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15 Abstract

16 Spatial synchrony refers to the presence of a common signal for a time-varying 

17 characteristic that, in dendrosciences, is shared among tree-ring chronologies from a 

18 particular area. Analysis and interpretation of synchrony patterns in tree-ring networks 

19 is currently limited by: (i) the requirement for flexible modelling of complex 

20 correlations and heteroscedastic errors and (ii) the availability of ready-to-use open 

21 software to fulfil this task. We present an R package (DendroSync) that facilitates 

22 estimating and plotting synchrony patterns for pre-defined groups. The package has 

23 been devised to work with traits derived from tree rings (e.g. ring-width), but other data 

24 types are also suitable. It combines variance-covariance mixed modelling with functions 

25 that quantify the degree to which tree-ring chronologies contain a common signal over a 

26 fixed time period. It also estimates temporal changes in synchrony using a moving 

27 window algorithm. The functionality and usage of DendroSync are illustrated using a 

28 simple example.

29
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33 1. Introduction

34 Dendrochronological archives provide long-term records of tree performance at 

35 varying spatial scales. The rising interest on the spatiotemporal dependence of forest 

36 dynamics on environmental cues has resulted in an increase of tree-ring networks 

37 worldwide (e.g. Barber et al., 2000; Briffa et al., 2002, 2008; Babst et al., 2013; St. 

38 George, 2014). These networks may contain complex patterns of coordinated (i.e. 

39 synchronous) temporal fluctuations in tree-ring signals. For instance, it has been 

40 reported that there is a common variation in regional tree-ring patterns engendered by 

41 correlated climatic forces and that the strength of this common variation diminishes 

42 with increasing distance. This phenomenon has received ample attention over the last 

43 decades (e.g. Fritts, 1976; Feliksik, 1993; Rolland, 2002; Frank and Esper 2005; Macias 

44 et al., 2006; Shestakova et al., 2016) and has been shown to be species- and region-

45 specific (Di Filippo et al., 2007; Trouet et al., 2012; St. George, 2014; Shestakova et al., 

46 2014, 2017). Hence, a natural question arises as to how such coordinated responses are 

47 structured across spatially disjunct stands (Rolland, 2002). Indeed, detailed analyses of 

48 coordinated patterns of tree-ring variability across geographical scales is likely to 

49 provide further insights into the influence of local and regional processes on the 

50 structure and function of forests. On the other hand, the available methodological 

51 approaches to unravel the complexities of tree-ring signals are still scarce.

52 In this context, spatial synchrony can be defined as the presence of a relevant 

53 common signal for a time-varying trait (e.g. ring-width) in a collection of tree-ring 

54 chronologies covering a particular area. Traditionally, the strength of the common 

55 signal shared by tree-ring series has been estimated through classical analysis of 

56 variance (ANOVA) (i.e. fixed effects model; Fritts, 1976). The seminal paper by 

57 Wigley et al. (1984) broadened the application of ANOVA in dendrosciences by 
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58 establishing the theoretical background for estimating the uncertainty in the average 

59 common signal of a set of correlated series. Time series of indexed ring widths were 

60 described in terms of variance components of several random effects (Wigley et al., 

61 1984). Indeed, tree-ring data are often better defined through a mixed model setting 

62 because of the associated random sources of variation, e.g. those associated with 

63 measurements repeated in time (Jennrich and Schluchter, 1986). Once the time (year) 

64 factor is taken as a random variable, inferences about the entire population of years can 

65 be derived from the estimation of the inter-annual variance common to a set of 

66 chronologies for a trait of interest. Hence, the proportion of common variance, or intra-

67 class correlation, estimates the extent of coordinated (or synchronous) fluctuations 

68 among chronologies (Shestakova et al., 2014). 

