubescens with increasing light ratio (HR = 1.052). Shrub cover affected negatively Q. faginea 325 

seedlings’ survival during the summer periods but not the other oak species (Table 4). Similarly, size 326 

of the seedling at the time of plantation (represented by the seedling basal diameter, DO) had very 327 

little effect on seedling survival and only affected Q. coccifera plants that showed a significantly 328 

lower ratio of winter mortality with increasing DO.    329 
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 330 
Figure 3. Survival curves for the planted seedlings of the four tree species over the course of the 3-331 

year study period, based on Kaplan–Meier estimates. Rows represent the different main effects and 332 

interactions, and columns represent the different species. Legends for each row of the main effects 333 

are in the first plot of the row, and legends for each row of the interactions correspond to the union of 334 

the legends of the effects taking part in the interaction. P-values indicate significance of the log-rank 335 
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test between factor levels for each species. W periods in the x-axis correspond to the 1st, 2nd and 3rd 336 

winter seasons after plantation, and S periods to the summer seasons. 337 

Table 4. Mixed-effects Cox proportional-hazards model of 3-year winter and summer mortality of 338 

the planted seedlings of the 4 Quercus species. Significant fixed factors and covariates in the best 339 

model for each of the species are shown with their hazard ratio (HR) values, along with the log-340 

likelihood (Loglik) values of both the best model (LoglikBM, containing all the fixed terms that 341 

produced a significant effect) and the null model (LoglikNM, containing only the intercept), and the 342 

significance of the LR test realized for model comparison. Elevation levels are: H (High) and IM 343 

(Intermediate). Provenance level is: W = Warmer. 344 

Species Model Terms Estimate SE HR1 Sig. LoglikBM LoglikNM P (>Chi2) 

Q. coccifera Winter mortality Elevation=H 2.088 0.511 8.070 <0.001 -179.21 -194.72 <0.001 
  Light ratio 0.033 0.013 1.033 0.012    
   D0 -0.827 0.279 0.437 0.003       
  Summer mortality Light ratio 0.153 0.071 1.165 0.032 -9.74 -13.25 0.008 

Q. ilex 

Winter mortality Elevation=IM 0.821 0.417 2.273 0.049 -331.08 -316.44 <0.001 
 Elevation=H 1.749 0.378 5.750 <0.001    
 Provenance= W 0.879 0.262 2.408 <0.001       
Summer mortality - -  - - - - - 

Q. faginea Winter mortality Elevation=H 1.337 0.567 3.806 0.018 -126.08 -129.46 0.034 
 Summer mortality Shrub cover 0.024 0.010 1.024 0.020 -86.65 -88.82 0.037 
Q. pubescens Winter mortality Elevation=H 2.233 0.778 9.328 0.004 -143.72 -148.9 0.006 
 Summer mortality Light ratio 0.050 0.018 1.052 0.006 -77.57 -81.13 0.008 

1Note:For categorical predictor variables, the hazard ratio (HR) represents the quotient of the hazard 345 

functions for each of the factor levels compared to a reference level (Low, for Elevation; Local, for 346 

Provenance). For continuous variables, HR indicates the expected change in risk of mortality with a 347 

one-unit increase in the parameter in question. 348 

Seedling resprouting after dieback 349 

The ability to recover by resprouting after a dieback event was higher for Q. faginea than for the 350 

other species (70.4% of the 142 seedlings of this species suffering a dieback event were able to re-351 
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sprout during the next seasons). The percentages of re-sprouted seedlings for the other species were 352 

59.7% for Q. coccifera (from 77 dieback events), 59.0% for Q. pubescens (from 105 dieback events), 353 

and 54.5% for Q. ilex (from 156 dieback events). Surprisingly, none of the candidate explanatory 354 

variables showed a significant effect on resprouting in Q. faginea seedlings. For Q. pubescens and Q. 355 

coccifera, the models found an effect of seedling size, with individuals presenting higher stem 356 

diameter being more able to resprout (Table 5). Interestingly, the warmer provenances of Q. 357 

pubescens and Q. ilex showed significantly lower resprouting ability than the local provenances. 358 