69 Synchrony patterns across geographical scales (i.e. from plots to continents) can 

70 be better disentangled and interpreted by grouping chronologies into potentially 

71 homogeneous subsets (e.g., Babst et al., 2013; Shestakova et al., 2014). For instance, 

72 contrasting physiological responses between species or across regions may cause 

73 differential forest reactions to environmental conditions that remain registered in tree 

74 rings (de Luis et al., 2013; Galván et al., 2014). Factors such as phylogeny, 

75 geographical proximity or functional similarity may underlie different patterns of 

76 synchrony in a particular area. Shestakova et al. (2014) presented a mixed model 

77 framework to disentangle spatial patterns of tree-ring signals that was applied using 

78 proprietary software. This methodology allows assessing to what extent temporal 

79 responses are spatially structured by partitioning the variability associated to the time 

80 effect at intra- and inter-group levels. By applying different grouping criteria, temporal 

81 signals of different strength, shared within and between the subsets, can be quantified 

82 by variance-covariance mixed modelling. This framework has proved to be well suited 
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83 to interpret synchrony patterns in tree-ring networks ranging from local (Shestakova et 

84 al., 2017) to sub-continental scales (Shestakova et al., 2016). However, broad analyses 

85 of such synchrony patterns are currently limited because of lack of non-proprietary 

86 software tools.

87 Despite their potential ecological applications, mixed models to study spatially 

88 structured tree-ring records are not yet broadly in use. Here, we present ‘DendroSync’ 

89 (Alday et al., 2017, CRAN: DendroSync), a package for the open-source R statistical 

90 environment (R Development Core Team, 2016) that facilitates the analysis and 

91 interpretation of synchrony patterns existing in tree-ring networks. DendroSync is based 

92 upon previously described methods (Shestakova et al., 2014). The package contains a 

93 suite of customizable functions that allow (i) evaluating and plotting complex patterns 

94 of synchrony for tree-ring traits over a given time period at within- and between-group 

95 levels that are pre-defined by the user and (ii) assessing temporal changes in those 

96 patterns using a moving window algorithm that divides the whole period of study into 

97 shorter sub-periods. We begin by describing the package functionality. We then provide 

98 an illustrative example and indicate where the package is available for download. 

99 Finally, we conclude by providing a general outlook of the package.

100

101 2. Package functionality

102 The package DendroSync quantifies synchrony across ring-width chronologies 

103 (or other tree-ring traits) for (i) a fixed time period defined by the user (i.e. at sub-

104 centennial or centennial scales) and (ii) a moving time window that pre-defines intervals 

105 within the study period for which synchrony estimates are obtained independently (e.g. 

106 30-year window). We note that this package can accommodate various time series 
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107 datasets apart from tree rings, but it was originally devised to be used in a 

108 dendrochronological framework.

109 The package workflow is illustrated in Figure 1. Following Shestakova et al. 

110 (2014, 2016), the package contains three function types: (i) functions to fit and, 

111 afterwards, select variance-covariance (VCOV) models based on goodness-of-fit 

112 statistics using a user-defined grouping criterion for any given tree-ring dataset; (ii) 

113 functions to calculate synchrony at within- and between-group levels from the selected 

114 VCOV models for the whole study period and (iii) functions to calculate temporal 

115 changes in synchrony using moving-window intervals across the time series. 

116 Appropriate plotting functions of synchrony patterns at within- and between-group 

117 levels for the whole period and of temporal changes in synchrony across sub-periods are 

118 also available. In total, 15 different functions are implemented, but nine are mainly for 

119 internal use (Fig. 1).

120

121 2.1 Data handling

122 The package DendroSync has been designed to work with residual indices of 

123 tree-ring width (TRW) chronologies that may partly overlap, hence covering a given 

124 period. To obtain indexed chronologies we recommend the use of high-pass filter 

125 algorithms. In this way, biological growth trends are eliminated while a common 

126 variance at inter-annual time scales is potentially preserved across chronologies (i.e. 

127 high-frequency variability related to climate or other external drivers of tree 

128 performance). The package can also handle other ecological data in which long-term 

129 trends and temporal autocorrelation have been previously removed (e.g. tree-ring traits 

130 such as isotopic series or density measurements, climatic time series, remote sensing 

131 derived data, etc.). The input data must be formatted as a data frame with TRW 
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132 (response variable), time and grouping variables as columns. The time variable is used 

133 to specify the years to be included in the analyses, and the grouping variable defines the 

134 grouping criterion applied to stratify the dataset of chronologies into subsets for analysis 

135 of synchrony patterns at both within- and between-group levels. A variable coding for a 

136 chronology factor (Code) should also be included to account for the effect of series 

137 (fixed) in the model. However, if time series vary around the same mean (as in the case 

138 of indexed ring-width chronologies), the variable Code becomes redundant and can be 

139 saved. In this case, the model turns into a random effects model. Missing values can be 

140 reported as NA.