Table 5. Results of the logistic mixed-effects models of seedling re-sprout after dieback events. 359 

Significant fixed terms in the best model for each of the planted species are shown, along with the 360 

AIC of both the best model (AICBest, containing all the fixed terms that produced a significant effect) 361 

and the null model (AICNull, containing only the intercept), and the significance of the LR test 362 

realized for model comparison. Provenance level is: W = Warmer. 363 

Species Model term (Fixed effects) Estimate SE AICBest AICNull P (>Chi²) 
Q. coccifera Intercept -4.035 1.289 101.07 109.80 0.001 

DO 1.284 0.447       

Q. ilex Intercept 0.707 0.452 207.74 213.93 0.004 

Provenance=W -0.999 0.362    

Q. faginea Intercept 0.943 0.298 - 176.02 - 
Q. pubescens Intercept 4.873 2.086 134.13 145.11 <0.001 
 Provenance=W -2.377 1.091    
 DO 0.362 0.181    

Discussion 364 

Thermal distance and extreme cold events in assisted migration 365 

The results of our study point that both the thermal distance between the current species’ distribution 366 

range and the recipient locality and the occurrence of extreme cold events may have strong effects on 367 

the performance of the translocated populations. Both factors therefore warrant careful consideration 368 
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when selecting species and seed sources for assisted migration programs (Vitt et al. 2010; Pedlar et 369 

al. 2013; Benito-Garzón & Fernández-Manjarrés 2015). In our study, potential signs of species 370 

maladaptation to large thermal migration distances include: (i) the overall lower germination rate of 371 

Q. coccifera, which is the species the most displaced from its ecological range; (ii) the lower 372 

germination rate at the highest altitudinal level (for all the species but Q. pubescens); (iii) the mid-to-373 

low survival of the evergreen Q. coccifera and Q. ilex seedlings planted at the highest elevation; and 374 

(iv) the lower germination and survival of some of the warmer provenances (especially Q. ilex), for 375 

which the thermal migration distance was much higher than for the local provenances. In spite of 376 

this, a considerable proportion of seedlings of all species performed relatively well in all the 377 

altitudinal levels, and there were no significant differences in the performance of most of the species 378 

between the lowest and the intermediate levels. This would suggest they are able to tolerate moderate 379 

displacements in elevation to colder sites. 380 

 On the other hand, the fact that most of the winter mortality of the species showing higher 381 

sensitivity to cold (Q. coccifera and Q. ilex) occurred during the extreme cold event in the first 382 

winter confirmed the decisive role of such events as a driver of seedling responses to translocation 383 

(Ameztegui & Coll 2013; Benito-Garzón et al. 2013). However, the extraordinarily hot and dry 384 

summer periods did not lead to any substantial increase in mortality which may be explained by the 385 

fact that all provenances came from drier sites, thus probably exhibiting a more conservative water-386 

use behavior (Leverkus et al. 2015). 387 

The role of forest overstory in buffering negative responses to translocation 388 

The fact that forest overstory plays an important role in maintaining a suitable microenvironment for 389 

the germination and early establishment of Quercus species has been widely reported and generally 390 

attributed to the fact that the canopy provides protection from direct exposure to light and high 391 

evaporative demands (Broncano et al. 1998; Lookingbill & Zavala 2000; Prévosto et al. 2011; 392 
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Caldeira et al. 2014; Martín-Alcón et al. 2015b). In our study area, we found higher summer 393 

mortality in three of the four species (Q. coccifera, Q. faginea and Q. pubescens) when planted under 394 

gap conditions and at lower elevations, thus confirming the facilitative role of canopy cover. In 395 

addition, the pine overstory also played an important role in buffering the negative effects of thermal 396 

distance (represented by elevation) and extreme cold events on seedling survival, by reducing winter 397 

mortality at higher elevations. This result has important implications and suggests the advantage of 398 

planting/sowing under relatively closed canopy to buffer negative responses to cold in assisted 399 

migration programs. Previous studies had also demonstrated a facilitative effect of shrubs in the 400 

establishment of Quercus seedlings, especially in the context of very open habitats (Rousset & 401 

Lepart 1999; Gómez-Aparicio et al. 2005; Kunstler et al. 2007; Smit et al. 2008), but we did not find 402 

any such effect here. The relatively low abundance of shrubs in the understory of our study sites 403 

together with the lack of important differences in shrub cover between the canopy and the gap plots 404 

might be at the origin of this divergence. 405 

Intra- and inter-specific differences in responses to plant translocation 406 

This experiment found important inter- and intra-specific differences in responses to translocation in 407 

terms of germination, survival and resprouting. We expected a high sensitivity to translocation for Q. 408 

coccifera, which is the species with the highest thermal migration distance to all the study sites. 409 

However, Q. coccifera showed more than 50% survival after the 3 years, high resprouting rates after 410 

dieback, and delayed seedling emergence, which indicates a non-negligible plasticity to cold 411 

temperature. The plastic behavior of this species was also observed by Baquedano et al. (2008) who 412 

found that phenotypic plasticity in response to water stress explained around 75% of the variability 413 

of different physiological and structural parameters among individual plants.  414 

 The other evergreen species (Q. ilex) was expected to respond to translocation in much the 415 

same way as Q. faginea, since both species coexist in both provenance regions, where they occupy 416 
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similar ecological niches with regard to thermal conditions (Espelta et al. 2005). However, we found 417 

that Q.ilex was less able to cope with cold stress than Q. faginea, as shown by its higher mortality 418 

when growing at high elevations. This negative response was particularly important for Q. ilex plants 419 

from the warmer populations, which suggests the existence of high ecotypic specialization in this 420 

species (Gratani et al. 2003; Peguero-Pina et al. 2014). In contrast, provenance did not play a 421 

significant role in the survival of Q. faginea or Q. pubescens along the altitudinal gradient studied. 422 

Although previous studies have shown similar phenotypic plasticity to light and drought between 423 

evergreen and marcescent oaks (Espelta et al. 2005; Castro-Díez et al. 2006), our results would 424 

suggest higher plasticity of marcescent oaks in response to cold stress. This could be related to their 425 

higher capacity to adapt phenology in response to low temperatures (Morin et al. 2007; Vitasse et al. 426 

2014), contrasting with the reported higher phenological plasticity of evergreen oaks in response to 427 

summer-drought (Montserrat-Martí et al. 2009).  428 

Conclusions 429 

This study serves as a first replicated field trial to evaluate the feasibility of management 430 

interventions based on planting or sowing late-successional species for diversifying sub-431 

Mediterranean pinewoods using an assisted migration approach. Initial establishment success was 432 

high in both the planting (with an overall 76.3% survival after the 3 years, reaching 82.7% for the 433 

species showing better performance) and sowing (with an overall 50% of seedling initial emergence, 434 

reaching 60% for the species showing better performance) experiments, in line with previous 435 

diversification experiments carried out in Mediterranean pine forests (Palacios et al. 2009; González-436 

Rodríguez et al. 2011; Prévosto et al. 2011). However, the performance of the translocated 437 

populations for some of the species was found to be highly dependent on the distance in thermal 438 

conditions from source locality to recipient locality and on the occurrence of extreme cold events. 439 

Our results also showed the important role of forest overstory in buffering the negative effects of 440 
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thermal distance and extreme cold events on seedling survival. Finally, we found signs of high 441 

ecotypic differentiation in regard to cold tolerance among different oak species (in particular the 442 

evergreens). In contrast, the marcescent species, principally Q. faginea, showed signs of high 443 

phenotypic plasticity to cold. These key intra- and inter-specific differences strongly underline the 444 

importance of managing risks in assisted migration programs by employing multiple seed sources, 445 

establishing field trials to guide seed movements, and exercising caution when calculating migration 446 

distances. 447 
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