141

142 2.2 Variance-covariance model selection

143 The first step to calculate synchrony values of indexed TRW chronologies for a 

144 grouping variable over a fixed time period (Fig. 1) is the selection of the best VCOV 

145 model. The function dendro.varcov fits seven VCOV models relating TRW against 

146 specific names of tree-ring width chronologies (TRW~Code) or, alternatively, the 

147 VCOV models can be fitted without code identification of chronologies if they are 

148 centred on the same mean value (TRW~1). Whatever the choice, time and grouping 

149 variables are modelled using positive-definite matrices (?pdClasses) to characterize 

150 synchrony for each level of the grouping variable and also across pairwise combinations 

151 of levels (i.e. within- and between-group synchrony). The function returns the following 

152 VCOV model outputs (Shestakova et al., 2014): a null positive-definite matrix structure 

153 (mBE; broad evaluation), and the homoscedastic and heteroscedastic (homoscedastic = 

154 TRUE or FALSE) versions of a diagonal positive-definite matrix structure (mNE, mHeNE; 

155 narrow evaluation), a positive-definite matrix with compound symmetry structure 

156 (mCS, mHeCS; compound symmetry) and a general positive-definite matrix structure 



8

157 (mUN, mHeUN; unstructured). Briefly, broad evaluation ignores the existence of 

158 groups so the year variance is constant at the within- and between-group levels; narrow 

159 evaluation tests for lack of common signals between chronologies belonging to different 

160 groups (i.e. covariances are set to zero); compound symmetry fits homogeneous year 

161 variances across groups and homogeneous covariances across pairwise combinations of 

162 groups; finally, unstructured allows for heterogeneous variances and covariances. The 

163 heteroscedastic variants of these VCOV models arise from allowing the residual 

164 variance to vary among groups. Afterwards, the function mod.table provides a table 

165 comparing VCOV models by Akaike’s Information Criterion (AIC), corrected AIC 

166 (AICc) and Bayesian Information Criterion (BIC) in the smaller-is-better form 

167 (Burnham and Anderson, 2002). Based on these criteria the best fitting VCOV model 

168 can be selected from this table.

169

170 2.3 Synchrony estimation

171 The function sync estimates synchrony from a previously selected VCOV 

172 model, amongst those produced by dendro.varcov. A modname argument is included in 

173 sync function to select one among the seven models of interest (mBE, mNE, mHeNE, 

174 mCS, mHeCS, mUN, mHeUN). The output lists synchrony estimates at the within- and 

175 between- grouping variable levels, quantifying the degree to which the values of 

176 chronologies contain a common signal. A standard error (SE) of each synchrony 

177 estimate is also included. This output can be directly used as input for the sync.plot 

178 function where dot plots of within- and between- grouping variable synchrony are 

179 produced. These dot plots are used to represent synchrony values (and their SEs) 

180 obtained for each level of grouping variable and also for pairwise combinations of 

181 levels (i.e. within- and between-group synchrony).
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182

183 2.4 Temporal changes in synchrony using a moving time window 

184 The function sync.trend provides information on changes in synchrony over 

185 time. This function estimates synchrony in TRW data for particular time periods using a 

186 moving time window as described in Shestakova et al. (2016). By default, the time 

187 variable is split in observation windows of 30 years that are lagged 5 years; the set of 

188 VCOV models fitted by dendro.varcov are then generated for each window. The 

189 sync.trend function uses the same data input as the dendro.varcov function. Afterwards, 

190 sync.trend chooses, for each time window, the best VCOV model based on the 

191 information criterion selected between "AIC", "AICc" or "BIC" (selection.method). 

192 Then, the selected model is used to calculate the within- or between- grouping variable 

193 levels synchrony for each time window.

194 The output of sync.trend function consists of a data frame indicating, for each 

195 time window, the best fit model, the information criterion used, the within- or between-

196 group synchrony and the mean time point for each window (varTime). The function 

197 sync.trend is very flexible and can be customized using internal arguments. For 

198 example, the window width and lag can be specified using arguments window and lag 

199 respectively. Also, the user can customize the type of information criterion used for 

200 model selection (selection.method), whether the models are homoscedastic or 

201 heteroscedastic (homoscedastic), and whether between-group synchrony is evaluated or 

202 not (between.group). The sync.trend output can be directly used for plotting synchrony 

203 trends using the function sync.trend.plot. This plotting function creates line charts 

204 showing synchrony changes across selected time windows at the within- and between-

205 group levels (and their standard errors as colour ribbons). One of the strengths of 

206 DendroSync is that either single period synchrony or synchrony trend outputs can be 
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207 used in further analyses relating synchrony values to their potential external drivers, e.g. 

208 through linear mixed models or correlation analyses (for an example, see Shestakova et 

209 al., 2016).

210

211 3. Illustrative example

212 The package DendroSync includes a dataset of 30 tree-ring width chronologies 

213 of conifer species compiled from Shestakova et al. (2016). The sampling sites are 

214 distributed along a latitudinal gradient (ca. 37–43°N) across Spain with the following 

215 species representation: Abies alba Mill., Pinus nigra subsp. salzmannii (Dunal) Franco 

216 and Pinus sylvestris L (Fig. 2). Residual TRW chronologies were obtained using 

217 standard dendrochronological techniques (Cook and Kairiukstis, 1990) and covered the 

218 period 1950–1999 (CRAN: DendroSync) (Fig. 2). Particularly, ring-width 

219 measurements were converted to site chronologies of ring-width indices by applying 

220 detrending and autocorrelation removal with the Friedman supersmoother spline 

221 (Friedman, 1984) and autocorrelation modelling. This procedure aimed at eliminating 

222 biological growth trends but preserving high-frequency variability potentially related to 

223 climate (Fritts, 1976).

224 This dataset can be potentially stratified following either taxonomic (i.e. species 

225 grouping) or geographic (i.e. regional grouping) criteria (Fig. 2). Synchrony patterns at 

226 species level have been previously reported in Shestakova et al. (2016). Instead, we use 

227 here the regional grouping to illustrate the functionality of the package. This analysis 

228 can be useful to evaluate whether warming-induced effects on forests (e.g. an increasing 

229 impact of drought) are homogenising climate responses of trees between and within 

230 regions, as previously reported at the local level for the Iberian peninsula (Shestakova et 

231 al., 2017). In this example, ring-width chronologies are classified into three groups 
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232 according to their latitudinal position across Spain as follows: ‘north’ (14 sites), ‘centre’ 

233 (10 sites) and ‘south’ (6 sites). Here we characterize regional patterns of synchrony by 

234 (i) modelling between- and within-group variability over the whole length of TRW 

235 chronologies (1950–1999 period), and (ii) evaluating temporal changes in synchrony for 

236 successive time intervals over this period.

237

238 3.1 Calculating synchrony over a fixed time period

239 In this section, we describe how synchrony is estimated at within- and between-

240 group levels over the whole time span covered by the tree-ring chronologies (i.e. over a 

241 fixed time period; Fig. 1). First, the dataset, named ‘conifersIP’, should be called by 

242 typing data(conifersIP) in the R console (the first rows can be viewed using 

243 head(conifersIP)). After loading the data, restricted maximum likelihood (REML) 

244 estimation of variance components for each model is obtained using dendro.varcov 

245 function:

246 > data(conifersIP)

247 > head(conifersIP)

248 > ModHm <- dendro.varcov(TRW ~ Code, varTime = "Year", varGroup = 

249 "Region", data = conifersIP, homoscedastic = TRUE)

250 > ModHt <- dendro.varcov(TRW ~ Code, varTime = "Year", varGroup = "Region", 

251 data = conifersIP, homoscedastic = FALSE)

252 > mod.table(ModHm)

253 > mod.table(ModHt)

254 The formula argument of dendro.varcov relates TRW against specific names of 

255 tree-ring width chronologies (Code). Here, we can use a simplified model (TRW ~ 1) 
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256 instead of fitting a Code effect since chronologies are centred on the same mean value. 

257 The output provided is in any case equivalent. The arguments varTime = "Year" (random 

258 term) and varGroup = "Region" (fixed term) indicates the variables used to fit the 

259 variance-covariance matrices. Homogeneity of residual variance is a main assumption 

260 of standard ANOVA, and conclusions on varTime × varGroup interactions may not be 

261 appropriate if this assumption is not fulfilled. The structure of error variances can be 

262 specified within the argument homoscedastic, which indicates whether homoscedastic 

263 (TRUE) or heteroscedastic (FALSE) variants of VCOV models should be fitted.

264 The output of this function, in this case named ModHm for homocedastic 

265 models and ModHt for heteroscedastic models, is a list containing information for each 

266 fitted model and can be directly used as input in mod.table. This function creates a table 

267 of restricted log-likelihood values for each model and derives goodness-of-fit criteria 

268 such as AIC, AICc and BIC (Table 1). Here, we consider models with substantial 

269 support to be those in which the difference of either AIC or BIC between models is <2 

270 (Raftery, 1996; Burnham and Anderson, 2002). This difference corresponds to the 

271 information loss experienced if using an alternative model instead of the best-fit model 

272 for inference (Burnham and Anderson, 2002).

273 In this example, the AIC and BIC criteria pointed to the presence of differential 

274 ring-width signals across the three regions because the null model (mBE), which 

275 ignores the presence of groups, obtained the least support (i.e., largest AIC and BIC 

276 values). Moreover, the narrow evaluation model (i.e. testing for lack of a common 

277 spatial signal shared across pre-defined groups) also showed higher AIC and BIC values 

278 (i.e. poorer fitting) relative to other alternative models that account for  the presence of 

279 shared variability among groups. This was expected from previous work because trees 

280 growing in neighbouring regions are likely to share similar climatic influences, as 
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281 shown for distances of up to 1,000 km in the Iberian Peninsula (Shestakova et al. 2016). 

282 Instead, the compound symmetry model with heteroscedastic errors provided the best fit 

283 according to AIC and BIC (mHeCS, Table 1). This output suggests that the magnitude of 

284 common ring-width signals is region-dependent, since the residual variation was distinct 

285 for each group. It also indicates the presence of significant ring-width fluctuations that 

286 are common across regions.

287 The user selected model (mHeCS) is then used as input in sync function to derive 

288 estimates of synchrony at within- and between-group levels (referred to as âC, following 

289 Wigley et al., 1984 and Shestakova et al. 2014) for the corresponding VCOV structure:

290 > bestmod <- sync(ModHt, modname="mHeCS")

291 Synchrony values can also be plotted using the following code:

292 > sync.plot(bestmod)

293 The sync function needs to include a dendro.varcov output object, here ModHt, 

294 to retrieve information on VCOV models, while the modname argument is needed to 

295 specify which model from ModHt is to be used to calculate synchrony, here "mHeCS". 

296 The sync output, in this case named bestmod, can be inspected for synchrony values or, 

297 instead, can be directly used as input in sync.plot to create within- and between-group 

298 synchrony dot plots with error bars (Fig. 3). In this example, the selected model 

299 (compound symmetry with heteroscedastic error variances) provides support for higher 

300 synchrony among chronologies of the north of Spain compared with those from the 

301 other two regions, hence suggesting a stronger climate forcing in the north. As 

302 expected, the extent of synchronous growth is lower at the between-region than at the 

303 within-region level; however, differences in between-region synchrony do not follow a 

304 pattern of geographic distance (i.e. more distant regions do not show less synchronous 

305 growth) (Fig. 3). Such patterns of common variability shared by TRW chronologies can 
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306 provide valuable insights into the biogeographical organization of tree-ring signals. That 

307 is, through VCOV modelling one may test hypotheses on contrasting growth patterns 

308 across groups of chronologies that are known or that can be defined based on existing or 

309 a priori knowledge. In contrast, multivariate approaches (e.g. principal component or 

310 factor analysis) are widely used to infer a posteriori patterns of common growth in tree-

311 ring networks, that is, based on the tree-ring records themselves (e.g. Peterson and 

312 Peterson 2001; Andreu et al. 2007). 

313 For further analyses, âC values over the whole time period derived from sync 

314 function can be accessed by typing "bestmod".

315

316 3.2 Calculating temporal changes in synchrony for fixed time windows

317 Temporal changes in synchrony can also be easily obtained and plotted by 

318 combining two functions: sync.trend and sync.trend.plot. An example code to execute 

319 these functions reads:

320 > reg.trend <- sync.trend(TRW ~ Code, varTime = "Year", varGroup = "Region", 

321 homoscedastic = FALSE, data = conifersIP, window = 30, lag = 5, null.mod = FALSE, 

322 selection.method = c("BIC"), all.mod = FALSE, between.group = FALSE)

323 > sync.trend.plot(reg.trend)

324 The first four function arguments of sync.trend are identical to those of 

325 dendro.varcov, namely the formula argument (TRW ~ Code), the time variable 

326 (varTime), the grouping variable (varGroup), and whether homoscedastic or 

327 heteroscedastic models should be defined (homoscedastic). In addition, the arguments 

328 window and lag are used to set the moving window interval and time lag over which the 

329 âC values are calculated. By default, they are set to 30 and 5 years, respectively. The 

330 null.mod argument specifies whether only the broad evaluation model (TRUE) or also 
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331 more complex VCOV structures (FALSE) will be evaluated. The selection.method 

332 argument indicates the goodness-of-fit criteria used to select the best VCOV model, 

333 here "BIC". The all.mod argument specifies whether both homoscedastic and 

334 heteroscedastic types of models are fitted in the same analysis (TRUE) or, instead, if 

335 only the type of models selected with the argument homoscedastic (homoscedastic or 

336 heteroscedastic) are fitted (FALSE). The first option is useful to assess changes in the 

337 structure of error variances of the fitted models over time. 

338 The sync.trend output, a data.frame called "reg.trend" here, can be directly used 

339 to plot changes in synchrony with sync.trend.plot function. In this example, 

340 sync.trend.plot creates a plot showing temporal changes in synchrony at the within-

341 group level (Fig. 4a). By setting the sync.trend argument between.group to TRUE, a 

342 plot showing between-group level temporal trends of âC values is also produced (Fig. 

343 4b). This function is useful to visualise changes in synchrony over time and at different 

344 levels (i.e. within and between groups). In this example, growth synchrony increases 

345 over the period 1950–1999 at the between-group level, suggesting a strengthening of 

346 drought-induced growth limitations (Shestakova et al., 2016) (Fig. 4b). At the within-

347 group level, conversely, only the central region shows a slight increase in synchrony 

348 (Fig. 4a). For further analyses, temporal changes in âC values across sub-periods derived 

349 from sync.trend function can be accessed by typing "reg.trend".

350

351 4. Package availability

352 DendroSync can be directly downloaded from the Comprehensive R Archive 

353 Network website (CRAN: https://CRAN.R-project.org/package=DendroSync). It can be 

354 installed from the R console by typing ‘install.packages("DendroSync")’ or, 

355 alternatively, by using the install packages menu. Once installed, users have access to 

https://CRAN.R-project.org/package=DendroSync
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356 the package documentation explaining the main package functions (Readme) and also to 

357 the reference manual (DendroSync.pdf) containing code examples for all functions. The 

358 package documentation is also accessible from the R console using the command 

359 ‘?any.function’ (e.g. ‘?sync’ to access sync function documentation and examples). 

360 DendroSync depends on the R packages "nlme" (CRAN: nlme; Pinheiro et al., 2016) 

361 and "ggplot2" (CRAN: ggplot2; Wickham, 2009).

362

363 5. Outlook

364 Unravelling the complexities of forest dynamics at large geographical scales is 

365 becoming a major priority of global-change research, and tree-ring records have 

366 emerged as very valuable data (Babst et al., 2017). DendroSync is a comprehensive tool 

367 to assess synchrony patterns from dendrochronological data using a set of customizable 

368 functions. Alternative R packages suitable for synchrony evaluation compute correlation 

369 matrices and related statistics such as variograms, and also plot spatial trends using 

370 correlograms (CRAN: Gouhier and Guichard, 2014, “synchrony” and Bjornstad, 2016, 

371 “ncf”). However, the main singularity of DendroSync is that it uses VCOV models to 

372 test for synchrony patterns within and between groups that are pre-defined by the user, 

373 thus providing synchrony estimates for the VCOV model that best approximates the 

374 data; besides, it plots temporal changes in synchrony within and between groups using a 

375 moving window algorithm. The DendroSync output can be complemented with the 

376 information generated by these alternative R packages, such as spatial correlograms as 

377 shown in Shestakova et al. (2016). The information provided by DendroSync can 

378 contribute to improve our understanding of how ecological factors determine tree 

379 performance across environmental gradients. Similarly to tree-ring traits, the package 

380 can handle other ecological records but the response variable should be previously 
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381 corrected for long-term (e.g. inter-decadal) trends and autocorrelation. The outputs from 

382 synchrony functions are data-frames that can be used in further statistical analyses. 

383 Consequently, the DendroSync package, although tailored for the analysis of tree-ring 

384 records, is useful to unveil patterns of synchrony in miscellaneous ecological data using 

385 pre-defined grouping criteria. New functions and examples will be implemented in the 

386 future based on methodological refinements and suggestions of the research community 

387 (see https://josucham@bitbucket.org/josucham/dendrosync.git where development 

388 versions are available).

389
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481 Table 1. Variance-covariance model comparison for 30 tree-ring width chronologies 

482 from the Iberian Peninsula (as provided by DendroSync) according to restricted log-

483 likelihood (LogLik) statistics: Akaike’s Information Criterion (AIC), corrected AIC 

484 (AICc) and Bayesian Information Criterion (BIC). AIC, AICc and BIC are in smaller-

485 is-better form. n is the number of observations used in the model fit and df is the 

486 degrees of freedom related with the number of parameters in the fitted model. The 

487 model of choice is shown in bold.

488

Model* n df AIC AICc BIC LogLik

Homoscedastic

mBE 1461 32 –1301.6 –1300.2 –1133.1 –1365.6

mNE 1461 34 –1327.2 –1325.6 –1148.2 –1395.2

mCS 1461 34 –1369.9 –1368.3 –1190.9 –1437.9

mUN 1461 37 –1371.4 –1369.5 –1176.5 –1445.4

Heteroscedastic

mBE 1461 32 –1301.6 –1300.2 –1133.1 –1365.6

mHeNE 1461 34 –1350.1 –1348.3 –1160.5 –1422.1

mHeCS 1461 34 –1395.3 –1393.5 –1210.9 –1465.3

mHeUN 1461 37 –1394.2 –1392.1 –1188.8 –1472.2

489 * Model abbreviations: Broad Evaluation model, mBE; Narrow Evaluation model, mNE; Compound 
490 Symmetry model, mCS; Unstructured model, mUN; heteroscedastic variant of mNE, mHeNE; 
491 heteroscedastic variant of mCS, mHeCS; heteroscedastic variant of mUN, mHeUN.
492
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493 FIGURE CAPTIONS

494

495 Figure 1. Workflow and overview of the main functions included in the package 

496 DendroSync. Two main approaches are described independently: A) calculating 

497 synchrony over a fixed time period and B) calculating temporal changes in synchrony 

498 for fixed time windows.

499

500 Figure 2. Distribution of sampling sites across Spain. Coloured circles denotes regions: 

501 north (blue), centre (green) and south (red). Genus symbols are as follows: Abies alba 

502 (circle), Pinus nigra (square) and Pinus sylvestris (triangle).

503

504 Figure 3. Example of a dot plot created with the sync.plot function. Synchrony 

505 estimates (âC) for 30 tree-ring width chronologies originated from the Iberian Peninsula 

506 are calculated for the best variance-covariance model (see Table 1) at (a) within-group 

507 and (b) between-group levels over the period 1950–1999. Grouping of chronologies is 

508 based on geographic classification (north, centre and south). Error bars depict standard 

509 errors (SE).

510

511 Figure 4. Example of a plot created with the sync.trend.plot function. Synchrony 

512 estimates (âC) for 30 tree-ring width chronologies originated from the Iberian Peninsula 

513 at (a) within-group and (b) between-group levels are calculated for the best model for 

514 30-year moving intervals lagged by 5 years over the period 1950–1999. The x-axis 

515 shows the central year of the moving time interval. Grouping of chronologies is based 

516 on geographic classification (north, centre and south). Shadows are standard errors (SE).
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517

A) Synchrony for fixed time period B) Synchrony changes for fixed 
time windows

1) VCOV models

2) Synchrony

3) Temporal trends in 
synchronydendro.varcov

mod.table

sync.trend

sync.trend.plot

Both outputs are data 
frames that can be used 

for further analysis

sync

sync.plot

DendroSync

518

519 Figure 1

520



25

521

522

523 Figure 2
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